
1

John Sy
19 March 2008

Advanced Modelling in Biology

Assignment

Question 1.1: Global Optimization of Complex Functions

Local optimization (maximization or minimization) is computationally easy, especially when
functions are convex and don’t have any points of inflection around the point in question.
However, finding global extrema, especially when the function is non-convex and has
shallow minima, this can prove to be computationally much more difficult. We first consider
the following example in the one-dimensional case where u(x) represents our “energy
function” to be minimized. ݑሺݔሻ ൌ ሺ1 ൅ ݔ0.5 െ ଶݔ130.1 ൅ ଷݔ589 ൅ ସሻݔ2688 ൅ cos ሺ 0.04ሻߨݔ

The first method of minimization one can use, and perhaps the easiest, is by simply plotting
the function. This is shown in figure 1 below. Although at large values of x the function
seems to be convex, zooming in shows that the function has multiple minima.

We can observe that there are 7 minima that we must consider, but we can also use the
derivative of the energy function to determine how many minima the function has as is
shown in the code below.

%Obtaining the number of minimia
j = 0;
for i = 2:length(x)
 if (assn1q1(x(i-1)) < 0) && (assn1q1(x(i)) > 0)
 j = j + 1;
 else
 j = j;
 end
end

The code above yields 7 places where the derivative (assn1q1.m) changes from being
negative to positive.

We can then utilize the fsolve function to get values of the minima using the approximate
zeros from the code above as guesses. We can then evaluate the energy at each minima and

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-10

-5

0

5

10

15

20

25

30
Figure 1. Plot of u(x)

x

u(
x)

2

select the lowest value to give us our global minimum. The fsolve function is an
implementation of the steepest descent method. Although this does not always produce a
convergent solution, having good guesses from our previous code will allow the function to
converge. Furthermore, the benefit of using fsolve instead of relying on just finding when the
gradient goes from a negative value to a positive value is that it is not dependent on having
small step sizes. Fsolve can take any value around the minima and get the exact value for
you. This allows long programs to run faster since we are minimizing the sampling rate of
the derivative.

%Obtaining the number of minimia & global minimum value
j = 0;
for i = 2:length(x)
 if (assn1q1(x(i-1)) < 0) && (assn1q1(x(i)) > 0)
 j = j + 1;
 val(j) = fsolve(@assn1q1, x(i-1));
 en(j) = metroMC(val(j)); %metroMC is our energy function
 else
 j = j;
 end
end

%Selecting minimum x value and energy
minEN = 0;
for i = 1:length(val)
 if en(i) < minEN
 minEN = en(i);
 minX = val(i);
 end
end
minEN
minX

This slightly altered code gives us that the global minimum can be found when x = -0.2767
when the energy value is -6.7870. To ensure that we are indeed getting the minimum value,
we can plot the results on top of the graph from figure 1. This result is displayed in figure 2.

One can also use ode45 to obtain the value of the global minima. This method works by
integrating the negative gradient of the function with respect to time. This method is
equivalent to standing at an initial condition and always going down the gradient of the
energy function over time, similar to the steepest descent method. However, like the fsolve

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-10

-5

0

5

10

15

20

25

30
Figure 2. Plot of u(x) with minimum

x

u(
x)

3

method, this does not guarantee that the global minimum is found. Probably the best we can
do is sample several points and find the minimum energy that is reached.

If we now look to performing the same type of analysis on a two dimensional problem, this
problem gets more computationally difficult since we have to take into consideration the
minimum value of a surface. Now the function to be minimized is the following: ݑሺݔ, ሻݕ ൌ ሺ1 ൅ ݔ0.5 െ ଶݔ130.1 ൅ ଷݔ589 ൅ ସሻݔ2688 ൅ cos ቀ 0.04ቁ൅ߨݔ ሺ1 ൅ ݕ0.5 െ ଶݕ130.1 ൅ ଷݕ589 ൅ ସሻݕ2688 ൅ cos ሺ 0.04ሻߨݕ

However, we can consider the symmetry of our specific problem to simply get that the energy
minimum value will be located at (-0.2767, -0.2767) with a value of -13.5740, knowing the
results from the previous section. This is because the u(x,y) value is only dependent upon the
sum of x terms and y terms and it is not interdependent. Although this argument might work
for this problem, it cannot be generalized to more complex problems that are not symmetrical.
For these cases, it is not possible to use the fsolve() function in matlab since that is only valid
for one variable.

