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Mouse genomic variation and its effect on
phenotypes and gene regulation
Thomas M. Keane1*, Leo Goodstadt2*, Petr Danecek1*, Michael A. White3, Kim Wong1, Binnaz Yalcin2, Andreas Heger4,
Avigail Agam2,4, Guy Slater1, Martin Goodson2, Nicholas A. Furlotte5, Eleazar Eskin5, Christoffer Nellåker4, Helen Whitley2,
James Cleak2, Deborah Janowitz2,6, Polinka Hernandez-Pliego2, Andrew Edwards2, T. Grant Belgard4, Peter L. Oliver4,
RebeccaE.McIntyre1,Amarjit Bhomra2, JérômeNicod2,XiangchaoGan2,WeiYuan2, LouisevanderWeyden1,CharlesA. Steward1,
Sendu Bala1, Jim Stalker1, Richard Mott2, Richard Durbin1, Ian J. Jackson7, Anne Czechanski8, José Afonso Guerra-Assunção9,
Leah Rae Donahue8, Laura G. Reinholdt8, Bret A. Payseur3, Chris P. Ponting4, Ewan Birney9, Jonathan Flint2 & David J. Adams1

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than
previously known.Weuse these genomes to explore the phylogenetic historyof the laboratorymouse and to examine the
functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts
show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait
loci we show that the molecular nature of functional variants and their position relative to genes vary according to the
effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model
organism.

Until the end of the 20th century the molecular basis for mor-
phological, physiological, biochemical and behavioural variation in
laboratory mice remained largely obscure1–3. At the beginning of the
21st century, decoding the complete genome of one strain, C57BL/6J,
the mouse reference genome, revolutionized our ability to relate
sequence to function4,5. It enabled genetic screens in mice to be per-
formed on an unprecedented scale6, it facilitated the task of creating a
complete set of null alleles for all genes7,8, and it accelerated the dis-
covery of mouse sequence diversity9,10.
Our catalogues, however, remain incomplete and some forms of

variation are largely undocumented. Whereas we now know more
about the extent of phenotypic variation among laboratory strains
of mice11–16 and the complexity of genetic action, from fully penetrant
Mendelian effects, partially penetrant modifiers17,18 and non-additive
effects18, to the quasi-infinitesimal genetic architecture that underlies
most quantitative traits19, we are still largely ignorant of themolecular
basis of the majority of genetically influenced phenotypes.
Herewedescribe the generation and analysis of sequence from17key

mouse genomes, obtained using next-generation sequencing20,21. The
genomes include those of the classical laboratory strains C3H/HeJ,
CBA/J, A/J, AKR/J, DBA/2J, LP/J, BALB/cJ, NZO/HlLtJ and NOD/
ShiLtJ, and those of four wild-derived inbred strains CAST/EiJ,
PWK/PhJ, WSB/EiJ and SPRET/EiJ, which include the progenitors of
the common laboratory strains and are representative of the Mus
musculus castaneus,Musmusculusmusculus,Musmusculus domesticus
andMus spretus taxa, respectively.Wealso sequenced three related 129-
strains, (129S5SvEvBrd, 129P2/OlaHsd and 129S1/SvImJ) representing
the genetic backgrounds on which more than 5,000 knockout
mice have been generated22 and C57BL/6NJ, the strain used by the
genome-wide knockout programmes KOMP, NorCOMM and
EUCOMM7,8,22. Collectively the sequences of these strains capture

the genomes of most of the commonly used strains of mice and their
progenitors14,23–25.
We document the variation we have discovered, describe the dis-

tribution of variants between strains, and explore the evolutionary
origins of the subspecies that gave rise to the laboratory mouse.
Using two examples we demonstrate how the sequence can be used
to investigate the molecular origins of phenotypic variation. First, we
use sequence variation to assay allele-specific variation in gene
expression. We show how, in combination with a measure of activity
at gene promoters, it is possible to implicate functional variants in
gene expression regulation. Second, we explore the molecular basis
of quantitative traits. We ask whether functional variants responsible
for quantitative variation have common molecular features, in terms
of their position (inside or outside genes) and their molecular class
(single nucleotide polymorphisms (SNPs), indels or structural
variants).

Data generation and variant discovery
Figure 1 and Table 1 summarize the sequence generated and the
variants discovered. We defined all sequence as either the same as,
or different from, that of the reference strain (C57BL/6J; MGSCv37
assembly) and we report our results with respect to an accessible
genome: those sites to which sequence reads can be uniquely mapped
with mapping qualities greater than 40 (Supplementary Methods).
This represented on average 83.8% of the reference genome and
94.7% of coding sequence of each strain.
Between 13% and 23% of each genome is inaccessible (Table 1 and

Supplementary Figs 1–17). The higher proportion of inaccessible
regions in the wild-derived strains indicates that divergence from
the mouse reference is a major contributor to inaccessibility. In the
accessible mouse genome, we identified 56.7 million (M) unique
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the production of a structural variant29. Only 7.5%of structural variants
were private to one of the classical laboratory strains.

Functional variants
We identified 0.12M SNP positions in protein-coding sequence that
lead to amino acid changes (non-synonymous substitutions) and
0.26M that do not (synonymous substitutions). In total 2,051 stop
codons across all strains and transcripts were discovered, an average
of 85 for the classical laboratory strains and 251 for the wild-derived
strains. Supplementary Fig. 18 shows the distribution of these variants
across the strains. Non-synonymous changes are seen, on average,
every 1,454 codons, and rarely cluster. Extreme variation, however,
occurs within a coding exon of Prdm9, a ‘speciation gene’30, whose
zinc-finger-encoding domains vary greatly across the sequenced
strains (Supplementary Fig. 19). By sequencing RNA we confirmed
99.84% of the coding SNPs that were covered by 10 or more RNA-Seq
reads in expressed genes (Supplementary Table 2).
Some functional variants previously reported in one strain were

found for the first time in others. In LP/Jmice we identified amutation
in the DNA polymerase iota (Poli) gene. This premature stop codon,
which ablates gene function, has previously been identified in 129-
derived mice (MMU18:70688442)31. We also discovered that a muta-
tion inDisc1, known in 129-derived mice and associated with a deficit
in working memory32, is also present in LP/J. Further, we discovered a
truncating mutation (MMU10:53345838) in the mini-chromosome
maintenance geneMcm9 (ref. 33) in SPRET/EiJ. This gene is thought
to have an important role in replication, suggesting functional redund-
ancy or the existence of a paralogous gene in SPRET/EiJ.

Variation between mouse strains
The classical laboratory strains of mice carried relatively few private
variants (,2% of all variants called in each strain) (Table 1). These
variants were distributed genome-wide, indicating that they had
either arisen since the divergence of these strains (Supplementary
Fig. 1–17), or are errors. We observed significant differences in trans-
posable element families across the laboratory and wild-derived
strains (Fig. 1). Transposon element variants (TEVs) were found to
be depleted near transcriptional start sites, in or near exons, and long
interspersed nuclear element (LINE) variants were depleted within
the introns of transcription factor genes. Within introns, we find a
significantly reduced number of endogenous retroviral (ERV) TEVs
that are inserted in the sense transcriptional orientation.
Loci that are absent from the C57BL/6J reference genome are dif-

ficult to access. We identified 424Mb of novel sequence (contigs

.100 bp; 48.4Mb for contigs .1 kb)(Supplementary Fig. 20).
Unsurprisingly, more is found in the wild-derived strains than in
the classical laboratory strains, which are largely derived from a
common pool of founders. Of the novel sequence 20.4Mb aligned
with the Celera mixed strain assembly34 and other mouse sequence
not present in the reference genome; 562.9 kb mapped to the rat
reference genome and 18.9 kb to the rabbit reference. About 30Mb
of novel sequence was conserved across multiple strains (Supplemen-
tary Fig. 20).

The phylogenetic history of the mouse
We used the accessible sequences of the wild-derived strains to
explore the evolutionary history of the primary subspecies that gave
rise to the laboratory mouse. We conducted a Bayesian concordance
analysis35 with the sequences of M. m. musculus (PWK/PhJ), M. m.
domesticus (WSB/EiJ), M. m. castaneus (CAST/EiJ) and M. spretus
(SPRET/EiJ), using rat as an outgroup.
Weobserved substantial phylogenetic discordance across thegenomes

ofM.m.musculus,M.m. domesticus andM.m. castaneus (Fig. 2). In the
face of this discordance, we identified aM.m. musculus/M. m. castaneus
primary subspecies history (concordance factor (CF)5 37.9%; 95%
credibility interval (CI)5 37.8–38.0%). The two other possible histories
were supported by equal numbers of loci (CF5 30.3%; 95% CI5 30.2–
30.4%; andCF5 30.2%; 95%CI5 30.1–30.3%), closelymatching expec-
tations from theoretical models of incomplete lineage sorting36–38.
Phylogenetic switching occurs over a short physical scale, in rough agree-
ment with the spatial pattern of linkage disequilibrium in natural popu-
lations of house mice39, and median locus sizes parallel the three
phylogenetic histories (primary history, 40,975 bp; alternative histories,
33,626 bp and 33,412 bp). Despite its considerable divergence time from
house mice, we also found phylogenetic discordance involvingM. spre-
tus: 12.1% of loci did not place this species as the outgroup to a M.
musculus subspecies clade.

Allele-specific functional differences
We combined a measure of allele-specific variation with a measure of
activity at gene promoters to implicate functional variants. Sequencing
RNA from an F1 hybrid of two sequenced strains and assaying the
relative abundance of allelic variants in transcripts makes it possible to
assess the variation in gene expression. We sequenced RNA from six
tissues (liver, thymus, spleen, lung, hippocampus and heart (Sup-
plementary Table 2)) obtained from an F1 generated by crossing the
reference strain (C57BL/6J) with one sequenced strain (DBA/2J). A
total of 40,521 SNP positions were covered by RNA reads spread over

Table 1 | An overview of the sequence and variants called from 17 mouse genomes.
Strain Gb of

mapped data
Coverage % of genome

inaccessible
SNPs (Private) Indels (Private) Structural

variants
(Private)

C57BL/6NJ 77.29 29.29 13.21 9,844 (1,488) 22,228 (4,259) 431 (75)
129S1/SvImJ 71.91 27.25 15.30 4,458,004 (1,489) 886,136 (16,140) 29,153 (786)
129S5SvEvBrd 50.27 19.05 15.17 4,383,799 (1,991) 810,310 (21,214) 25,340 (691)
129P2/Ola 115.52 43.78 14.47 4,694,529 (23,677) 1,028,629 (58,173) 32,227 (3,430)
A/J 70.39 26.68 15.90 4,198,324 (44,837) 823,688 (24,502) 28,691 (1,474)
AKR/J 107.16 40.61 14.86 4,331,384 (87,527) 966,002 (64,422) 30,742 (3,576)
BALB/cJ 65.72 24.90 15.09 3,920,925 (29,973) 831,193 (30,998) 25,702 (1,056)
C3H/HeJ 92.81 35.17 15.09 4403599 (16,804) 949,206 (34,834) 28,532 (1,779)
CBA/J 77.43 29.34 14.79 4,511,278 (34,203) 929,860 (35,976) 28,183 (1,178)
DBA/2J 65.11 24.67 15.09 4,468,071 (72,214) 868,611 (37,085) 28,346 (1,469)
LP/J 73.03 27.67 15.29 4,701,445 (53,509) 947,614 (33,817) 30,024 (1,194)
NOD/ShiLtJ 75.88 28.75 17.30 4,323,530 (143,489) 797,086 (41,113) 30,605 (2,479)
NZO/HILtJ 45.68 17.31 16.06 4,492,372 (210,256) 806,511 (60,231) 25,125 (1,938)
PWK/PhJ 66.99 25.38 19.26 17,202,436 (4,461,772) 2,635,885 (833,794) 90,125 (25,383)
CAST/EiJ 64.84 24.57 19.18 17,673,726 (5,368,019) 2,727,089 (956,828) 86,322 (25,232)
WSB/EiJ 48.19 18.26 16.23 6,045,573 (894,875) 1,197,006 (211,348) 35,066 (5,957)
SPRET/EiJ 70.41 26.68 23.26 35,441,735 (23,455,525) 4,456,243 (2,936,998) 157,306 (91,721)

Total 1,238.63 469.36 129,260,574 21,683,297 711,920

Private variants are strain-specific variants.
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1 SNP per 500 bp (classical)
1 SNP per 130 bp (wild)

SNPs, 8.8M unique indels and 0.28M structural variants including
0.07M transposable element insertion sites (Table 1).
The sensitivity and specificity of our variant calls were established

using 17.5 million bases (Mb) of DNA from one non-reference strain
(NOD/ShiLtJ) that we generated with established sequencing techno-
logy. We sequenced 107 bacterial artificial chromosomes (BACs)26

spread over loci on chromosomes 1, 6, 11 and 17. The sequence has
an estimated accuracy of one error per 100,000 base pairs (bp). We
aligned 16.2Mb of the BAC sequence to the MGSCv37 mouse
reference and from that estimated that 3.6% of our next-generation-
derived NOD/ShiLtJ SNP calls were false positives, and 6.5% were
false negatives. We compared our genotype calls to those in public
databases and found over 99.4% and 99.1% agreement with the two
largest SNP data sets (Perlegen9 and dbSNP27). However, we also
found that these data sets have large false-negative rates of 83.7%
and 84.1%, respectively.
We identified far fewer indels (1–100 bp) than SNPs andwith lower

confidence (Table 1). We relied for validation on comparison with
the NOD/ShiLtJ BAC sequences and estimated false-positive and
-negative rates to be 2.2% and 20.1%, respectively. Collectively, we
estimate an average of 2.61 sequence errors per 10 kilobases (kb) of
accessible sequence, an accuracy of 99.97% in NOD/ShiLtJ, which
should extend to the other sequenced strains.