However, another similar function called fminsearch() is available for us to use which finds
the local minima of a function. This time, we can again sample various points on a grid
where we believe the global minimum lies and then save the lowest value and the x value
which gives that lowest energy. This is implemented in the code below.

%To do the 2 dimensional minimization
myfunc = @(x)(1+0.5*x(1)-130.1*x(1)^2+589*x(1)^3+2688*x(1)^4+cos(x(1)*pi/0.04)+1+0.5*x(2)-
130.1*x(2)^2+589*x(2)^3+2688*x(2)^4+cos(x(2)*pi/0.04));
xguessvals = -0.4:0.01:0.3;
yguessvals = -0.4:0.01:0.3;
minval = 0;
minx = 0;
for i = 1:length(xguessvals)
 xguess = xguessvals(i);
 for i = 1:length(yguessvals)
 yguess = yguessvals(i);
 [x, fval] = fminsearch(myfunc, [xguess yguess]);
 if fval < minval
 minval = fval;
 minx = x;
 end
 end
end
minval
minx

This method gives us the value of the global minimum quite quickly, but if our space is too
large to sample along a mesh, then we might to obtain the correct value.

To get around this problem, we need to use a heuristic search algorithm such as metropolis
monte carlo or simulated annealing to search for the global minima. Pseudocode for a monte
carlo heuristic search algorithm is shown below.

Pick a random number in a given range
Calculate the energy at that value
If new energy < old energy
 Accept change
Also accept given probability determined by exp(-dE/kT)
Else

4

 Do not accept change
Decrease the temperature over time
Repeat n times

Running the implementation below for the one dimensional case seems to work quite well to
find the minima. The implementation pretty much throws many darts and allows changes to
occur given a probability if the energy change is upward. This allows for the algorithm to
escape local minima in search of the global minimum. As temperature decreases even further,
the probability that large variations will be accepted decreases and only small variations in
energy are accepted with successive iterations.
%We want to confine ourselves within a certain window where we know the
%minima lie: -0.5 to 0.5
%Select a random number between -0.5 and 0.5 to initiate the algorithm
xvalue(1) = rand()-0.5;
%Calculate the energy of the point
en(1) = metroMC(xvalue(1));
%Initial Temperature
T = 5;
for i = 2:20000
 %Perturb the x value randomly up or down (random walk)
 xvaluenew = xvalue(i-1) + randn();
 %Clalculate the new energy
 ennew = metroMC(xvaluenew);
 %Accept if energy is less
 randnum = rand();
 if ennew < en(i-1)
 en(i) = ennew;
 xvalue(i) = xvaluenew;
 %Accept sometimes given a probability
 elseif randnum < exp(-(ennew-en(i-1))/T)
 en(i) = ennew;
 xvalue(i) = xvaluenew;
 %Otherwise, don't accept the change
 else
 en(i) = en(i-1);
 xvalue(i) = xvalue(i-1);
 end
 %Decrease temperature slowly to minimize jumpiness
 T = T*0.99;
end
Energy = en(length(en))
MinXValue = xvalue(length(xvalue))

We can again visualize the effectiveness of the algorithm by plotting the result on the graph
as shown in figure 3.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

-10

-5

0

5

10

15

20

25

30
Figure 3. Monte Carlo Method Result

x

u(
x)

5

Moving to two dimensions, this becomes slightly more difficult and it takes several runs to
finally find the minimum. The code is shown below, implementing a similar algorithm to
above except now our random walk is now in the direction of the gradient as it is better to
have a directed approach.

%Monte carlo methods on a 2D system
%Set a random initial guess on the interval -0.5 to 0.5, since we know
%that is where the minima lie
xvalue(1) = rand()-0.5;
yvalue(1) = rand()-0.5;
%Calculate energy (value of function)
en(1) = metroMC2D(xvalue(1),yvalue(1));

RT = 10; %Initial temperature
%Implementation of the Metropolis-Monte Carlo Algorithm
for i = 2:50000
 %Calculate gradient at point
 xgrad = assn1q1(xvalue(i-1));
 ygrad = assn1q1(yvalue(i-1));
 %Perturb the point (random walk simulation) on the gradient
 random1 = randn();
 newxval = xvalue(i-1) + xgrad*random1;
 newyval = yvalue(i-1) + ygrad*random1;
 %Evaluate the energy at this random number
 newen = metroMC2D(newxval,newyval);
 randnum = rand();
 if newen < en(i-1)
 en(i) = newen; %Always select if less
 xvalue(i) = newxval;
 yvalue(i) = newyval;
 %Accept with given probability sometimes for increases
 elseif randnum < exp(-(newen-en(i-1))/RT)
 en(i) = newen;
 xvalue(i) = newxval;
 yvalue(i) = newyval;
 else
 en(i) = en(i-1);
 xvalue(i) = xvalue(i-1);
 yvalue(i) = yvalue(i-1);
 end
 RT = RT*0.99; %Reduce temperature slowly
end
minxval = xvalue(length(xvalue))
minyval = yvalue(length(yvalue))
MinEn = en(length(en))

The minimum was found to be at the values expected when considering symmetry introduced
earlier. Unfortunately, this method does not work as well for multidimensional problems as
with one dimensional problems perhaps because there isn’t enough iterations or the
temperature is being decreased too quickly. For now, on two dimensional system which you
can visualize, then it is best to use fminsolve, the standard function in matlab.

In general, for an N dimensional system similar to the one we just had, there will be 7N
number of minima that need to be considered.

Question 1.2: Multivariate Least Squares

The least squares regression method seeks to minimize the error of a curve of n dimensions
with m number of points, where m > n. For a linear regression, we fit the curve to the general
equation: ݕ௜ ൌ ܽ଴ ൅ ܽଵݔ௜

6

Our m number of points can be generalized to the equation below:

റݕ ൌ ൭ݕଵݕڭே൱ ൌ ܽ଴ ൭11ڭ൱ ൅ ܽଵ ൭ݔଵݔڭே൱ ൌ ൭1 ڭଵݔ 1ڭ ே൱ݔ ቀܽ଴ܽଵቁ ൌ റܣറݔ
We can make a prediction to the line goes through the data points with ݕ௜ values being ݕపෝ , and
the task now becomes to minimize the error between ݕ௜ and ݕపෝ . The mean squared error can
then be defined below. ݉݁ݏ ൌ ்݁݁ ൌ ሺݕ௜ െ ௜ݕపෝሻ்ሺݕ െ పෝሻݕ

Substituting ݕറ ൌ ܧ׏ :റ and taking the derivative with respect to A, we get thatܣറݔ ൌ െݕ்ݔ െ ݕ்ݔ ൅ 2ሺݔ்ݔሻܽ

Setting this equation to zero to find the minimum, we get the relationship: ݕ்ݔ ൌ ሺݔ்ݔሻܽ

And solving for a, the coefficients of our equation yields: ܽ ൌ ሺݔ்ݔሻିଵݕ்ݔ

To ensure that we have a minimum, we can take the second gradient of the error and see if it
is positive definite: ׏ଶE ൌ 2ሺݔ்ݔሻ ൒ 0

As we can see, multiplying the transpose of a vector with the vector is equivalent to taking
the squares and this will always be positive. So indeed, we have succeeded in obtaining the
minimum.

In matlab, this can be easily implemented with the code below to find the value of b for
points1.dat.
%Least Squares on one dimension for fit 1
C = cat(2,ones(length(x1vals),1),x1vals);
b = ((transpose(C)*C)^(-1))*transpose(C)*yvals
ycalc = b(1) + b(2)*x1vals;
figure;
plot(x1vals,yvals,'o',x1vals,ycalc);
error = ycalc - yvals;
meansqerr = mean(error.^2)
% or meansqerr = mse(error)

We obtain that the best fit line for the points1.dat with the graph shown below ݕ ൌ 3.7393 ൅ ݔ8.3811

7

The mean squared error for this plot comes out to be 5.5609.