We used the NOD/ShiLtJ BAC sequence to estimate how many
variants are contained within inaccessible regions. We found that the
BAC sequence in inaccessible regions has approximately 2.8 times
more SNPs per base than the rest of the BAC sequence. Sequence
reads could not be unambiguously mapped to these regions, resulting
in missed variant calls. An analysis of the content of the inaccessible
sequence is provided in Supplementary Table 1. Our analysis of the
NOD/ShiLtJ BAC sequence implies that at least 30% of all SNPs in the
genomes of the strains we sequenced remain to be discovered. The
majority of these SNPs are located in intergenic regions of the genome.
In addition to homozygous SNP positions we also called 5.2M hetero-
zygous positions. These result from misalignments around indels and
structural variant breakpoints, duplicated loci and lowdepth positions.
We called 0.71M structural variants .100 bp (0.41M simple dele-

tions, 0.29M simple insertions, 2,100 inversions, 1,556 copy number
gains and 3,658 complex structural variants) (Table 1 and Fig. 1) at
0.28Mpositions, as described inour accompanying paper28.Onaverage
48.4Mb of sequence of each strain falls into structurally variant regions
of the genome (33Mb for the laboratory strains and 98.2Mb for wild-
derived strains). Structural variants cluster with SNPs in each strain
(Supplementary Fig. 1–17), indicating that the vast majority of these
events may be ancestral in origin. This may also reflect high rates of
polymorphism consequent to break-induced replication involved in
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Figure 1 | An overview of variants called from 17mouse genomes relative to
the reference. a, The four wild-derived strains (CAST/EiJ,WSB/EiJ, PWK/PhJ
and SPRET/EiJ) are representative of theMus musculus castaneus, Mus
musculusmusculus,Musmusculus domesticus andMus spretus taxa and include
the progenitors from which the classical laboratory strains were derived. These
genomes are shown in a circle with tracks indicating the relative density of
SNPs, structural variants (SVs) and uncallable regions (binned into 10-Mb
regions). Transposable element (TE) insertions, which are a subset of the

structural variant calls, are shown as a separate track. Corresponding tracks are
shown for each of the 13 classical laboratory strains to the right of the circle.
Links crossing the circle indicate regions on the reference where the wild-
derived strain is closest to the reference (375-kb bins). b, The numbers inside
the Venn diagrams indicate the number of SNPs, indels, structural variant
deletions and transposable element insertions in the wild-derived and classical
laboratory strains. The numbers beneath each Venn diagram indicate totals for
each type of variant in the wild and classical laboratory strains.
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Nucleotide diversity in NIH-HS progenitors
We examined sequence diversity among the NIH-HS progenitors  
(Fig. 1), identifying the following characteristics of this diversity. First, 
diversity between all pairs of strains was similar, such that there were no 
strains that were extremely sequence divergent (Supplementary Fig. 1). 
Second, in total, 29% of 7.2 million SNPs were private to a particular 
strain; hence, unique haplotypes are relatively common in the NIH-HS. 
Third, regions of low diversity were small (median of 400 kb), with no 
blocks over 35 Mb in length (Fig. 1a). Within divergent regions, there 
was a median of 151 differences per 100 kb (Fig. 1b).

In comparison with the eight inbred strains that founded the 
mouse heterogeneous stock4,10, the rat founders were less diverse  
(10.2 million SNPs in the mouse founders), but diversity was more 
homogeneous: in the mouse genomes, long tracts of identical haplo-
types alternate with segments of much greater diversity (Fig. 1a,b).

Phenotypes and genotypes
NIH-HS rats were phenotyped with a protocol that includes six  
disease models (anxiety, diabetes, hypertension, aortic elastic lamina 
ruptures, multiple sclerosis and osteoporosis) and measures of risk 
factors for common diseases (for example, lipid and cholesterol levels  
and cardiac hypertrophy)11 (Table 2). In total, 160 phenotypes were 
measured (Supplementary Table 1). We selected 1,407 animals 
and 198 non-phenotyped parents for genotyping together with the  
heterogeneous stock founders.

We designed a high-density Affymetrix SNP genotyping array 
(RATDIV), using sequences from 13 inbred strains, which inter-
rogated 803,485 SNPs. The SOLiD and RATDIV calls agreed at 
99.98% of the 560,000 SNPs segregating in the 8 NIH-HS founders. 
We genotyped the NIH-HS with this array and reconstructed the 
mosaics of NIH-HS founder haplotypes from 265,551 polymorphic 
high-quality SNPs. In the NIH-HS, the mean minor allele frequency 
(MAF) was 22% (Fig. 1c), and linkage disequilibrium (LD) fell below  
0.2 (median r2) within 1 Mb of autosomal SNPs (Fig. 1d). Four pairs 
of loci showed high interchromosomal LD, owing to misassembly of 
the reference sequence used here (Rnor3.4); these loci were excluded 
from the analysis (Supplementary Table 2).

QTLs
The NIH-HS contains individuals of varying relatedness that generate 
population structure in the genotypes and, hence, false positive genetic 
associations. We evaluated two strategies for dealing with related-
ness: mixed models in which the genotypic similarity matrix between 
individuals modeled their phenotypic correlation12 and resampling 
methods to identify loci that replicate consistently across multiple 
QTL models fitted on subsamples of the mapping population13. In 
both strategies, QTLs were detected by haplotype association14.

We compared the methods by simulation to determine which best 
controlled the false positive rate while retaining power. Mixed models 
performed better than resampling when phenotypes were simulated to 
have a normal distribution, but the reverse was true for phenotypes that 
did not have a normal distribution (that is, binary phenotypes and those 
with a negative binomial distribution). Because these methods have dif-
ferent advantages, we mapped all traits with both, but we only report those 
QTLs detected at false discovery rate (FDR) of 10% by the method that 
performed best for each trait (thresholds are given in Supplementary 
Table 1). A genome scan for one phenotype (platelet aggregation) is 
shown (Fig. 2) in which three loci were identified with FDR of 10%.

We identified 355 QTLs for 122 phenotypes, with a mean of 2.9 
QTLs per phenotype (Supplementary Table 3). The number of QTLs 
per phenotype and the QTL effect sizes (Fig. 1e) have markedly 
skewed distributions, with a median effect size of 5% (mean effect 
size of 6.5%). Large-effect QTLs were rare: only 22 QTLs explained 
more than 15% of the variance. We identified 28 QTLs that explained 
less than 2.5% of the phenotypic variance.

The correlation between heritability and the total variance explained 
jointly by the detected QTLs is shown (Fig. 1f). On average, the QTLs 
explained 42% of the heritable phenotypic variance. When consider-
ing QTLs mapped in other rat crosses in the Rat Genome Database, 
there was significant overlap with NIH-HS QTLs for the number 
of arterial elastic lamina ruptures, total cholesterol levels and heart 
weight (at a nominal P value of 0.05; Supplementary Table 4).

We estimated the confidence intervals for QTL locations by simu-
lating a large number of QTLs throughout the genome with various 
effect sizes, and we calculated the distribution of the widths of the con-
fidence intervals as a function of their significance (Supplementary 
Fig. 2). The median size of the 90% confidence interval was 4.5 Mb, 
on average containing more than 40 genes.

Incorporation of sequence with mapping data
We investigated the extent to which our near-complete catalog of seg-
regating sequence variants would identify genes and causative muta-
tions. The heterogeneous stock permits a test, called merge analysis6, 
of whether a variant is responsible for phenotypic variation, under the 
assumption that a single imputed variant or variants on a single pro-
genitor haplotype are causal. Because genetic variation segregates in 
the form of progenitor haplotypes in the heterogeneous stock, QTLs 
can always be explained by variation in the haplotypes. When a QTL 
corresponds to a single variant though, genotypic variation at that 
variant will explain phenotypic variation better than progenitor hap-
lotypes. To measure whether a single variant explained a QTL, we 
calculated difference (d) as log Pmerge–log Phaplotype, where log Phaplotype 
is the maximum negative log10 P value of the haplotype test of no asso-
ciation and log Pmerge is the maximum of all merge log10 P values of 

Table 1 Sequence variation in the eight progenitor strains of NIH-HS rats

Strain
Mapped  
data (Gb) Coverage

Inaccessible  
genome (%) SNPs Private SNPs Indels Private indels

Structural  
variants

Private  
structural variants

ACI/N 65.9 26.3 12.6 2,883,405 228,468 166,425 12,646 19,499 756
BN/SsN 54.4 21.7 9.4 71,038 563,308 0 14,839 27 4,203
BUF/N 62.3 24.9 12.7 2,748,633 125,202 172,934 7,195 22,176 1,002
F344/N 77.9 31.1 11.8 2,831,144 97,951 157,522 5,007 25,257 1,003
M520/N 72.5 28.9 12.3 2,836,898 89,277 170,031 5,008 24,090 915
MR/N 62.4 24.9 12.3 2,664,124 223,514 151,099 12,005 18,306 1,004
WKY/N 63.4 25.3 12.1 3,088,953 496,327 164,634 23,979 28,270 3,357
WN/N 62.3 24.9 12.2 2,698,493 249,563 154,769 13,541 18,563 700

Shown for each strain is the amount of sequence mapped to the reference, the coverage, the percent of the genome deemed inaccessible and the counts of the three classes of 
variants compared to the reference strain. Private variants are variants that distinguish a specified strain from all others; most of the alleles private to BN/SsN are reference alleles.
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Unraveling the complex relationship between phenotype and geno-
type poses a formidable challenge for biomedical science. Despite 
considerable success in identifying genetic loci that contribute to 
quantitative variation and disease susceptibility in humans1, in most 
organisms, the causal genetic variants at loci that contribute to com-
plex phenotypes remain unclear2. Finding the responsible molecular 
changes would allow an understanding of how phenotypic variation 
arises and would confirm the identity of relevant genes.

In this report, we present results from an outbred rat heterogeneous 
stock (hereafter, NIH-HS) in a combined sequence-based and genetic 
mapping analysis of 160 phenotypes. The NIH-HS, established in the 
1980s at the US National Institutes of Health (NIH), is descended 
from eight inbred progenitors3—BN/SsN, MR/N, BUF/N, M520/N, 
WN/N, ACI/N, WKY/N and F344/N—containing segregating varia-
tion representative of that found in commonly used laboratory rats.

Heterogeneous stocks have three characteristics suited to genetic 
mapping: (i) quantitative trait loci (QTLs) can be resolved to megabase 
resolution; (ii) the complete sequence of genotyped heterogeneous-stock 
animals can be imputed with high accuracy from the progenitor genomes; 
and (iii) the population has a well-defined haplotype space that can be 
exploited to determine whether genetic association is caused by single 
sequence variants or by haplotypes4–6. The distinction between haplotypic 
and single-marker association is fundamental to understanding the signals 
from genome-wide association studies (GWAS), where it is unknown how 
often causality can be attributed to a single variant. In natural populations, 
it is rarely feasible to test for haplotypic effects because of the difficulty of 
estimating the large number of unknown rare haplotypes7.

Here we describe the sequence of the 8 progenitor strains, the 
development of a rat SNP array, the genotyping and phenotyping of 
1,407 outbred NIH-HS rats and the mapping of hundreds of QTLs. 
We use the haplotypic properties of the NIH-HS to investigate the 
molecular basis of these QTLs.

RESULTS
Sequence analysis
We generated SOLiD sequence data for the eight NIH-HS inbred 
founder strains equivalent to an average of 22× base coverage. 
After mapping sequence to the reference strain (BN/NHsdMcwi)8, 
we report our results with respect to the accessible genome, which 
represents ~88% of the reference genome (Table 1). We identified  
7.2 million SNPs (containing 19.8 million genotypes differing from the 
reference in at least 1 strain), 633,000 indels (<10 bp, with the major-
ity consisting of 1-bp (79.3%) or 2-bp (12.3%) changes) and 44,000  
structural variants.

We assessed the sensitivity and specificity of variant calls by com-
parison with 2.1 Mb of DNA from one non-reference strain, LE/
Stm, finished to an estimated accuracy of 1 error per 100,000 bp9. 
Although LE/Stm is not an NIH-HS progenitor strain, it is one of 
the few non-reference rat strains cloned into a library of BACs (and 
thus suitable for highly accurate clone-based sequencing)9 and one 
that similarly diverged from the reference strain (BN/NHsdMcwi). 
Comparison of SOLiD and capillary sequencing variant calls showed 
that 2.7% of SNPs, 2.2% of indels and 16.7% of structural variants 
were false positive calls. These error rates were independently con-
firmed in the NIH-HS strains by analysis of a randomly selected 
subset of variants using PCR-based resequencing, which confirmed 
all selected SNPs (84/84) and indels (80/80) and most structural 
variants (53/54). In contrast, false negative rates were much higher: 
17.2% for SNPs, 41.4% for indels and 65% for structural variants. 
Most false negative SNPs and indels are next to repeats (77.9% and  
80.8%, respectively).

We summarized the variation in each strain (Table 1). Excluding 
BN/SsN (which is a substrain of the reference and consequently has 
far fewer differences than the other strains), the average number of 
SNPs per strain was 2.8 million.

Combined sequence-based and genetic mapping analysis 
of complex traits in outbred rats
Rat Genome Sequencing and Mapping Consortium*

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation 
and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 
355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in 
models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly 
complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. 
Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats 
differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same 
phenotype in both species.

*A full list of authors and affiliations appears at the end of the paper.