Similar, we can calculate the value of c with the other set of points in points1.dat. We get
that the best fit line and corresponding plot is shown below. The mean squared error for this
plot is 5.6367. ݕ ൌ 3.8845 ൅ ݔ3.2663

Now we can combine the two independent variables and say that y is dependent on both x1
and x2 and perform the linear regression correspondingly. We have to alter the code slightly
to accommodate for this other variable as shown below.
C1 = cat(2,ones(length(x1vals),1),x1vals,x2vals);
A1 = ((transpose(C1)*C1)^(-1))*transpose(C1)*yvals

ycalc1 = A1(1) + A1(2)*x1vals + A1(3)*x2vals;
error1 = ycalc1 - yvals;
meansqerr1 = mse(error1)

And from this, we obtain that the best fit line is: ݕ ൌ 0.0329 ൅ ଵݔ8.0221 ൅ ଶݔ3.1245

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

12

14

16

18
Figure 4. Linear Least Squares Method for Fit 1

x1

y

-0.5 0 0.5 1 1.5 2 2.5 3
-2

0

2

4

6

8

10

12

14

16

18
Figure 5. Linear Least Squares Method for Fit 2

x2

y

8

The corresponding mean squared error is 0.2654, which is much lower than any of the one-
dimensional fits that we attempted. This suggests that both are principle components to the
problem and both are required properly describe the data. We should remember that when
we ignored one of the variables to perform the one-dimensional fit, we were taking the
projection of the data along that plane. Now that we have another dimension, we can more
accurately describe the data using two-dimensions.

The same methods can be applied to points2.dat. We have found the best fit line and have
plotted the points and best fit line below. The mean squared error for this univariate fit is
ݕ .0.3697 ൌ 0.0005 ൅ ଵݔ15.9095

For the second set of x values, we have also found the best fit line and plot. The mean
squared value for this set is 0.3697. ݕ ൌ 0.1030 ൅ ଶݔ6.2733

And now taking both x1 and x2 into consideration, we obtain that the best fit equation. The
mean squared error this time is 0.2656. ݕ ൌ 0.0127 ൅ ଵݔ7.9949 ൅ ଶݔ3.1516

Compared to the analysis on points1.dat, there is not a significant decrease in mean squared
error when using a multivariate regression. We can get a further insight into this by plotting
x1 vs x2 for each of the points1 and points2 and these are shown in figures 7 and 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

12

14

16

18
Figure 5. Linear Least Squares For Points2 Fit 1

x1

y

-0.5 0 0.5 1 1.5 2 2.5 3
-2

0

2

4

6

8

10

12

14

16

18
Figure 6. Linear Least Squares For Points2 Fit 2

x2

y

9

As is seen in the above figures (7 and 8), in points1, the values of x1 and x2 do not show any
correlation and this is confirmed when we get a large decrease in the mean squared error
when we take into account both independent variables x1 and x2. In comparison, we can see
in figure 8 that x1 and x2 are highly correlated. Because of this, we do not see a greater
reduction in the mean squared error since either x1 depends on x2 or vice versa already.
Thus, only one variable is necessary to explain the behavior of y in the system.

If we perform the singular value decomposition of the matrix with all of our data (not
assuming any dependence relationships between any of the variables), we can hopefully gain
a better understanding of what we see in the data and plots above. The singular values are
just the eigenvalues of the covariance matrix.