Received 2 November 2012; accepted 25 April 2013; published online 26 May 2013; doi:10.1038/ng.2644

Baud et al Nature Genetics 2013

1 SNP per 800 bp 

Wednesday, 12 June 13



Diversity
outcross

Collaborative
cross

Circular
breeding

Inbreeding
over 20+

generations

Heterozygous
mosaic

genomes

Inbred
strains

Funnel
mating

Heterogeneous
stock

Commercial
outbreds 

Mus musculus
subspecies

Crossing and
inbreeding 

Circular
breeding

Semirandom
breeding

MottFig01.pdf   1   6/11/13   10:09 AM

Populations of Mice 
Descended from 

Inbred Strains

Wednesday, 12 June 13



8

Popula'on Number	
  of	
  Segrega'ng	
  SNPs

Mouse	
  Heterogeneous	
  Stock 11	
  million

Outbred	
  Mice 7	
  million

Collabora<ve	
  Cross	
  /	
  Diversity	
  Outcross	
   36	
  million

Mouse	
  Inbred	
  Strains	
  (incl	
  M	
  Spretus) 57	
  million

Rat	
  Heterogeneous	
  Stock 7	
  million

Wednesday, 12 June 13



Outline of Genetic Association Analysis

• Collect phenotypes

• Collect genotypes

• Array

• Sequencing

• Construct mosaics in terms of founders

• Hidden Markov Model

• Associate founder haplotypes with phenotypes

• Control for population structure

• Mixed Models or Resample Model Averaging

• Sequence founders

• Create catalogue of segregating variation

• Impute genomes of mapping population

• Associate individual sequence variants with phenotypes

Wednesday, 12 June 13



A method for fine mapping quantitative trait loci in
outbred animal stocks
Richard Mott*, Christopher J. Talbot*, Maria G. Turri*, Allan C. Collins†, and Jonathan Flint*‡

*Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, United Kingdom; and †Institute for Behavioral Genetics, University of Colorado,
Boulder, CO 80309

Edited by David E. Housman, Massachusetts Institute of Technology, Cambridge, MA, and approved August 31, 2000 (received for review June 30, 2000)

High-resolution mapping of quantitative trait loci (QTL) in animals has
proved to be difficult because the large effect sizes detected in crosses
between inbred strains are often caused by numerous linked QTLs,
each of small effect. In a study of fearfulness in mice, we have shown
it is possible to fine map small-effect QTLs in a genetically heteroge-
neous stock (HS). This strategy is a powerful general method of fine
mapping QTLs, provided QTLs detected in crosses between inbred
strains that formed the HS can be reliably detected in the HS. We show
here that single-marker association analysis identifies only two of five
QTLs expected to be segregating in the HS and apparently limits the
strategy’s usefulness for fine mapping. We solve this problem with a
multipoint analysis that assigns the probability that an allele descends
from each progenitor in the HS. The analysis does not use pedigrees
but instead requires information about the HS founder haplotypes.
With this method we mapped all three previously undetected loci
[chromosome (Chr.) 1 logP 4.9, Chr. 10 logP 6.0, Chr. 15 logP 4.0]. We
show that the reason for the failure of single-marker association to
detect QTLs is its inability to distinguish opposing phenotypic effects
when they occur on the same marker allele. We have developed a
robust method of fine mapping QTLs in genetically heterogeneous
animals and suggest it is now cost effective to undertake genome-
wide high-resolution analysis of complex traits in parallel on the same
set of mice.

Most phenotypes of medical importance can be measured
quantitatively, and in many cases the genetic contribution

is substantial, accounting for 40% or more of the phenotypic
variance. Considerable efforts have been made to isolate the
genes responsible for quantitative genetic variation in human
populations, but with little success, mostly because genetic loci
contributing to quantitative traits (quantitative trait loci, QTL)
have only a small effect on the phenotype (1). Association studies
have been proposed as the most appropriate method for finding
the genes that influence complex traits (2). However, family-
based studies may not provide the resolution needed for posi-
tional cloning, unless they are very large, whereas environmental
or genetic differences between cases and controls may confound
population-based association studies (3).

These difficulties have led to the study of animal models of
human traits. Studies using experimental crosses between inbred
animal strains have been successful in mapping QTLs with
effects on a number of different phenotypes, including behavior,
but attempts to fine map QTLs in animals often have foundered
on the discovery that a single QTL of large effect was in fact
caused by multiple loci of small effect positioned within the same
chromosomal region (4). A further potential difficulty with
detecting QTLs between inbred crosses is the significant reduc-
tion in genetic heterogeneity compared with the total genetic
variation present in animal populations: a QTL segregating in
the wild need not be present in the experimental cross.

In an attempt to circumvent the difficulties encountered with
inbred crosses, we have been using a genetically heterogeneous
stock (HS) of mice for which the ancestry is known. The hetero-
geneous stock was established from an eight-way cross of C57BL,
BALB!c, RIII, AKR, DBA!2, I, A, and C3H!2 inbred strains (5).
Since its foundation 30 years ago, the stock has been maintained by

breeding from 40 pairs and, at the time of this experiment, was in
its 60th generation. Thus each chromosome from an HS animal is
a fine-grained genetic mosaic of the founder strains, with an average
distance between recombinants of 1!60 or 1.7 cM.

Theoretically, the HS offers at least a 30-fold increase in
resolution for QTL mapping compared with an F2 intercross (6,
7). The high level of recombination means that fine mapping is
possible by using a relatively small number of animals; for QTLs
of small to moderate effect, mapping to under 0.5 cM is possible
with fewer than 2,000 animals. The large number of founders
increases the genetic heterogeneity, and in theory one can map
all QTLs that account for progenitor strain genetic differences.
Potentially, the use of the HS offers a substantial improvement
over current methods for QTL mapping.

However, for HS mapping to achieve widespread use, we need
to establish its limitations and provide a robust statistical method
of analysis. In this paper we describe a multipoint method
capable of detecting small-effect QTLs in the HS; we evaluate
both its power of QTL detection and the expected degree of QTL
resolution. The utility of the method is demonstrated by fine
mapping five QTLs for fearfulness in HS mice, only two of which
were detectable by single-marker (SM) association.

Materials and Methods
Open-field behavioral testing, genotyping, mapping and gener-
ation of markers was performed as described in ref. 8. The
following microsatellites were generated: chromosome 1 mark-
ers, 103.37 ATAGAACCTGGTGCCTGTGG, TCCCCAG-
GAGAAGACACAAG and 103.64B AAGGGTTCTGAGGT-
GCAGAA, TAGTGGTGCACATCTGCA; and chromosome
12 markers, 419.2 TCCAGATCTCCCCACAGTTC, CCA-
CACTCCAGGAAAGGATC, 419.19 GGCAGTGGTAAT-
CAGGATGTG, TCCCTTCTCCTGGTTGTTGT, and 419.21
TCACTGGGCTCTAACCTTGG, GTAAAATGGTGGC-
AGTGGTG.

Statistical Theory
Failure of SM Association Analysis. It has been noted in association
studies in human populations that SM association analysis may
fail to detect QTLs expected to be segregating (1). We encoun-
tered the same problem in a study (8) of open-field behaviors of
HS mice, a validated animal model of susceptibility to anxiety
(9). We typed a total of 67 markers approximately 1 cM apart on
750 HS mice, over five regions where previous F2 intercrosses
had detected QTLs (refs. 10 and 11; Table 1). We expected to
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Fig. 1. SM (green) and DP (red) analyses of
regions of chromosomes (Chr) 1 (A and B),
chromosome 10 (C), chromosome 12 (D),
and chromosome 15 (E). Distances along
each chromosome are given in cM (x axis).
The y axis measures logP values. DP thresh-
olds (blue) are the empirical 0.1% logP
thresholds derived by permuting the geno-
types 1,000 times. Selected markers are la-
beled.
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As an illustration of the power of the CC, in this study we
dissect the genetic response of the CC to infection by Aspergillus
fumigatus (Af ), for which a mouse model for the infection in
humans is well established (Smith 1972). Invasive disseminated
aspergillosis is a serious disease in humans, inflicting severe dam-
age to the kidneys, liver, spleen, brain, heart, and other organs. It is
caused by infection by Aspergillus, a fungus common in soil, plant
debris, and indoor air environments (Latgé 1999): Af, Aspergillus
flavus, andAspergillus niger are themost important infective species
(Soubani and Chandrasekar 2002). Humans inhale at least several
hundred Af airborne conidia (spores) per day, which can produce
a wide range of allergic and invasive clinical manifestations de-
pending on the host’s immune status. The more serious form of
the disease is invasive pulmonary aspergillosis, which is most
common in individuals with defective immune systems; users of
immunosuppressive therapies, such as those used to prevent re-
jection following organ transplantation; and individuals at late-
stage human immunodeficiency virus infection. Survival rates in
humans are ;50% (Nivoix et al. 2008).

We analyze the genomes of the TAU CC mice and show how
they can be used to map QTL for susceptibility to Af at high pre-
cision and how using sequence variation data significantly refines
the search for candidate genes. We find that the variation attrib-
utable to wild-derived mice is responsible for most of the QTLs
mapped. To our knowledge this is the first report mapping sus-
ceptibility loci for invasive aspergillosis in immune-competent
mice. Interestingly, our QTLs differ from a previous study in im-
mune-compromised mice (Zaas et al. 2008).

Results

Structure of the genomes of the CC lines

We genotyped one mouse from each of 120 lines at 170,935 in-
formative SNPs. We reconstructed the genomes of each line in
terms of the founder strains using the HAPPY package (Mott et al.
2000). This provides a probabilistic reconstruction of the genome
mosaic, taking into account that the genomes are not completely
inbred and that there will be some genotyping error. Figure 1
shows typical reconstructions for the autosomes of two lines and
indicates regions of residual heterozygosity. The shade of gray in-
dicates the certainty that the founder strain is known: In general,
over most of the genome there is a sharp well-defined mosaic re-
construction (reconstructions for all lines across the genome are
available from http://mus.well.ox.ac.uk/CC/). Regions of ambi-
guity are either caused by residual heterozygosity or places where
some founder strains have identical haplotypes. On average, 74%
of lociwithin each linewere predicted to behomozygous in terms of
ancestral haplotype reconstruction: This figure underestimates the
true level of inbreeding because loci where several ancestral strains
share the same haplotype tend not to be called as homozygous
(Supplemental Table S1). For the purposes of QTL mapping, on the
basis of this analysis it seemed reasonable to ignore the residual
heterozygosity within each line and treat all animals from a line as
being genetically identical to the genotyped exemplar.

The genome-wide contribution of each founder strain to a CC
line was close to the expected of 1/8 = 12.5% except for six lines

Figure 1. Reconstructions of the genomes of representative CC lines IL-18 and IL-507 from the hidden Markov model (HMM) implemented by HAPPY.
The x-axis shows the 19 autosomes. Each reconstruction is represented by two panels. The top panel y-axis shows the eight CC founders, and the
probability of descent from a founder at a locus is represented by the shade of gray, with white = 0 and black = 1. Regions where a single haplotype
predominates appear as dark horizontal bands; loci with residual heterozygosity or where the founder haplotypes are indistinguishable are gray. The lower
panel indicates local heterozygosity (red).
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Susceptibility to Aspergillosis

peak, and with a similar logP to that observed. We first extracted
the parameter estimates b̂s and residuals r̂i of the fitted survival
model at the QTL peak. Let t̂ i be a random permutation of r̂i. Then
in amarker interval Kwithin 5Mb of theQTL peak L, we simulated
a set of survival times ZiK caused by a QTL at K by substituting the
parameter estimates and permuted residuals:

ZiK = t̂ i expðm̂++sXKisb̂sÞ:

We then rescanned the region and found the interval with the
highest logP. We simulated 1000 QTLs at each of 100 intervals K
and estimated the p% CI from interval containing p% of the sim-
ulated local maxima.

Association analysis of sequence variation segregating between
the CC founders

Except for a small number of de novo mutations arising during
breeding, all sequence variants segregating in the CC should also
segregate in the CC founders. Therefore we use the merge analysis
methodology (Yalcin et al. 2005) to test which variants under
a QTL peak were compatible with the pattern of action at the QTL.
A variant with A alleles inside the locus L merges the eight CC
founders into A < 8 groups according to whether they share the
same allele at the variant (A = 2 in the case of SNPs). Thismerging is
characterized by an 8xA merge matrix Msa defined to be 1 when
strain s carries allele a, and 0 otherwise. The effect of thismerging is
tested by comparing the fit of the QTL model above with one in
which theNx8matrixXLis is replaced by theNxAmatrixZia =Ss XLis

Msa. We use the Perlegen SNP database (http://mouse.perlegen.
com/mouse/download.html) to test sequence variants globally and
the Sanger mouse genomes database (http://www.sanger.ac.uk/
resources/mouse/genomes/) for individual genes.

Within the QTLs, we classified the sequence variants ac-
cording to the genome annotation as repetitive, intergenic, up-
stream, downstream, UTR, intronic, or coding. We then classified
variants according to whether their merge logP was greater or less

than the corresponding haplotype-based logP. The enrichment of
variants with high logP values within each category was computed.
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12% of coding variants are associated

4% of intergenic variants 

(Fisher Exact test P < 3 x10-14)

Methods

Animals
All animal work was carried out at the small animal facility at The
Sackler Faculty of Medicine, TAU, Israel. The Institutional Animal
Care and Use Committee of TAU approved all experimental pro-
tocols. Mice were housed on hardwood chip bedding in open-top
cages and were given tap water and rodent chow ad libitum.

Aspergillus challenge
Af strain 293 (Af293) was provided by Prof. Nir Osherov (Depart-
ment of Clinical Microbiology and Immunology, Sackler Faculty
of Medicine, Tel-Aviv University, Israel). Af293 was obtained by
growth on Sabouraud dextrose agar (SDA; Difco Laboratories)
containing chloramphenicol (Sigma Chemicals). Conidia were
harvested in 0.2% (v/v) Tween 80 (Sigma Chemicals), resuspended
in triple-distilled water, and counted with a hemocytometer. Co-
nidia numbers were confirmed by colony counts of SDA plate
dilutions after 48-h incubation at 37°C.

Mice were inoculated intravenously (IV) via the lateral tail
vein using a 27-gauge syringe. Each mouse was challenged with
107 conidia of freshly harvested Af293 with a final volume of 0.2
mL in saline medium. This dose should be sufficient to ensure
severe infection occurs regardless of theweight or sex of the animal.
Negative control CC mice were injected IV with saline to confirm
that saline alone would not shorten the animals’ lifespan. The sur-
vival time of eachmousewas recorded for amaximumof 28 d post-
infection, when all surviving mice were sacrificed and tested post-
mortem for Af293 load by plating extracts fromdifferent tissues for
growth on SDA containing chloramphenicol and counting CFUs.

Classical inbred mouse lines

Ten immune-competent 8-wk-old female mice from each of the
strains BALB/cJ, C57BL/6J, DBA/2J, and C3H/HeJ were purchased
from Harlan, Israel, and challenged with Af293.

CC lines

Full details of the development of the TAU CC lines are described
by Iraqi et al. (2008). A total of 371 of 8- to 10-wk-old male and
femalemice, from 66 lines of the TAUCC at inbreeding generation
between six and 12, were used in this study (i.e., five to sixmice per
line were phenotyped). The mice were challenged with Af293 in
eight equally sized batches.

Genotyping

We genotyped onemouse from each of the 120 CC lines generated
at TAU, of which 85 were genotyped at WTCHG (Oxford UK) on

the Mouse Diversity Array (Yang et al. 2009) and 39 mice at UNC
(Chapel Hill, USA), with a forerunner of this array. Sixty-six of
these 120 were used for Af challenge. We removed SNPs with
heterozygous or missing genotypes in the 8 CC founders, or that
were not in common between the arrays, leaving 170,935 SNPs.
The SNPs were mapped onto build 37 of the mouse genome.

Data analysis
Data analysis was performed using the statistical software R (R
Development Core Team 2009), including the R package HAPPY.
HBREM (Mott et al. 2000). Additional R code used in the analyses
along with the genotype and phenotype data is available from
http://mus.well.ox.ac.uk/CC/.

Reconstruction of CC ancestral genome mosaics

The methodology used to reconstruct the CC genomes as mosaics
of the eight CC founder genomes is based on the hidden Markov
model (HMM) HAPPY (Mott et al. 2000). This was originally de-
veloped for heterogeneous stock (HS)mice but was later adapted to
work with recombinant inbred lines and validated in the MAGIC
genetic reference panel of the plant A. thaliana (Kover et al. 2009).
The HMM can be run in twomodes: either assuming a diploid het-
erogeneous genome (where each chromosome is an independent
haplotype mosaic) or assuming an inbred, homozygous genome.
Because the CC lines were not completely inbred at the time of the
experiment, we used the former. The extent of observable histor-
ical recombination in a chromosome of a recombinant inbred line

Figure 5. Simulation-based empirical distribution of mapping resolu-
tion for QTL Asprl1. The x-axis is the distance of the maximum logP in the
region from the simulated locus. The y-axis is the fraction of 100,000
simulations. Note that the x-axis labeling is offset to the left side of each
bar, so the central highest peak is in reality centered at zero.

Figure 4. Genome scan of susceptibility to Aspergillus fumigatus in 66 CC lines. The x-axis is genome location; the y-axis is the logP of the test of
association between locus and survival time. Genome-wide thresholds of association at E < 0.5, E < 0.1, and E < 0.05 expectation levels are indicated by the
horizontal gray lines at logP = 3.97, 5.26, and 5.64, respectively (i.e., the threshold P means that in a fraction P of permutations the genome-wide
maximum logP exceeded the threshold).
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logP, the negative log10 of the P-value of the likelihood ratio test of
the null versusQTLmodel, using the R ANOVA function. Genome-
wide significance is estimated by permutation, where the CC line
labels are permuted between the phenotypes. QTL effect sizes are
estimated as the proportion of the explained randomness attrib-
utable to the locus effects (Ss XLis bs) at the QTL. Trait effects
(plotted in Fig. 6) are the estimates b̂s reported by the survreg
function, relative to founder WSB/EiJ.

We also compared the fit of the above model to that of
a mixed-effects Cox proportional hazards model as implemented
in the function coxme() in R package kinship. This model is fitted

to all the data (not just the median from each line) by including
a random effect gi for each line i. This did not change the detected
QTLs appreciably (data not shown).

Estimation of CIs

We estimated the CI for each QTL by simulation. Accurate esti-
mates of QTL mapping resolution should take into account local
patterns of linkage disequilibrium. We devised a method that
preserved the genotypes of the data, while simulating survival
times caused by a QTL in the neighborhood of the observed QTL

Figure 6. Estimated effects on survival time after Aspergillus fumigatus infection, for the eight CC founder strains for each of the Asprl QTLs. Effects are
shown as deviations relative to WSB/EiJ, which is assigned the trait effect of 0. The x-axis of each plot shows the founder strains; the y-axis shows the
estimated parameter b̂s for the haplotype of the CC founder s.
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logP, the negative log10 of the P-value of the likelihood ratio test of
the null versusQTLmodel, using the R ANOVA function. Genome-
wide significance is estimated by permutation, where the CC line
labels are permuted between the phenotypes. QTL effect sizes are
estimated as the proportion of the explained randomness attrib-
utable to the locus effects (Ss XLis bs) at the QTL. Trait effects
(plotted in Fig. 6) are the estimates b̂s reported by the survreg
function, relative to founder WSB/EiJ.

We also compared the fit of the above model to that of
a mixed-effects Cox proportional hazards model as implemented
in the function coxme() in R package kinship. This model is fitted

to all the data (not just the median from each line) by including
a random effect gi for each line i. This did not change the detected
QTLs appreciably (data not shown).

Estimation of CIs

We estimated the CI for each QTL by simulation. Accurate esti-
mates of QTL mapping resolution should take into account local
patterns of linkage disequilibrium. We devised a method that
preserved the genotypes of the data, while simulating survival
times caused by a QTL in the neighborhood of the observed QTL

Figure 6. Estimated effects on survival time after Aspergillus fumigatus infection, for the eight CC founder strains for each of the Asprl QTLs. Effects are
shown as deviations relative to WSB/EiJ, which is assigned the trait effect of 0. The x-axis of each plot shows the founder strains; the y-axis shows the
estimated parameter b̂s for the haplotype of the CC founder s.

Durrant et al.
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Unraveling the complex relationship between phenotype and geno-
type poses a formidable challenge for biomedical science. Despite 
considerable success in identifying genetic loci that contribute to 
quantitative variation and disease susceptibility in humans1, in most 
organisms, the causal genetic variants at loci that contribute to com-
plex phenotypes remain unclear2. Finding the responsible molecular 
changes would allow an understanding of how phenotypic variation 
arises and would confirm the identity of relevant genes.

In this report, we present results from an outbred rat heterogeneous 
stock (hereafter, NIH-HS) in a combined sequence-based and genetic 
mapping analysis of 160 phenotypes. The NIH-HS, established in the 
1980s at the US National Institutes of Health (NIH), is descended 
from eight inbred progenitors3—BN/SsN, MR/N, BUF/N, M520/N, 
WN/N, ACI/N, WKY/N and F344/N—containing segregating varia-
tion representative of that found in commonly used laboratory rats.

Heterogeneous stocks have three characteristics suited to genetic 
mapping: (i) quantitative trait loci (QTLs) can be resolved to megabase 
resolution; (ii) the complete sequence of genotyped heterogeneous-stock 
animals can be imputed with high accuracy from the progenitor genomes; 
and (iii) the population has a well-defined haplotype space that can be 
exploited to determine whether genetic association is caused by single 
sequence variants or by haplotypes4–6. The distinction between haplotypic 
and single-marker association is fundamental to understanding the signals 
from genome-wide association studies (GWAS), where it is unknown how 
often causality can be attributed to a single variant. In natural populations, 
it is rarely feasible to test for haplotypic effects because of the difficulty of 
estimating the large number of unknown rare haplotypes7.

Here we describe the sequence of the 8 progenitor strains, the 
development of a rat SNP array, the genotyping and phenotyping of 
1,407 outbred NIH-HS rats and the mapping of hundreds of QTLs. 
We use the haplotypic properties of the NIH-HS to investigate the 
molecular basis of these QTLs.

RESULTS
Sequence analysis
We generated SOLiD sequence data for the eight NIH-HS inbred 
founder strains equivalent to an average of 22× base coverage. 
After mapping sequence to the reference strain (BN/NHsdMcwi)8, 
we report our results with respect to the accessible genome, which 
represents ~88% of the reference genome (Table 1). We identified  
7.2 million SNPs (containing 19.8 million genotypes differing from the 
reference in at least 1 strain), 633,000 indels (<10 bp, with the major-
ity consisting of 1-bp (79.3%) or 2-bp (12.3%) changes) and 44,000  
structural variants.

We assessed the sensitivity and specificity of variant calls by com-
parison with 2.1 Mb of DNA from one non-reference strain, LE/
Stm, finished to an estimated accuracy of 1 error per 100,000 bp9. 
Although LE/Stm is not an NIH-HS progenitor strain, it is one of 
the few non-reference rat strains cloned into a library of BACs (and 
thus suitable for highly accurate clone-based sequencing)9 and one 
that similarly diverged from the reference strain (BN/NHsdMcwi). 
Comparison of SOLiD and capillary sequencing variant calls showed 
that 2.7% of SNPs, 2.2% of indels and 16.7% of structural variants 
were false positive calls. These error rates were independently con-
firmed in the NIH-HS strains by analysis of a randomly selected 
subset of variants using PCR-based resequencing, which confirmed 
all selected SNPs (84/84) and indels (80/80) and most structural 
variants (53/54). In contrast, false negative rates were much higher: 
17.2% for SNPs, 41.4% for indels and 65% for structural variants. 
Most false negative SNPs and indels are next to repeats (77.9% and  
80.8%, respectively).

We summarized the variation in each strain (Table 1). Excluding 
BN/SsN (which is a substrain of the reference and consequently has 
far fewer differences than the other strains), the average number of 
SNPs per strain was 2.8 million.

Combined sequence-based and genetic mapping analysis 
of complex traits in outbred rats
Rat Genome Sequencing and Mapping Consortium*

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation 
and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 
355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in 
models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly 
complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. 
Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats 
differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same 
phenotype in both species.

*A full list of authors and affiliations appears at the end of the paper.
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Genome-wide genetic association of complex traits
in heterogeneous stock mice
William Valdar1, Leah C Solberg1,4, Dominique Gauguier1, Stephanie Burnett1, Paul Klenerman2,
William O Cookson1, Martin S Taylor1, J Nicholas P Rawlins3, Richard Mott1 & Jonathan Flint1

Difficulties in fine-mapping quantitative trait loci (QTLs) are a major impediment to progress in the molecular dissection of
complex traits in mice. Here we show that genome-wide high-resolution mapping of multiple phenotypes can be achieved using
a stock of genetically heterogeneous mice. We developed a conservative and robust bootstrap analysis to map 843 QTLs with an
average 95% confidence interval of 2.8 Mb. The QTLs contribute to variation in 97 traits, including models of human disease
(asthma, type 2 diabetes mellitus, obesity and anxiety) as well as immunological, biochemical and hematological phenotypes.
The genetic architecture of almost all phenotypes was complex, with many loci each contributing a small proportion to the total
variance. Our data set, freely available at http://gscan.well.ox.ac.uk, provides an entry point to the functional characterization
of genes involved in many complex traits.

The mouse is a key model organism for understanding gene function
in mammals, yet many mouse phenotypes of interest to biomedical
research have poorly understood and complex, polygenic origins.
Despite new genomic resources such as access to dense maps of
sequence variation and the ability to interrogate the expression levels
of virtually every gene, molecular dissection of the loci that contribute
to quantitative variation remains a challenge1. A central problem that
impedes the cloning of QTLs is the difficulty of resolving genetic effects
into sufficiently small intervals to make gene identification possible.
Successful strategies for high-resolution mapping ideally should be

able to identify small genetic effects for any phenotype across the
entire mouse genome. The classical approach begins by genetic
mapping in a cross between two inbred strains or, more recently, in
chromosome substitution strains2, and it eventually results in the
identification of a small number of independently segregating loci
mapped into intervals larger than 20 Mb. Subsequent fine-mapping
typically proceeds by repeatedly backcrossing one inbred strain onto
another to isolate each locus. Such attempts are frequently frustrated
when it is discovered that a single QTL segregating in inbred crosses
fractionates into multiple smaller effects, each of which typically
contributes less than 5% to the total phenotypic variance1.
We have developed alternative methods for fine-mapping small-

effect QTLs that use outbred mice of known ancestry3–5. By exploiting
historical recombinants that have accumulated in a genetically hetero-
geneous stock of mice descended from eight inbred progenitor strains
(A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J)6,
we have shown that QTLs explaining 5% or less of the phenotypic

variation can be mapped into intervals of o1 cM. Although the
heterogeneous stock has been used thus far for fine-mapping single-
QTL intervals4,7,8, it is theoretically ideal for high-resolution mapping
of multiple QTLs across the genome: its derivation from multiple
founders means it should contain more QTLs than any inbred cross,
and the use of pseudorandom breeding for over 50 generations (in the
case of the stock discussed in this paper) should result in an average
distance between recombinants of o2 cM.
However, a number of potential obstacles must be tackled before

the heterogeneous stock becomes a tool for genome-wide QTL
mapping. First, the high costs of performing whole-genome associa-
tion in the heterogeneous stock may preclude its use, because B100
times more markers and ten times more animals are required
compared with an inbred strain cross1. Second, random fluctuations
in allele frequencies and unrecognized selective pressures operating
during the production and maintenance of the stock could reduce its
heterozygosity, with consequent reductions in QTL resolving power.
Third, a whole-genome analysis in the heterogeneous stock, which
involves the simultaneous identification of multiple QTLs, poses
unknown analytical problems that could seriously vitiate the outcome.
The extensive repertoire of methods developed for whole-genome
analysis of a classical intercross9–12 are not directly applicable: in a
heterogeneous stock, more loci are tested than individuals, so it is not
possible to use methods that fit all markers simultaneously, and many
more parameters are estimated at each locus than in a classical cross4.
In this paper we demonstrate the utility of the heterogeneous stock

for high-resolution whole-genome association analyses of quantitative
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variants included within the QTL. Any imputed variant with a merge 
log10 P value that exceeded the maximum haplotype log10 P value was 
termed a candidate variant. If d was <0, then no candidate variants 
existed at the QTL. We investigated the characteristics of candidate 
variants at 343 QTLs mapped using mixed models: at 131 QTLs (38%) 
we identified at least 1 candidate variant (Supplementary Table 3).