To do this, we first subtract the mean value for our data sets. Then we calculate the
eigenvalues and eigenvectors of the covariance matrix. For points 1, the corresponding
eigenvalues and eigenvectors of the data are:
V =
 -0.9304 0.3617 0.0593
 -0.3492 -0.9239 0.1561
 0.1113 0.1245 0.9860

D =
 0.0034 0 0
 0 0.3008 0
 0 0 11.7707

And for points 2, the corresponding eigenvalues and eigenvectors of the data are:
V =
 0.9815 0.1814 0.0609
 -0.1888 0.9698 0.1546
 -0.0311 -0.1632 0.9861

D =
 0.0011 0 0
 0 0.0093 0
 0 0 22.1716

From the data above, we can see that there are two larger principal components in points 1
than in points 2 meaning that we could potentially discard 2 variables in points 2 but only one
variable in points 1. Looking at the plot above, we recall that for points 1, x1 and x2 were
not well correlated and the points were on the plane. Furthermore, by adding in both x1 and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

3
Figure 7. Plot of x1 vs x2 values for points1

x1

x2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

3
Figure 8. Plot of x1 vs x2 values for Points2

x1

x2

10

x2 into the least squares linear fit, we were able to get a significant decrease in the mean
squared error. This means that it is not possible to discard 2 of the variables to describe the
data, but can only discard one of the variables, confirmed by our principal component
analysis. In points2, we recall that x1 and x2 were generally very well correlated and hence
we didn’t get a decrease in the mean squared error when we used both x1 and x2 to do our
least squares fit. The fact that we got similar mean squared errors shows that we can discard
two unnecessary variables in our data as confirmed by our principal component analysis.

Question 2.1: A numerical exploration of the logistic map

In this problem, we consider a fishery whose population can be described by the difference
equation shown below. In the equation, we have that the population at the next time step is
dependent upon the population at the previous time step but is limited by the resources and so
thus cannot have a population density greater than 1.

()kkk xrxx −=+ 11

The main parameter that is adjustable is the value of r, or the effective rate at which the
population grows when not limited. We set the value of r to only lie between the values of 0
and 4. When r = 0, the population dies out at the next time step since there is no growth.
Intuitively, we can also see that if the growth rate is less that 1, this means that there is not
enough species going to the next time step and the population will eventually decrease to zero.
But what happens at other values of r? To investigate this, we can first plot the bifurcation
diagram with values of r versus values as x approaches infinity, ∞x . Since it is not
computationally practical to actually obtain the value at infinity, we assume that the system
will reach a steady state (if it ever reaches a steady state) at time step 1000. Graphical
analysis has shown that the system can oscillate between different points, so to ensure that we
have sampled enough time points to get all values x oscillates through, we take the last 200
time points from 800 to 1000. Below in figure 2.1a is the bifurcation diagram of the system
along with the code used to produce the diagram.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.1a. Bifurcation diagram for difference equation

r

x(
in

f)

11

rvals = 0.1:0.01:4;
for j = 1:length(rvals)
 r = rvals(j);
 x(j,1) = 0.5;
 for i = 2:1000
 x(j,i) = r*x(j,i-1)*(1-x(j,i-1));
 end
end

figure;
plot(rvals,x(:,800:1000))
axis([0 4 0 1])
title('Figure 2.1a. Bifurcation diagram for difference equation');
xlabel('r'); ylabel('x(inf)');

In figure 2.1a, we can see that the fixed point begins to move away from 0 as we increase the
value of r and we observe different regimes of behaviour in the system. At r = 3, the system
begins to oscillate between two fixed points (period 2) and as we increase r further past about
3.5, the system oscillates between 4 fixed points (period 4) and becomes chaotic soon after.
This effect is known as period doubling. Even though it is not possible to see this or chaotic
behaviour in one dimensional continuous systems, this effect is clearly seen in this seemingly
simple one dimensional discrete system.

We can explore the function more analytically by finding the fixed points and performing
stability analysis, similar to what we did with continuous systems last term. However to find
the fixed points in discrete systems, we set tt xx =+1 and solve for the values of *x . Doing

this, we get that the fixed points are at 0* =x and
r

x 11* −= . If we constrain the value of x to

be positive and real, then this puts a constraint on the stability of the fixed point at
r

x 11* −= .