There are three ways in which focusing on these candidate vari-
ants helps identify genes at a QTL. First, we increase resolution by 
ruling out a causal role for the great majority of sequence variants 
(usually over 90%) within most QTLs. We found 28 QTLs at which 
only a single gene contained candidate variants (Table 3). One 
example was Ctnnd2 (encoding catenin 2) at a QTL for an anxiety-
related phenotype (Fig. 3a). CTNND2 is a protein found in com-
plexes with cadherin cell adhesion molecules at neuronal synapses15.  

Another example involved a locus influencing heart weight, where, 
out of 82 coding genes within the QTL, only Shank2 contained can-
didate SNPs (Fig. 3b). Shank2 encodes a synaptic protein16 not previ-
ously associated with cardiovascular physiology.

Second, merge analysis identifies some candidate variants in coding 
regions. Those predicted to affect protein structure are more likely 
to be causal. Thus, we identified a potential causal nucleotide variant 
in a QTL for antibody recognition of CD45RC on CD4+ and CD8+ 
T cells (Fig. 3c). The antibody used binds to the CD45RC isoform, 
which expresses a C domain, encoded by exon 6, in which we found 
a candidate variant changing an amino acid (p.Arg114His).

At 43 out of 91 nonsynonymous candidate variants, where similar 
protein structures were available17, we predicted the structural conse-
quences of mutations (for a further 48 candidate variants, there were 
no homologies with known protein structures). Nine genes (Table 3) 
contained candidate variants for which structural evidence suggested 
that protein structure or interactions might be altered.

An example is shown (Fig. 3d) for the protein Tbx21, encoded by 
a gene within a QTL influencing the proportion of CD4+ cells with 
high expression of CD25. Here the candidate variant changed glycine 
to arginine (p.Gly175Arg). The substitution with arginine could alter 
the DNA-binding characteristics of this protein.

The crystal structure of human ABCB10, a mitochondrial trans-
porter induced by GATA1 during erythroid differentiation18,19, is 
shown (Fig. 3e). The candidate variant p.Thr233Met, predicted to 
influence mean red blood cell volume, mapped to a position in the 
protein structure where the side chain of the residue points to the 
center of the transporter channel (Fig. 3e). Threonine has a polar, 
uncharged side chain, whereas methionine has a hydrophobic side 
chain, and the difference between their structures probably results in 
altered transporter function.

Table 2 Summary of phenotypes collected

Phenotype Disease model
Number of  
measures

Age  
(weeks)

Coat color 4 7
Wound healing 1 7, 17
Fear-related behaviors Anxiety 10 8–10
Glucose tolerance Type 2 diabetes 6 11
Cardiovascular function Hypertension 2 12
Body weight Obesity 1 13
Basal hematology 26 13
Basal immunology 34 13
Induced neuroinflammation Multiple sclerosis 11 13–17
Bone mass and strength Osteoporosis 43 17
Arterial elastic lamina ruptures 6 17
Serum biochemistry 15 17
Renal agenesis 1 17
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Figure 1 Sequence diversity among progenitor strains and genetic  
architecture of the rat NIH-HS. (a) Regions of low diversity in rat  
and mouse heterogeneous stock (HS) founders. The x axis shows the  
length of genomic regions with little sequence divergence (less than  
13 SNPs/100 kb). The y axis shows the numbers of segments observed  
in the eight progenitors. (b) Sequence divergence in the founders.  
The x axis shows a measure of pairwise sequence diversity, the number of  
sequence differences observed in windows of 100 kb, and the y axis gives  
the number of observations. (c) MAF values in rat, mouse and human  
populations. The rat analysis was performed with the set of autosomal  
markers used to reconstruct haplotypes (261,684) as well as the complete  
set of 796,187 autosomal variants on the RATDIV array. The mouse analysis  
was performed with 12,226 autosomal markers used to reconstruct haplotypes.  
(d) The extent of LD (r2) in the rat NIH-HS. Distances between pairs of autosomal  
markers were binned (x axis). The y axis shows the median of the corresponding distribution of LD values. (e) The distribution of effect sizes for the 343 
loci mapped by mixed models in the rat NIH-HS. The x axis shows the proportion of phenotypic variance attributable to each locus. (f) The proportion of 
heritability that can be explained by the joint effect of the QTLs detected for each phenotype. Each data point represents a single phenotype, with the  
x axis showing the heritability and the y axis showing the joint QTL effect for that phenotype.
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variants included within the QTL. Any imputed variant with a merge 
log10 P value that exceeded the maximum haplotype log10 P value was 
termed a candidate variant. If d was <0, then no candidate variants 
existed at the QTL. We investigated the characteristics of candidate 
variants at 343 QTLs mapped using mixed models: at 131 QTLs (38%) 
we identified at least 1 candidate variant (Supplementary Table 3).

There are three ways in which focusing on these candidate vari-
ants helps identify genes at a QTL. First, we increase resolution by 
ruling out a causal role for the great majority of sequence variants 
(usually over 90%) within most QTLs. We found 28 QTLs at which 
only a single gene contained candidate variants (Table 3). One 
example was Ctnnd2 (encoding catenin 2) at a QTL for an anxiety-
related phenotype (Fig. 3a). CTNND2 is a protein found in com-
plexes with cadherin cell adhesion molecules at neuronal synapses15.  

Another example involved a locus influencing heart weight, where, 
out of 82 coding genes within the QTL, only Shank2 contained can-
didate SNPs (Fig. 3b). Shank2 encodes a synaptic protein16 not previ-
ously associated with cardiovascular physiology.

Second, merge analysis identifies some candidate variants in coding 
regions. Those predicted to affect protein structure are more likely 
to be causal. Thus, we identified a potential causal nucleotide variant 
in a QTL for antibody recognition of CD45RC on CD4+ and CD8+ 
T cells (Fig. 3c). The antibody used binds to the CD45RC isoform, 
which expresses a C domain, encoded by exon 6, in which we found 
a candidate variant changing an amino acid (p.Arg114His).

At 43 out of 91 nonsynonymous candidate variants, where similar 
protein structures were available17, we predicted the structural conse-
quences of mutations (for a further 48 candidate variants, there were 
no homologies with known protein structures). Nine genes (Table 3) 
contained candidate variants for which structural evidence suggested 
that protein structure or interactions might be altered.

An example is shown (Fig. 3d) for the protein Tbx21, encoded by 
a gene within a QTL influencing the proportion of CD4+ cells with 
high expression of CD25. Here the candidate variant changed glycine 
to arginine (p.Gly175Arg). The substitution with arginine could alter 
the DNA-binding characteristics of this protein.

The crystal structure of human ABCB10, a mitochondrial trans-
porter induced by GATA1 during erythroid differentiation18,19, is 
shown (Fig. 3e). The candidate variant p.Thr233Met, predicted to 
influence mean red blood cell volume, mapped to a position in the 
protein structure where the side chain of the residue points to the 
center of the transporter channel (Fig. 3e). Threonine has a polar, 
uncharged side chain, whereas methionine has a hydrophobic side 
chain, and the difference between their structures probably results in 
altered transporter function.

Table 2 Summary of phenotypes collected

Phenotype Disease model
Number of  
measures

Age  
(weeks)

Coat color 4 7
Wound healing 1 7, 17
Fear-related behaviors Anxiety 10 8–10
Glucose tolerance Type 2 diabetes 6 11
Cardiovascular function Hypertension 2 12
Body weight Obesity 1 13
Basal hematology 26 13
Basal immunology 34 13
Induced neuroinflammation Multiple sclerosis 11 13–17
Bone mass and strength Osteoporosis 43 17
Arterial elastic lamina ruptures 6 17
Serum biochemistry 15 17
Renal agenesis 1 17
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Figure 1 Sequence diversity among progenitor strains and genetic  
architecture of the rat NIH-HS. (a) Regions of low diversity in rat  
and mouse heterogeneous stock (HS) founders. The x axis shows the  
length of genomic regions with little sequence divergence (less than  
13 SNPs/100 kb). The y axis shows the numbers of segments observed  
in the eight progenitors. (b) Sequence divergence in the founders.  
The x axis shows a measure of pairwise sequence diversity, the number of  
sequence differences observed in windows of 100 kb, and the y axis gives  
the number of observations. (c) MAF values in rat, mouse and human  
populations. The rat analysis was performed with the set of autosomal  
markers used to reconstruct haplotypes (261,684) as well as the complete  
set of 796,187 autosomal variants on the RATDIV array. The mouse analysis  
was performed with 12,226 autosomal markers used to reconstruct haplotypes.  
(d) The extent of LD (r2) in the rat NIH-HS. Distances between pairs of autosomal  
markers were binned (x axis). The y axis shows the median of the corresponding distribution of LD values. (e) The distribution of effect sizes for the 343 
loci mapped by mixed models in the rat NIH-HS. The x axis shows the proportion of phenotypic variance attributable to each locus. (f) The proportion of 
heritability that can be explained by the joint effect of the QTLs detected for each phenotype. Each data point represents a single phenotype, with the  
x axis showing the heritability and the y axis showing the joint QTL effect for that phenotype.
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variants included within the QTL. Any imputed variant with a merge 
log10 P value that exceeded the maximum haplotype log10 P value was 
termed a candidate variant. If d was <0, then no candidate variants 
existed at the QTL. We investigated the characteristics of candidate 
variants at 343 QTLs mapped using mixed models: at 131 QTLs (38%) 
we identified at least 1 candidate variant (Supplementary Table 3).

There are three ways in which focusing on these candidate vari-
ants helps identify genes at a QTL. First, we increase resolution by 
ruling out a causal role for the great majority of sequence variants 
(usually over 90%) within most QTLs. We found 28 QTLs at which 
only a single gene contained candidate variants (Table 3). One 
example was Ctnnd2 (encoding catenin 2) at a QTL for an anxiety-
related phenotype (Fig. 3a). CTNND2 is a protein found in com-
plexes with cadherin cell adhesion molecules at neuronal synapses15.  

Another example involved a locus influencing heart weight, where, 
out of 82 coding genes within the QTL, only Shank2 contained can-
didate SNPs (Fig. 3b). Shank2 encodes a synaptic protein16 not previ-
ously associated with cardiovascular physiology.

Second, merge analysis identifies some candidate variants in coding 
regions. Those predicted to affect protein structure are more likely 
to be causal. Thus, we identified a potential causal nucleotide variant 
in a QTL for antibody recognition of CD45RC on CD4+ and CD8+ 
T cells (Fig. 3c). The antibody used binds to the CD45RC isoform, 
which expresses a C domain, encoded by exon 6, in which we found 
a candidate variant changing an amino acid (p.Arg114His).

At 43 out of 91 nonsynonymous candidate variants, where similar 
protein structures were available17, we predicted the structural conse-
quences of mutations (for a further 48 candidate variants, there were 
no homologies with known protein structures). Nine genes (Table 3) 
contained candidate variants for which structural evidence suggested 
that protein structure or interactions might be altered.

An example is shown (Fig. 3d) for the protein Tbx21, encoded by 
a gene within a QTL influencing the proportion of CD4+ cells with 
high expression of CD25. Here the candidate variant changed glycine 
to arginine (p.Gly175Arg). The substitution with arginine could alter 
the DNA-binding characteristics of this protein.

The crystal structure of human ABCB10, a mitochondrial trans-
porter induced by GATA1 during erythroid differentiation18,19, is 
shown (Fig. 3e). The candidate variant p.Thr233Met, predicted to 
influence mean red blood cell volume, mapped to a position in the 
protein structure where the side chain of the residue points to the 
center of the transporter channel (Fig. 3e). Threonine has a polar, 
uncharged side chain, whereas methionine has a hydrophobic side 
chain, and the difference between their structures probably results in 
altered transporter function.

Table 2 Summary of phenotypes collected

Phenotype Disease model
Number of  
measures

Age  
(weeks)

Coat color 4 7
Wound healing 1 7, 17
Fear-related behaviors Anxiety 10 8–10
Glucose tolerance Type 2 diabetes 6 11
Cardiovascular function Hypertension 2 12
Body weight Obesity 1 13
Basal hematology 26 13
Basal immunology 34 13
Induced neuroinflammation Multiple sclerosis 11 13–17
Bone mass and strength Osteoporosis 43 17
Arterial elastic lamina ruptures 6 17
Serum biochemistry 15 17
Renal agenesis 1 17
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Figure 1 Sequence diversity among progenitor strains and genetic  
architecture of the rat NIH-HS. (a) Regions of low diversity in rat  
and mouse heterogeneous stock (HS) founders. The x axis shows the  
length of genomic regions with little sequence divergence (less than  
13 SNPs/100 kb). The y axis shows the numbers of segments observed  
in the eight progenitors. (b) Sequence divergence in the founders.  
The x axis shows a measure of pairwise sequence diversity, the number of  
sequence differences observed in windows of 100 kb, and the y axis gives  
the number of observations. (c) MAF values in rat, mouse and human  
populations. The rat analysis was performed with the set of autosomal  
markers used to reconstruct haplotypes (261,684) as well as the complete  
set of 796,187 autosomal variants on the RATDIV array. The mouse analysis  
was performed with 12,226 autosomal markers used to reconstruct haplotypes.  
(d) The extent of LD (r2) in the rat NIH-HS. Distances between pairs of autosomal  
markers were binned (x axis). The y axis shows the median of the corresponding distribution of LD values. (e) The distribution of effect sizes for the 343 
loci mapped by mixed models in the rat NIH-HS. The x axis shows the proportion of phenotypic variance attributable to each locus. (f) The proportion of 
heritability that can be explained by the joint effect of the QTLs detected for each phenotype. Each data point represents a single phenotype, with the  
x axis showing the heritability and the y axis showing the joint QTL effect for that phenotype.
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Concordance between species
It is often assumed that the genetic loci underlying a phenotype in one 
species are homologous to those underlying the same phenotype in 

another and that natural variation within these loci will map to the 
same genes25–27. However, there have been no genome-wide tests of this 
hypothesis for natural variation. Our data allowed us to examine whether 

Table 3 Continued

Measure Chr. QTL location (Mb) Gene Gene description

Only gene  
with candidate 

variants  
in QTL

Amino acid 
change with 

potential effect
Location of the residue, 

potential effect

Expression on RT1B 
on B cells

17 26.63–27.55 Tbc1d7 TBC1-domain family member 7 − p.Ser116Leu Surface exposed, disturbed 
intermolecular interactions