One can easily see that this fixed point is not valid for r less than 1. On the other hand, the
fixed point at 0* =x will always exist as this is independent of the value of r. What about the
stability of these two points? To perform linear stability analysis, we take the derivative of
the equation and evaluate it at the fixed point. This procedure is derived similarly to deriving
the linear stability analysis of continuous systems. Doing this for the system presented yields
the following:

()k
xk

rxr
dx
df −= 1

*

Instead of having limiting value at 0, the limiting value for difference equations is 1 such that

stability is given by the condition 1<
kdx

df . Evaluating the above derivative at 0* =x gives

r
dx
df

xk

=
=0*

. As r is also positive and real, this fixed point is only stable for values of r < 1.

Now we can also evaluate the derivative at
r

x 11* −= . This time we get that

r
dx
df

r
xk

−=
−=

2
11*

. Setting the condition for stability (121 <−<− r), we obtain that this

fixed point is only stable between 1 and 3. As seen in the bifurcation diagram in figure 2.1a,
we indeed see that at r = 3, the behaviour of the system changes to being oscillatory. Using

12

cobweb diagrams, we can gain a greater intuition of what is going on. Cobweb analysis
allows us to visualize the time evolution of the system on the phase plane, similar to looking
at the trajectories of the system.

Figure 2.1b. Cobweb analysis for various values of r.

Up to values of r = 3.3, our analysis from above is confirmed. When r = 0.5, we are in the
regime where the stable fixed point is at 0* =x . For r = 2.8, we see that we have changed to

the regime where the stable fixed point is at 64.011* =−=
r

x . Above the value of r = 3, we

see oscillatory regimes beginning with period 2 (r = 3.3), period 4 (r = 3.5). When r = 3.83,
we see something quite remarkable, a period 3 solution, and when r = 4, the behaviour
becomes chaotic. For r = 3.3, 3.5, and 3.83, the attractor of the system is a limit cycle. If we
look again at the bifurcation diagram close to the 3.83 value (Figure 2.1c), we can see that
this regime is actually a window of periodicity within the chaotic regime.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 0.5

x(t)

x(
t+

1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 2.8

x(t)

x(
t+

1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3.3

x(t)

x(
t+

1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3.5

x(t)

x(
t+

1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 3.83

x(t)

x(
t+

1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r = 4

x(t)

x(
t+

1)

13

Now looking back at r = 3.3, we can clearly see that this is within the period 2 oscillatory
regime, but how can we actually determine the points at which it oscillates? We can make
the assumption that for a period 2 oscillator kk xx =+2 . If we define ()kk xfx =+1 , we can then
define ()()kk xffx =+2 . Then, we only need to find the fixed points of this system to find the
points between which the system oscillates in this regime. We can do this with matlab both
graphically and numerically. The equation we now need to solve for the fixed points is:

() ()()kkkkk xrxxrrxx −−−=+ 1112

We can use the fsolve function to find the values which satisfy kk xx =+2 , which represent our
fixed points. We see that we have 4 fixed points at 0.8236 and ,6970.0 ,4794.0 ,0* =x which
are graphically shown on the phase plane in figure 2.1d below.

We can also consider the stability of these points to see which of the 4 points the system

oscillates between. We now use the criteria ()() 1<
k

k

dx
xfdf to determine if a point is stable or

not. For 0* =x , we obtain that the derivative is 10.89, for 4794.0* =x , the derivative is -
0.29, for 6970.0* =x , the derivative is 1.69, and for 8236.0* =x , the derivative is -0.29.

3.8 3.81 3.82 3.83 3.84 3.85 3.86 3.87
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.1c. Bifurcation diagram close to r = 3.83

r

x(
in

f)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.1d. Phase Plane for Period 2 Regime

x(t)

x(
t+

1)

14

Only the fixed points 4794.0* =x and 8236.0* =x have evaluated derivatives whose
absolute value is less than or equal to 1, and hence these values are the two values the system
oscillates between when r = 3.3. This is shown graphically in figure 2.1b.

What happens when we start to harvest the fish at certain time points such that the equation
now becomes:

() Qxrxx kkk −−=+ 11

In the equation above, Q is the depletion term and is constant for each time step. We can do a
similar analysis to above, except now we fix the value of r to be 4 and see what happens as
we change the parameter Q. The bifurcation diagram for sweeping values of Q is shown
below for values between 0.1 and 0.5 and we can easily see the different regimes which we
saw without the depletion term. However now, we see that the effect of Q is opposite to the
effect of r. With increasing values of Q, we actually move away from the chaotic behaviour
of the system and go into an oscillatory period followed finally by a steady state period,
ultimately dying off when the value of Q goes beyond a certain point (related to the initial
conditions of the system).

Now that we’ve established the bifurcation diagram, we can more carefully look at time
traces for each value of Q in which we are interested in. Below in figure 2.1f, we see the
time evolution of the system as we change the value of Q.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.1e. Bifurcation diagram for Depletion model

Q

x(
in

f)

15

Figure 2.1f. Time evolution of system with various Q values

In figure 2.1f, we clearly see that we progress from chaotic behaviour (Q = 0.1) to a
multiperiod behaviour (Q = 0.15) to a period 2 behaviour (Q = 3) and finally to a period 1
(steady state) behaviour (Q = 0.35).

In terms of operation of the fishery, this means that in all of the regimes, the fish will survive,
given a high enough initial condition (if the initial conditions are set below the value of Q, it
is observed that the fish die out after a period of time). Since a stable fish population is the
most desirable and easiest to control in terms of feeding and caging, we would want to stay in
the period 1 regime, observed above Q values of approximately 0.31. It would be best to not
go into the period 2 oscillatory regime because although it produces predictable behaviour, it
is not desirable to have fish populations which oscillate so dramatically. Since x is a
population density, we also want to maximize the population density while getting a good
yield since it is also costs less to fish when the population density is higher. Looking at the
bifurcation diagram, the best point at which the fishery should be operating in would be
slightly to the right at which the bifurcation occurs to turn the behaviour into a period 2
system (approximately x = 3.1). This allows leeway for in terms of harvesting and maintains
the fish population at a constant level.

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1
Q = 0.1

k

x(
k)

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1
Q = 0.15

k

x(
k)

0 20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75
Q = 0.3

k

x(
k)

0 20 40 60 80 100 120 140 160 180 200
0.6

0.605

0.61

0.615

0.62
Q = 0.35

k

x(
k)

16

Question 2.2: A model for the evolution of a population of genes

We consider the discrete time evolution of a gene in a diploid organism. There are two
alleles, the dominant allele A, and the recessive allele a. In the population, it follows that
there are three genotypes that are possible: AA, Aa, and aa.

We define p and q to be the proportion of A and a alleles in the population, such that p + q =
1 (and hence 1222 =++ pqqp), and it follows that the proportion of AA genotypes is
defined by p2, the proportion of aa genotypes is q2, and the proportion of Aa genotypes is 2pq.
The fitness, or the proportion of each genotype population that survives to the next time step
is given by the following: AAΦ , AaΦ , and aaΦ . From this, we can deduce that the proportion
of A alleles that will be present at the next step in time is given by the formula below.

()

AannaanAAn

AannAAn

n qpqp

qpp
p

Φ+Φ+Φ

Φ+Φ
=+ 2

2
2
1

22

2

1

We can rearrange this formula as follows

AannaanAAn

AannAAn
n qpqp

pppp
Φ−−+Φ+Φ

Φ−+Φ=+)1(
)1(

2222

2

1

()
() ()aaAanAAAanAa

AAAanAan
n qp

ppp
Φ−Φ−Φ−Φ−Φ

Φ−Φ−Φ=+ 22

2

1

Now we let ()
Aa

AAAaK
Φ

Φ−Φ= and ()
Aa

aaAaL
Φ

Φ−Φ= , we note here that since the fitness levels

are bounded between 0 and 1, the values of K and L are also bounded between -1 and 1.

This gives us the following relationship:

22

2

1 1 nn

nn
n LqKp

Kppp
−−

−=+

()
()221 11

1

nn

nn
n pLKp

Kppp
−−−

−=+

To begin to analyze this system, we can first define the fixed points and perform linear
stability analysis on these fixed points. We again set nn pp =+1 and sovle for the value of *

np .