Proportion of B cells 
in white blood cells

1 182.36–186.67 Itgal Integrin L − p.Asn890Ser Abolished glycosylation

Proportion of CD4+ 
cells with high  
expression of CD25

10 84.27–87.32 Tbx21 T-box transcription factor TBX21 − p.Gly175Arg Surface exposed, additional 
interactions with DNA

Ratio of T cells to  
B cells

1 183.58–187.41 Rabep2 Rab GTPase–binding effector  
protein 2

− p.Ile336Thr Partially buried, disturbed  
oligomerization

Ratio of T cells to  
B cells

1 183.58–187.41 Itgal Integrin L − p.Leu806Ser Surface exposed, disturbed  
intermolecular interactions

Mean corpuscular red 
blood cell volume

19 53.11–55.80 Abcb10 ATP-binding cassette, sub-family B 
(MDR/TAP), member 10

− p.Thr233Met Transport channel exposed, 
altered transport

Platelet count 12 1.00–7.47 Rfc3 Replication factor C (Activator 1) − p.Pro173Ala Surface exposed, alteration 
of the  helix

Proportion of  
monocytes in white 
blood cells

1 250.37–254.00 Pdcd11 Protein RRP5 homolog − p.Glu160Gly Surface exposed

Shown are the phenotype measured, the chromosome (chr.), the start and stop coordinates of the QTL, gene symbol and description, whether the gene is the only one at a QTL 
with candidate variants, whether a variant alters an amino acid and, if so, the residue changed and the potential consequences.
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Figure 3 Merge analysis to identify causative genes and sequence variants. (a–c) Analysis was performed for  
phenotypes of anxiety (a), heart weight (b) and the proportion of CD4+ T cells with high expression of CD25 (c).  
Left, whole-chromosome scans for each phenotype; the black lines represent the haplotype-based analysis,  
and the blue data points represent the results of merge analysis testing for association with all sequence variants  
identified in the progenitor strains. Right, enlargement of the highest peak showing the location of candidate variants  
and genes. Candidate variants are those whose significance in merge analysis exceeds that of the haplotype  
analysis (dark-blue data points above the highest value of the black line). Genes are shown by red arrows.  
(d) Shown are candidate variants on chromosome 10 for the proportion of CD4+ cells with high expression  
of CD25. The variant with the highest significance lies in the Tbx21 protein. The crystal structure of human  
TBX5-DNA complex (Protein Data Bank (PDB) 2X6V) maps the location of the rat Tbx21 p.Gly175Arg  
alteration to the DNA-binding domain. The structure of TBX5 (green) complexed with DNA (blue) is shown  
in ribbon representation. Gly93 is shown as spheres (green, carbon; red, oxygen; blue, nitrogen). Gly93 and  
the corresponding Gly175 residue in rat are conserved. The side chains of two arginine residues that mediate  
interactions with DNA are shown as sticks. (e) Shown is a candidate variant encoded in the Abcb10 gene on  
chromosome 19 for a locus influencing mean red blood cell volume. The structure of homodimeric human  
ABCB10 (PDB 4AYT) is shown in ribbon representation, with the monomers colored blue and green. Two ATP analogs (ACP) and the side chains of Thr268 
are shown as spheres (green, carbon; red, oxygen; blue, nitrogen; orange, phosphorus). Thr268 in the human protein corresponds to the conserved Thr233 
residue in the rat protein. The rat Abcb10 Thr286 alteration lies in the central cavity of the translocation pathway. Amino acid sequence identity of rat and 
human ABCB10 proteins is 84% (587 aligned residues). Black lines delineate the transmembrane region.
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two methods to control for unequal relatedness: Resample Model Averaging 
(as implemented in BAGPHENOTYPE13) for phenotypes with a non-normal 
distribution and Mixed Models for phenotypes with a normal distribution. 
Information on the performance of the methods is given in the Supplementary 
Note. Because most of the phenotypes had a normal distribution and the merge 
analysis was run in the mixed-model framework, we present the mixed models 
briefly here. These models were implemented in R so that haplotype mapping 
could be carried out using the descent probabilities from HAPPY14. The model 
used to test for association between the ancestral haplotypes segregating at a 
locus L and phenotypic variation was

y x P s T ui c ic Li Ls i isc ( )

where yi is the phenotypic value of rat i and c is the regression coefficient of 
covariate c and xic (the value of the covariate c in rat i). Notably, the covariates 
include a dummy intercept term. TLs is the deviation in phenotypic value that 
results from carrying one copy of a haplotype from strain s at locus L, and 
PLi(s) is the expected number of haplotypes of type s carried by rat i at locus 
L output by HAPPY14. ui and i are random effects, with cov( , ) ,u u Ki j g i j

2  
and cov( , ) ,i j e i jI2  where g

2 and e
2 are estimated in the null model (no 

locus effect, TLs = 0) using the R package EMMA12. K is the genetic covariance 
matrix and is estimated from the genome-wide genotype data using identity 
by state (IBS, the proportion of shared alleles between any two animals). The 
IBS matrix was calculated using the R package EMMA12. I is the identity 
matrix. The total covariance matrix V K Ig e

2 2  can be factorized as  
V = A2. Writing equation (1) in matrix form, gives

y = X  + PLTL + u + 

Premultiplying equation (2) by A−1 gives a transformed equation

( ) ( ) ( ) ( )A y A X A P T A uL L
1 1 1 1

in which the variance-covariance structure of the random term A−1 (u + ) 
is now proportional to a diagonal matrix and so can be fitted as a standard 
linear model.

Thresholds and confidence intervals. Calculations of the significance 
thresholds (when the phenotype was analyzed with mixed models), 
 inclusion probability thresholds (when the phenotype was analyzed by 
resample model averaging) and confidence intervals are described in the  
Supplementary Note.

Incorporation of sequence into QTL mapping. Implementation of the merge 
analysis in the mixed-model framework. Merge analysis is a form of imputa-
tion appropriate to heterogeneous stock–type populations whose genomes 
are mosaics of known haplotypes. Merge analysis asks two questions at each 
imputed variant: is the variant associated with the phenotype? (a standard test 
of association), and is its association as significant as the association in the 
haplotype-based test in the locality of the variant? We implemented merge 
analysis6 in a mixed-model framework by comparing model (2)

y X P T uL L

and

y X M U uV V

where V is a sequence variant in interval L and MV is the merge matrix for the 
variant, formed by summing those columns of PL that carry the same allele at V  
(each column of PL represents one founder strain). This can be computed 
efficiently by defining a matrix BV that encodes the columns to be merged 
such that MV = PVBV. This test is applied at every variable site in the catalog 
of single-nucleotide variants that segregate between the eight heterogeneous 
stock founders. From a statistical point of view, there is no difference between 
two variants with the same strain distribution pattern at a locus; they will give 
the same merge analysis result.

(1)(1)

(2)(2)

(3)(3)

Because models (2) and (3) are nested, the best possible fit (in terms of vari-
ance explained) is obtained with haplotype model (2). If the QTL arises from 
variation at a single variant V, the fit of merge model (3) for variant V will be 
as good as the fit of model (2), and its significance will be greater, owing to the 
fewer number of degrees of freedom (for a diallelic variant, there is 1 degree 
of freedom for the merge model compared to the 7 degrees of freedom for the 
haplotype model). The merge model is fitted by multiplying by A−1.

Simulating all possible strain distribution patterns at a QTL. For each QTL 
lacking variants with a merge log P value exceeding the haplotype log P value, 
we looked for unobserved causal variants that might not have been sequenced. 
We simulated candidate variants with every possible SDP (127 possible SDPs 
for diallelic variants and 1,094 possible SDPs when allowing for 3 alleles). 
Simulated variants were repeated within each QTL interval.

Simulating different QTL architectures. To investigate the hypothesis that 
the inability to detect candidate variants by merge analysis reflected complex 
architecture of the QTLs, we simulated QTLs arising from a single causal vari-
ant, QTLs arising from multiple causal variants within the same locus and/or 
multiple causal variants at linked loci, and QTLs arising from haplotypic effects 
not reducible to individual variants. In all cases, the phenotypes were simulated 
from three components: a genetic random effect explaining 20% of phenotypic 
variation, uncorrelated errors explaining 75% of phenotypic variation and 
a single QTL explaining 5% of phenotypic variation. When multiple causal 
variants were simulated, each explained the same proportion of phenotypic 
variation (5% divided by the number of causal variants). The effect sizes cal-
culated a posteriori could be quite different from their target values owing to 
correlations between the different components of the simulated phenotypes. 
For the simulations reported in Figure 4a, either a single causal variant was 
simulated or nine causal variants were simulated in three linked loci (with 
each locus within 2 Mb of the central locus and distant by at least 200 kb 
from each other locus). Alternatively, the PL probabilities were used to simu-
late irreducible QTLs. We analyzed each simulation by merge analysis, and, 
when log (Phaplotype) was between 4 and 6 (to have a similar distribution of log  
P values to that of the rat QTLs), we calculated d as max log (Pmerge) – max log 
(Phaplotype). We compared the distributions of d from the different simulation 
sets to determine the probable genetic architecture of the QTLs.

eQTL mapping and merge analysis in the mouse heterogeneous stock. 
Hippocampus expression levels in 460 heterogeneous stock mice measured 
using 12,000 probes on the Illumina Mouse WG-6 v1 BeadArray24 were 
mapped to the mouse ancestral haplotypes in the mixed-model framework. 
QTLs were called in the same way as for the rat QTLs but using a confidence 
interval of 8 Mb and a significance threshold of 4. Cis eQTLs were defined as 
being within 2 Mb of the beginning of the probe, and trans eQTLs were defined 
as being on a different chromosome than that of the probe or being more than 
10 Mb away from it on the same chromosome. Merge analysis was carried out 
at each eQTL, and the difference between the maximum merge log P value 
and the maximum haplotype log P value was calculated.

Homology modeling. To assess the potential effects of mutations on protein 
structure, homology models of target proteins were constructed and analyzed. 
Amino acid sequences of target proteins were retrieved from the Ensembl or 
UniProt databases45 and were analyzed using the HHPred46 web server to 
identify structures with similar amino acid sequences in PDB17 for homology 
modeling with MODELLER47. The potential locations of the mutation-affected 
side chains (buried or surface exposed) and effects on the structure-function 
relationship (for example, disturbed hydrophobic core) were evaluated manu-
ally in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4).

Genetic architecture. Heritability. Heritability was defined as the ratio of the 
genetic variance component to the sum of the variance components estimated 
in the null mixed model (covariates but no QTL).

QTL effect sizes and joint effect sizes. Effect sizes were defined as the ratio 
between the fitted sum of squares and the total sum of squares in a model with 
covariates and without genetic random component. Joint effect sizes were 
defined as the ratio between the fitted sum of squares and the total sum of 
squares in a model without genetic random component, including covariates 
and all the QTLs called for a given phenotype. Including the genetic random 
component would result in underestimation of most of the effect sizes because 
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two methods to control for unequal relatedness: Resample Model Averaging 
(as implemented in BAGPHENOTYPE13) for phenotypes with a non-normal 
distribution and Mixed Models for phenotypes with a normal distribution. 
Information on the performance of the methods is given in the Supplementary 
Note. Because most of the phenotypes had a normal distribution and the merge 
analysis was run in the mixed-model framework, we present the mixed models 
briefly here. These models were implemented in R so that haplotype mapping 
could be carried out using the descent probabilities from HAPPY14. The model 
used to test for association between the ancestral haplotypes segregating at a 
locus L and phenotypic variation was

y x P s T ui c ic Li Ls i isc ( )

where yi is the phenotypic value of rat i and c is the regression coefficient of 
covariate c and xic (the value of the covariate c in rat i). Notably, the covariates 
include a dummy intercept term. TLs is the deviation in phenotypic value that 
results from carrying one copy of a haplotype from strain s at locus L, and 
PLi(s) is the expected number of haplotypes of type s carried by rat i at locus 
L output by HAPPY14. ui and i are random effects, with cov( , ) ,u u Ki j g i j

2  
and cov( , ) ,i j e i jI2  where g

2 and e
2 are estimated in the null model (no 

locus effect, TLs = 0) using the R package EMMA12. K is the genetic covariance 
matrix and is estimated from the genome-wide genotype data using identity 
by state (IBS, the proportion of shared alleles between any two animals). The 
IBS matrix was calculated using the R package EMMA12. I is the identity 
matrix. The total covariance matrix V K Ig e

2 2  can be factorized as  
V = A2. Writing equation (1) in matrix form, gives

y = X  + PLTL + u + 

Premultiplying equation (2) by A−1 gives a transformed equation

( ) ( ) ( ) ( )A y A X A P T A uL L
1 1 1 1

in which the variance-covariance structure of the random term A−1 (u + ) 
is now proportional to a diagonal matrix and so can be fitted as a standard 
linear model.

Thresholds and confidence intervals. Calculations of the significance 
thresholds (when the phenotype was analyzed with mixed models), 
 inclusion probability thresholds (when the phenotype was analyzed by 
resample model averaging) and confidence intervals are described in the  
Supplementary Note.

Incorporation of sequence into QTL mapping. Implementation of the merge 
analysis in the mixed-model framework. Merge analysis is a form of imputa-
tion appropriate to heterogeneous stock–type populations whose genomes 
are mosaics of known haplotypes. Merge analysis asks two questions at each 
imputed variant: is the variant associated with the phenotype? (a standard test 
of association), and is its association as significant as the association in the 
haplotype-based test in the locality of the variant? We implemented merge 
analysis6 in a mixed-model framework by comparing model (2)

y X P T uL L

and

y X M U uV V

where V is a sequence variant in interval L and MV is the merge matrix for the 
variant, formed by summing those columns of PL that carry the same allele at V  
(each column of PL represents one founder strain). This can be computed 
efficiently by defining a matrix BV that encodes the columns to be merged 
such that MV = PVBV. This test is applied at every variable site in the catalog 
of single-nucleotide variants that segregate between the eight heterogeneous 
stock founders. From a statistical point of view, there is no difference between 
two variants with the same strain distribution pattern at a locus; they will give 
the same merge analysis result.