Through matlab or by hand, we can see that there are three fixed points at 0* =np , 1* =np ,

and
LK

Lpn +
=* . We can differentiate the above equation with respect to np and substitute

our fixed points to see if they are stable and when they become unstable.

The matlab code below does this for us nicely.
%Finding the fixed points
syms k l p
xstar = solve('((p*(1-k*p))/(1-k*p^2-l*(1-p)^2))-p','p');

17

%Stability of fixed points
xdiff = diff('((p*(1-k*p))/(1-k*p^2-l*(1-p)^2))','p');

for i = 1:length(xstar)
 stabfp(i) = subs(xdiff,{p},{xstar(i)});
end

For the fixed point 0* =np , we obtain the differential to be
Ldp

df

npn −
=

=
1

1

0*

. Given the

definition of stability for the absolute value of the differential to be less than 1, this means
that the fixed point at 0* =np will only be stable for values of L < 0 and L > 2. Since the
value of L is bounded, this means that this fixed point will only be stable for -1 < L < 0.

For the fixed point 1* =np , we obtain the differential to be
K
K

dp
df

npn −
+=

=
1
1

1*

. With similar

analysis to that done above, we conclude that this fixed point will only be stable for -1 < K <
0.

For the fixed point
LK

Lpn +
=* , the differential is much more complicated, so we can

instead do numerical analysis and scan the values of L and K as shown in figure 2.2a. The
circles correspond to values at which the fixed point should be stable.

However, if we put the condition such that the value of p is bounded between 0 and 1, then

the only values for which the fixed point
LK

Lpn +
=* is stable are those for which both K

and L are positive (upper right quadrant).

With all of the above in mind, we can now split the final behavior of the system into four
categories which correspond to the four quadrants of the Cartesian coordinate system
bounded from -1 to 1 on both the L and K axis. In the upper right quadrant, the fixed point

LK
Lpn +

=* dominates and will be the attractor of the system. In the upper left quadrant, the

fixed point 1* =np dominates and will be the attractor of the system. Similarly, for the lower

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Figure 2.2a

k

l

18

right quadrant, the fixed point 0* =np dominates and will be the attractor of the system given
corresponding values of K and L. In the lower left quadrant, the system depends on the initial
conditions, as seen in the following two cobweb diagrams (figures 2.2b and 2.2c) that
represent the time dynamics of the system.

In term of the allele frequencies of the gene, being in different regimes will yield different
proportions of A and a alleles. In the upper left quadrant, we know that the attractor of the
system is 1* =np , so all of the a alleles will die out leaving A alleles. In the lower right

quadrant, the opposite occurs since 0* =np and all of the A alleles will die out. In the lower
left quadrant (both K and L negative), the final proportion of A will either be 0 or 1,
depending upon the initial conditions of the system as is seen in figures 2.2b and 2.2c. So in
this regime, only one of the alleles will survive, dependent upon the relative fitness of each.
However, we have a unique situation where get a steady proportion of both alleles seen as a
fixed point in figure 2.2b and 2.2c. This point actually corresponds to the fixed point

LK
Lpn +

=* . As is seen in the figures above, this is an unstable fixed point, but still exists

for negative values of L and K. Any small perturbation away from this fixed point will cause
the system to go to either 0 or 1.

In the upper right, we see that the proportion of the different alleles are dependent upon the
values of both K and L, but will not die out as in the previous other two cases. In this

regime, the fixed point
LK

Lpn +
=* is stable and will be the attractor of the system.

Although the other two fixed points are still present, they are unstable and will only exist if
the initial conditions begin there.

In terms of the entire population, when one is at the fixed point 1* =np , only AA genotypes

will be present, when at the fixed point 0* =np , only aa genotypes will be present, and

finally at the fixed point
LK

Lpn +
=* , all the genotypes will be present at amounts depending

upon the relative fitness values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.2b. K = -0.5, L = -0.5, p0 = 0.4

p(n)

p(
n+

1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Figure 2.2c. K = -0.5, L = -0.5, p0 = 0.6

p(n)
p(

n+
1)