(1)(1)

(2)(2)

(3)(3)

Because models (2) and (3) are nested, the best possible fit (in terms of vari-
ance explained) is obtained with haplotype model (2). If the QTL arises from 
variation at a single variant V, the fit of merge model (3) for variant V will be 
as good as the fit of model (2), and its significance will be greater, owing to the 
fewer number of degrees of freedom (for a diallelic variant, there is 1 degree 
of freedom for the merge model compared to the 7 degrees of freedom for the 
haplotype model). The merge model is fitted by multiplying by A−1.

Simulating all possible strain distribution patterns at a QTL. For each QTL 
lacking variants with a merge log P value exceeding the haplotype log P value, 
we looked for unobserved causal variants that might not have been sequenced. 
We simulated candidate variants with every possible SDP (127 possible SDPs 
for diallelic variants and 1,094 possible SDPs when allowing for 3 alleles). 
Simulated variants were repeated within each QTL interval.

Simulating different QTL architectures. To investigate the hypothesis that 
the inability to detect candidate variants by merge analysis reflected complex 
architecture of the QTLs, we simulated QTLs arising from a single causal vari-
ant, QTLs arising from multiple causal variants within the same locus and/or 
multiple causal variants at linked loci, and QTLs arising from haplotypic effects 
not reducible to individual variants. In all cases, the phenotypes were simulated 
from three components: a genetic random effect explaining 20% of phenotypic 
variation, uncorrelated errors explaining 75% of phenotypic variation and 
a single QTL explaining 5% of phenotypic variation. When multiple causal 
variants were simulated, each explained the same proportion of phenotypic 
variation (5% divided by the number of causal variants). The effect sizes cal-
culated a posteriori could be quite different from their target values owing to 
correlations between the different components of the simulated phenotypes. 
For the simulations reported in Figure 4a, either a single causal variant was 
simulated or nine causal variants were simulated in three linked loci (with 
each locus within 2 Mb of the central locus and distant by at least 200 kb 
from each other locus). Alternatively, the PL probabilities were used to simu-
late irreducible QTLs. We analyzed each simulation by merge analysis, and, 
when log (Phaplotype) was between 4 and 6 (to have a similar distribution of log  
P values to that of the rat QTLs), we calculated d as max log (Pmerge) – max log 
(Phaplotype). We compared the distributions of d from the different simulation 
sets to determine the probable genetic architecture of the QTLs.

eQTL mapping and merge analysis in the mouse heterogeneous stock. 
Hippocampus expression levels in 460 heterogeneous stock mice measured 
using 12,000 probes on the Illumina Mouse WG-6 v1 BeadArray24 were 
mapped to the mouse ancestral haplotypes in the mixed-model framework. 
QTLs were called in the same way as for the rat QTLs but using a confidence 
interval of 8 Mb and a significance threshold of 4. Cis eQTLs were defined as 
being within 2 Mb of the beginning of the probe, and trans eQTLs were defined 
as being on a different chromosome than that of the probe or being more than 
10 Mb away from it on the same chromosome. Merge analysis was carried out 
at each eQTL, and the difference between the maximum merge log P value 
and the maximum haplotype log P value was calculated.

Homology modeling. To assess the potential effects of mutations on protein 
structure, homology models of target proteins were constructed and analyzed. 
Amino acid sequences of target proteins were retrieved from the Ensembl or 
UniProt databases45 and were analyzed using the HHPred46 web server to 
identify structures with similar amino acid sequences in PDB17 for homology 
modeling with MODELLER47. The potential locations of the mutation-affected 
side chains (buried or surface exposed) and effects on the structure-function 
relationship (for example, disturbed hydrophobic core) were evaluated manu-
ally in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4).

Genetic architecture. Heritability. Heritability was defined as the ratio of the 
genetic variance component to the sum of the variance components estimated 
in the null mixed model (covariates but no QTL).

QTL effect sizes and joint effect sizes. Effect sizes were defined as the ratio 
between the fitted sum of squares and the total sum of squares in a model with 
covariates and without genetic random component. Joint effect sizes were 
defined as the ratio between the fitted sum of squares and the total sum of 
squares in a model without genetic random component, including covariates 
and all the QTLs called for a given phenotype. Including the genetic random 
component would result in underestimation of most of the effect sizes because 
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two methods to control for unequal relatedness: Resample Model Averaging 
(as implemented in BAGPHENOTYPE13) for phenotypes with a non-normal 
distribution and Mixed Models for phenotypes with a normal distribution. 
Information on the performance of the methods is given in the Supplementary 
Note. Because most of the phenotypes had a normal distribution and the merge 
analysis was run in the mixed-model framework, we present the mixed models 
briefly here. These models were implemented in R so that haplotype mapping 
could be carried out using the descent probabilities from HAPPY14. The model 
used to test for association between the ancestral haplotypes segregating at a 
locus L and phenotypic variation was

y x P s T ui c ic Li Ls i isc ( )

where yi is the phenotypic value of rat i and c is the regression coefficient of 
covariate c and xic (the value of the covariate c in rat i). Notably, the covariates 
include a dummy intercept term. TLs is the deviation in phenotypic value that 
results from carrying one copy of a haplotype from strain s at locus L, and 
PLi(s) is the expected number of haplotypes of type s carried by rat i at locus 
L output by HAPPY14. ui and i are random effects, with cov( , ) ,u u Ki j g i j

2  
and cov( , ) ,i j e i jI2  where g

2 and e
2 are estimated in the null model (no 

locus effect, TLs = 0) using the R package EMMA12. K is the genetic covariance 
matrix and is estimated from the genome-wide genotype data using identity 
by state (IBS, the proportion of shared alleles between any two animals). The 
IBS matrix was calculated using the R package EMMA12. I is the identity 
matrix. The total covariance matrix V K Ig e

2 2  can be factorized as  
V = A2. Writing equation (1) in matrix form, gives

y = X  + PLTL + u + 

Premultiplying equation (2) by A−1 gives a transformed equation

( ) ( ) ( ) ( )A y A X A P T A uL L
1 1 1 1

in which the variance-covariance structure of the random term A−1 (u + ) 
is now proportional to a diagonal matrix and so can be fitted as a standard 
linear model.

Thresholds and confidence intervals. Calculations of the significance 
thresholds (when the phenotype was analyzed with mixed models), 
 inclusion probability thresholds (when the phenotype was analyzed by 
resample model averaging) and confidence intervals are described in the  
Supplementary Note.

Incorporation of sequence into QTL mapping. Implementation of the merge 
analysis in the mixed-model framework. Merge analysis is a form of imputa-
tion appropriate to heterogeneous stock–type populations whose genomes 
are mosaics of known haplotypes. Merge analysis asks two questions at each 
imputed variant: is the variant associated with the phenotype? (a standard test 
of association), and is its association as significant as the association in the 
haplotype-based test in the locality of the variant? We implemented merge 
analysis6 in a mixed-model framework by comparing model (2)

y X P T uL L

and

y X M U uV V

where V is a sequence variant in interval L and MV is the merge matrix for the 
variant, formed by summing those columns of PL that carry the same allele at V  
(each column of PL represents one founder strain). This can be computed 
efficiently by defining a matrix BV that encodes the columns to be merged 
such that MV = PVBV. This test is applied at every variable site in the catalog 
of single-nucleotide variants that segregate between the eight heterogeneous 
stock founders. From a statistical point of view, there is no difference between 
two variants with the same strain distribution pattern at a locus; they will give 
the same merge analysis result.

(1)(1)

(2)(2)

(3)(3)

Because models (2) and (3) are nested, the best possible fit (in terms of vari-
ance explained) is obtained with haplotype model (2). If the QTL arises from 
variation at a single variant V, the fit of merge model (3) for variant V will be 
as good as the fit of model (2), and its significance will be greater, owing to the 
fewer number of degrees of freedom (for a diallelic variant, there is 1 degree 
of freedom for the merge model compared to the 7 degrees of freedom for the 
haplotype model). The merge model is fitted by multiplying by A−1.

Simulating all possible strain distribution patterns at a QTL. For each QTL 
lacking variants with a merge log P value exceeding the haplotype log P value, 
we looked for unobserved causal variants that might not have been sequenced. 
We simulated candidate variants with every possible SDP (127 possible SDPs 
for diallelic variants and 1,094 possible SDPs when allowing for 3 alleles). 
Simulated variants were repeated within each QTL interval.

Simulating different QTL architectures. To investigate the hypothesis that 
the inability to detect candidate variants by merge analysis reflected complex 
architecture of the QTLs, we simulated QTLs arising from a single causal vari-
ant, QTLs arising from multiple causal variants within the same locus and/or 
multiple causal variants at linked loci, and QTLs arising from haplotypic effects 
not reducible to individual variants. In all cases, the phenotypes were simulated 
from three components: a genetic random effect explaining 20% of phenotypic 
variation, uncorrelated errors explaining 75% of phenotypic variation and 
a single QTL explaining 5% of phenotypic variation. When multiple causal 
variants were simulated, each explained the same proportion of phenotypic 
variation (5% divided by the number of causal variants). The effect sizes cal-
culated a posteriori could be quite different from their target values owing to 
correlations between the different components of the simulated phenotypes. 
For the simulations reported in Figure 4a, either a single causal variant was 
simulated or nine causal variants were simulated in three linked loci (with 
each locus within 2 Mb of the central locus and distant by at least 200 kb 
from each other locus). Alternatively, the PL probabilities were used to simu-
late irreducible QTLs. We analyzed each simulation by merge analysis, and, 
when log (Phaplotype) was between 4 and 6 (to have a similar distribution of log  
P values to that of the rat QTLs), we calculated d as max log (Pmerge) – max log 
(Phaplotype). We compared the distributions of d from the different simulation 
sets to determine the probable genetic architecture of the QTLs.

eQTL mapping and merge analysis in the mouse heterogeneous stock. 
Hippocampus expression levels in 460 heterogeneous stock mice measured 
using 12,000 probes on the Illumina Mouse WG-6 v1 BeadArray24 were 
mapped to the mouse ancestral haplotypes in the mixed-model framework. 
QTLs were called in the same way as for the rat QTLs but using a confidence 
interval of 8 Mb and a significance threshold of 4. Cis eQTLs were defined as 
being within 2 Mb of the beginning of the probe, and trans eQTLs were defined 
as being on a different chromosome than that of the probe or being more than 
10 Mb away from it on the same chromosome. Merge analysis was carried out 
at each eQTL, and the difference between the maximum merge log P value 
and the maximum haplotype log P value was calculated.

Homology modeling. To assess the potential effects of mutations on protein 
structure, homology models of target proteins were constructed and analyzed. 
Amino acid sequences of target proteins were retrieved from the Ensembl or 
UniProt databases45 and were analyzed using the HHPred46 web server to 
identify structures with similar amino acid sequences in PDB17 for homology 
modeling with MODELLER47. The potential locations of the mutation-affected 
side chains (buried or surface exposed) and effects on the structure-function 
relationship (for example, disturbed hydrophobic core) were evaluated manu-
ally in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4).

Genetic architecture. Heritability. Heritability was defined as the ratio of the 
genetic variance component to the sum of the variance components estimated 
in the null mixed model (covariates but no QTL).

QTL effect sizes and joint effect sizes. Effect sizes were defined as the ratio 
between the fitted sum of squares and the total sum of squares in a model with 
covariates and without genetic random component. Joint effect sizes were 
defined as the ratio between the fitted sum of squares and the total sum of 
squares in a model without genetic random component, including covariates 
and all the QTLs called for a given phenotype. Including the genetic random 
component would result in underestimation of most of the effect sizes because 
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two methods to control for unequal relatedness: Resample Model Averaging 
(as implemented in BAGPHENOTYPE13) for phenotypes with a non-normal 
distribution and Mixed Models for phenotypes with a normal distribution. 
Information on the performance of the methods is given in the Supplementary 
Note. Because most of the phenotypes had a normal distribution and the merge 
analysis was run in the mixed-model framework, we present the mixed models 
briefly here. These models were implemented in R so that haplotype mapping 
could be carried out using the descent probabilities from HAPPY14. The model 
used to test for association between the ancestral haplotypes segregating at a 
locus L and phenotypic variation was

y x P s T ui c ic Li Ls i isc ( )

where yi is the phenotypic value of rat i and c is the regression coefficient of 
covariate c and xic (the value of the covariate c in rat i). Notably, the covariates 
include a dummy intercept term. TLs is the deviation in phenotypic value that 
results from carrying one copy of a haplotype from strain s at locus L, and 
PLi(s) is the expected number of haplotypes of type s carried by rat i at locus 
L output by HAPPY14. ui and i are random effects, with cov( , ) ,u u Ki j g i j

2  
and cov( , ) ,i j e i jI2  where g

2 and e
2 are estimated in the null model (no 

locus effect, TLs = 0) using the R package EMMA12. K is the genetic covariance 
matrix and is estimated from the genome-wide genotype data using identity 
by state (IBS, the proportion of shared alleles between any two animals). The 
IBS matrix was calculated using the R package EMMA12. I is the identity 
matrix. The total covariance matrix V K Ig e

2 2  can be factorized as  
V = A2. Writing equation (1) in matrix form, gives

y = X  + PLTL + u + 

Premultiplying equation (2) by A−1 gives a transformed equation

( ) ( ) ( ) ( )A y A X A P T A uL L
1 1 1 1

in which the variance-covariance structure of the random term A−1 (u + ) 
is now proportional to a diagonal matrix and so can be fitted as a standard 
linear model.

Thresholds and confidence intervals. Calculations of the significance 
thresholds (when the phenotype was analyzed with mixed models), 
 inclusion probability thresholds (when the phenotype was analyzed by 
resample model averaging) and confidence intervals are described in the  
Supplementary Note.

Incorporation of sequence into QTL mapping. Implementation of the merge 
analysis in the mixed-model framework. Merge analysis is a form of imputa-
tion appropriate to heterogeneous stock–type populations whose genomes 
are mosaics of known haplotypes. Merge analysis asks two questions at each 
imputed variant: is the variant associated with the phenotype? (a standard test 
of association), and is its association as significant as the association in the 
haplotype-based test in the locality of the variant? We implemented merge 
analysis6 in a mixed-model framework by comparing model (2)

y X P T uL L

and

y X M U uV V

where V is a sequence variant in interval L and MV is the merge matrix for the 
variant, formed by summing those columns of PL that carry the same allele at V  
(each column of PL represents one founder strain). This can be computed 
efficiently by defining a matrix BV that encodes the columns to be merged 
such that MV = PVBV. This test is applied at every variable site in the catalog 
of single-nucleotide variants that segregate between the eight heterogeneous 
stock founders. From a statistical point of view, there is no difference between 
two variants with the same strain distribution pattern at a locus; they will give 
the same merge analysis result.

(1)(1)

(2)(2)

(3)(3)

Because models (2) and (3) are nested, the best possible fit (in terms of vari-
ance explained) is obtained with haplotype model (2). If the QTL arises from 
variation at a single variant V, the fit of merge model (3) for variant V will be 
as good as the fit of model (2), and its significance will be greater, owing to the 
fewer number of degrees of freedom (for a diallelic variant, there is 1 degree 
of freedom for the merge model compared to the 7 degrees of freedom for the 
haplotype model). The merge model is fitted by multiplying by A−1.

Simulating all possible strain distribution patterns at a QTL. For each QTL 
lacking variants with a merge log P value exceeding the haplotype log P value, 
we looked for unobserved causal variants that might not have been sequenced. 
We simulated candidate variants with every possible SDP (127 possible SDPs 
for diallelic variants and 1,094 possible SDPs when allowing for 3 alleles). 
Simulated variants were repeated within each QTL interval.

Simulating different QTL architectures. To investigate the hypothesis that 
the inability to detect candidate variants by merge analysis reflected complex 
architecture of the QTLs, we simulated QTLs arising from a single causal vari-
ant, QTLs arising from multiple causal variants within the same locus and/or 
multiple causal variants at linked loci, and QTLs arising from haplotypic effects 
not reducible to individual variants. In all cases, the phenotypes were simulated 
from three components: a genetic random effect explaining 20% of phenotypic 
variation, uncorrelated errors explaining 75% of phenotypic variation and 
a single QTL explaining 5% of phenotypic variation. When multiple causal 
variants were simulated, each explained the same proportion of phenotypic 
variation (5% divided by the number of causal variants). The effect sizes cal-
culated a posteriori could be quite different from their target values owing to 
correlations between the different components of the simulated phenotypes. 
For the simulations reported in Figure 4a, either a single causal variant was 
simulated or nine causal variants were simulated in three linked loci (with 
each locus within 2 Mb of the central locus and distant by at least 200 kb 
from each other locus). Alternatively, the PL probabilities were used to simu-
late irreducible QTLs. We analyzed each simulation by merge analysis, and, 
when log (Phaplotype) was between 4 and 6 (to have a similar distribution of log  
P values to that of the rat QTLs), we calculated d as max log (Pmerge) – max log 
(Phaplotype). We compared the distributions of d from the different simulation 
sets to determine the probable genetic architecture of the QTLs.

eQTL mapping and merge analysis in the mouse heterogeneous stock. 
Hippocampus expression levels in 460 heterogeneous stock mice measured 
using 12,000 probes on the Illumina Mouse WG-6 v1 BeadArray24 were 
mapped to the mouse ancestral haplotypes in the mixed-model framework. 
QTLs were called in the same way as for the rat QTLs but using a confidence 
interval of 8 Mb and a significance threshold of 4. Cis eQTLs were defined as 
being within 2 Mb of the beginning of the probe, and trans eQTLs were defined 
as being on a different chromosome than that of the probe or being more than 
10 Mb away from it on the same chromosome. Merge analysis was carried out 
at each eQTL, and the difference between the maximum merge log P value 
and the maximum haplotype log P value was calculated.

Homology modeling. To assess the potential effects of mutations on protein 
structure, homology models of target proteins were constructed and analyzed. 
Amino acid sequences of target proteins were retrieved from the Ensembl or 
UniProt databases45 and were analyzed using the HHPred46 web server to 
identify structures with similar amino acid sequences in PDB17 for homology 
modeling with MODELLER47. The potential locations of the mutation-affected 
side chains (buried or surface exposed) and effects on the structure-function 
relationship (for example, disturbed hydrophobic core) were evaluated manu-
ally in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4).

Genetic architecture. Heritability. Heritability was defined as the ratio of the 
genetic variance component to the sum of the variance components estimated 
in the null mixed model (covariates but no QTL).

QTL effect sizes and joint effect sizes. Effect sizes were defined as the ratio 
between the fitted sum of squares and the total sum of squares in a model with 
covariates and without genetic random component. Joint effect sizes were 
defined as the ratio between the fitted sum of squares and the total sum of 
squares in a model without genetic random component, including covariates 
and all the QTLs called for a given phenotype. Including the genetic random 
component would result in underestimation of most of the effect sizes because 

EMMA: Kang, H.M. et al. Efficient control of population structure in model 
organism association mapping. Genetics 178, 1709–1723 (2008).
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Parent of Origin Effects in 
Heterogeneous Stock Mice

• Parents of 1389 mice 
were genotyped

• Modified HMM 
estimates phased 
haplotype probabilities

• Test for Parent of Origin 
Effects

• Partition heritability 
according to Parent of 
Origin
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drops below 0.5 (Table 1). Figure 2 shows results for all
populations analysed (there were insufficient polymorphic SNPs
to calculate LD for NTac:NIHBS-US and ClrHli:CD1-IL).
Average figures of LD decay mask variation between regions.

For example HsdWin:NMRI-NL has a mean LD decay radius of
just over 1, but it will be of little use mapping the MHC region
where LD is extensive. However, a region with high LD in one
population may have low LD in another. This locus-to-locus
variation means that no single population is ideal and that colony-
specific genome-wide haplotype and recombination maps are
needed.
We explored genome-wide variation in LD in three colonies

analysed with the 600K Mouse Diversity Array [16]: Crl:
CFW(SW)-US_P08, Crl:NMRI(Han)-FR and Hsd:ICR(CD1)-FR.
Mean block length varied between the three colonies:
Crl:CFW(SW)-US_P08 79.2 Kb (standard deviation (sd) 70.8),
Crl:NMRI(Han)-FR 39.53 Kb (sd 58.7), and Hsd:ICR(CD1)-FR
51.1 Kb (sd 79.5). Block data for each chromosome is given at
http://www.well.ox.ac.uk/flint-old/outbreds.shtml. Since there is
on average about one gene per 100 Kb, gene-level resolution
mapping is possible in these three colonies.

Haplotypes in commercial outbreds are found in
laboratory strains
Genome-wide association will be effective in colonies where all,

or the majority of haplotypes are tagged by markers on a high-
density array. The colonies’ ancestry, as depicted in Figure 1,
suggests they contain a relatively limited set of haplotypes, present
in inbred strains. We estimated the contribution of each inbred
strain to each colony’s genetic architecture by reconstructing the
genome of each mouse as a probabilistic mosaic of the founders
[17]. We used the Perlegen NIEHS genotypes [18] from 15 inbred
strains and analysed all colonies at the four loci (Figure 3) and
performed genome-wide analyses in six colonies.
While there is considerable variation between colonies, two

general patterns are clear in both locus-specific and genome-wide
analyses. First, in all colonies, the fraction of haplotypes accounted
for by classical inbred strains ranges between 42% (the NIHS
colonies) to 80% (most ICR/CD1). Second, the wild-derived
strains (WSB, CAST, MOLF) contribute the least (3–5%). The
NIHS stocks contain the highest contribution of the Swiss mouse
FVB (25–35%). NMRI are 15–20% FVB and 15% 129, CD1
about 15% FVB and MF1 only 5%. The CFW stocks all contain

Figure 2. Linkage disequilibrium decay radius (black) and minor allele frequencies (red) in outbred mice. The scale of the vertical axis is
megabases for the decay radius and ten times the value of the mean allele frequency (so a value of 2 is 0.2).
doi:10.1371/journal.pgen.1001085.g002

Commercially Available Mice

PLoS Genetics | www.plosgenetics.org 6 September 2010 | Volume 6 | Issue 9 | e1001085

Commercially Available Outbred Mice for Genome-Wide
Association Studies
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Abstract

Genome-wide association studies using commercially available outbred mice can detect genes involved in phenotypes of
biomedical interest. Useful populations need high-frequency alleles to ensure high power to detect quantitative trait loci
(QTLs), low linkage disequilibrium between markers to obtain accurate mapping resolution, and an absence of population
structure to prevent false positive associations. We surveyed 66 colonies for inbreeding, genetic diversity, and linkage
disequilibrium, and we demonstrate that some have haplotype blocks of less than 100 Kb, enabling gene-level mapping
resolution. The same alleles contribute to variation in different colonies, so that when mapping progress stalls in one,
another can be used in its stead. Colonies are genetically diverse: 45% of the total genetic variation is attributable to
differences between colonies. However, quantitative differences in allele frequencies, rather than the existence of private
alleles, are responsible for these population differences. The colonies derive from a limited pool of ancestral haplotypes
resembling those found in inbred strains: over 95% of sequence variants segregating in outbred populations are found in
inbred strains. Consequently it is possible to impute the sequence of any mouse from a dense SNP map combined with
inbred strain sequence data, which opens up the possibility of cataloguing and testing all variants for association, a situation
that has so far eluded studies in completely outbred populations. We demonstrate the colonies’ potential by identifying a
deletion in the promoter of H2-Ea as the molecular change that strongly contributes to setting the ratio of CD4+ and CD8+
lymphocytes.

Citation: Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, et al. (2010) Commercially Available Outbred Mice for Genome-Wide Association Studies. PLoS
Genet 6(9): e1001085. doi:10.1371/journal.pgen.1001085

Editor: Gregory S. Barsh, Stanford University School of Medicine, United States of America

Received March 19, 2010; Accepted July 23, 2010; Published September 2, 2010

Copyright: ! 2010 Yalcin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Wellcome Trust. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jf@well.ox.ac.uk

Introduction

The design of an ideal population for gene mapping involves
balancing the avoidance of rare alleles with the requirement for
rapid linkage disequilibrium (LD) decay. High rates of LD decay
are found in populations with large effective population sizes and
many generations of random mating that accumulate recombi-
nants to break up correlations between genotypes. Unfortunately,
a necessary corollary is the presence of rare alleles as allele
frequencies drift to extremes and new, rare, alleles arise as a
consequence of mutations. The more rare alleles in a population,
and the more they contribute to phenotypic variation, the more
difficult it will be to detect quantitative trait loci (QTLs) using
genome-wide association strategies that genotype only common
alleles [1].
The best strategy might seem to be to choose animals from

highly divergent populations, such as wild mice caught in many
locations [2], or from inbred lines derived from highly genetically
divergent progenitor strains. This maximizes genetic diversity and
seeks to overcome the limitations of using only a subset of the

variation present in wild populations. However, mice from
different populations will have a high proportion of private
variants present in one population only. LD decay for the latter
private variants will depend solely on recombinants accumulated
during the creation of the colony, while LD decay for the former,
common, variants is boosted by the ancestry of the founding
populations. Furthermore, the power to detect a genetic effect
increases with the minor allele frequency (MAF) of the causal
variant. It follows that high power and mapping resolution is best
obtained by using animals from the same mating population to
reduce the number of private alleles. A related phenomenon is
population structure, caused either by recent admixture or uneven
degrees of relatedness, both of which should be avoided.
Commercial mouse breeders maintain large colonies of outbred

mice that may have the necessary genetic structure. LD in some
outbred stocks has been shown to allow high-resolution mapping
[3], sufficient to identify genes [4]. Importantly, most outbred
stocks are known to derive from animals from a single population,
such as the ‘Swiss’ stocks which descend from two males and seven
females imported from Lausanne, Switzerland [5], indicating that
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about 15% FVB. The genome-wide results are similar, except the
overall contribution of 129 is closer to the other classical inbred
strains. These results confirm that haplotypes in outbred colonies
are predominantly the same as those found in classical laboratory
inbred strains and suggest outbred stocks originated from mice
genetically similar to inbred strains.

Sequence analysis and novel variants
The haplotype analysis might be subject to SNP ascertainment

bias as only variants segregating among inbred strains were
genotyped. Furthermore, ancestral haplotype reconstruction
always finds representations of the outbreds’ genomes as mosaics
of a given set of inbreds; it does not test if the ancestral hypothesis

is true in general, nor whether the set of founders is optimal in the
sense of explaining the genome structure of outbred mice with the
fewest recombinants and inbred strains. However, the ancestral
hypothesis would be refuted if many SNPs segregated within the
stocks that are not found in inbred strains. Colonies with high rates
of these private alleles will be less suitable for genome-wide
association studies.
We assessed how many SNPs, missing in laboratory inbred

strains, are present in the outbred colonies. We amplified and
sequenced 22 fragments of about 1.2 Kb, from eight regions in a
5 Mb region previously sequenced on mouse chromosome 1 [19]
and from a further 14 regions within the four QTLs described
above. We sequenced 12 animals from three populations

Figure 3. Proportion of laboratory inbred strain haplotypes found in commercial outbred stocks. The region above the horizontal black
line gives results from an analysis based on 351 markers from four regions in 66 colonies. Below the black line are results from a genome-wide
analysis of 6 stocks. The degree of grey scale represents the contribution from each of the Perlegen re-sequenced strains [18] to the outbred colonies.
doi:10.1371/journal.pgen.1001085.g003
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Imputation in Commercial Outbreds
2000 Crl-CFW mice sequenced at 0.1x coverage

• Assume mice are descended from 
known inbred strains

• Use existing catalogue of variants

• Assume they are descended from 
two unknown outbred individuals

• Estimate founders and catalogue 
from all sequence data (FastPhase) 
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Concluding Thoughts

• Outbred and Inbred populations have 
similar analysis methodology

• Genetic diversity of founders affects 
architecture of QTLS

• Genotyping by low coverage sequencing is 
feasible alternative to SNP arrays
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