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Advanced Modelling in Biology
Assignment
Question 1.1: Global Optimization of Complex Functions

Local optimization (maximization or minimization) is computationally easy, especially when
functions are convex and don’t have any points of inflection around the point in question.
However, finding global extrema, especially when the function is non-convex and has
shallow minima, this can prove to be computationally much more difficult. We first consider
the following example in the one-dimensional case where u(x) represents our “energy
function” to be minimized.

XT
u(x) = (1 +0.5x — 130.1x2 + 589x3 + 2688x*) + cos (m)

The first method of minimization one can use, and perhaps the easiest, is by simply plotting
the function. Thisisshown infigure 1 below. Although at large values of x the function
seems to be convex, zooming in shows that the function has multiple minima.

Figure 1. Plot of u(x)
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We can observe that there are 7 minimathat we must consider, but we can also use the
derivative of the energy function to determine how many minimathe function hasasis
shown in the code below.

$0btaining the number of minimia
j = 0;
for 1 = 2:length(x)
if (assnlqgl(x(i-1)) < 0) && (assnlgl(x(i)) > 0)
=3+ 1;
else
J o= 3i
end
end

The code above yields 7 places where the derivative (assn1gl.m) changes from being
negative to positive.

We can then utilize the fsolve function to get values of the minima using the approximate
zeros from the code above as guesses. We can then evaluate the energy at each minima and



select the lowest value to give us our global minimum. The fsolve function is an
implementation of the steepest descent method. Although this does not always produce a
convergent solution, having good guesses from our previous code will allow the function to
converge. Furthermore, the benefit of using fsolve instead of relying on just finding when the
gradient goes from a negative value to a positive valueis that it is not dependent on having
small step sizes. Fsolve can take any value around the minima and get the exact value for
you. Thisallowslong programsto run faster since we are minimizing the sampling rate of
the derivative.

$Obtaining the number of minimia & global minimum value
j = 0;
for i = 2:length(x)

if (assnlqgl(x(i-1)) < 0) && (assnlgl(x(i)) > 0)

=3+ 1;
val(j) = fsolve(@assnlgl, x(i-1));
en(j) = metroMC(val(j)); %$metroMC is our energy function
else
o= 3
end
end

$Selecting minimum x value and energy
minEN = 0O;
for 1 = 1:length(val)
if en(i) < minEN
minEN = en (i) ;
minX = val (i) ;
end
end
minEN
minX

This dlightly altered code gives us that the global minimum can be found when x = -0.2767
when the energy valueis-6.7870. To ensure that we are indeed getting the minimum value,
we can plot the results on top of the graph from figure 1. Thisresult isdisplayed in figure 2.

Figure 2. Plot of u(x) with minimum
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One can a'so use ode45 to obtain the value of the global minima. This method works by
integrating the negative gradient of the function with respect to time. This method is
equivalent to standing at an initial condition and always going down the gradient of the
energy function over time, similar to the steepest descent method. However, like the fsolve



method, this does not guarantee that the global minimum isfound. Probably the best we can
do is sample several points and find the minimum energy that is reached.

If we now look to performing the same type of analysis on atwo dimensional problem, this
problem gets more computationally difficult since we have to take into consideration the
minimum value of a surface. Now the function to be minimized is the following:

XTT
u(x,y) = (14 0.5x — 130.1x% + 589x3 + 2688x%) + cos (m)
' s
+ (14 0.5y — 130.1y2 + 589y3 + 2688y*) + cos ()

0.04

However, we can consider the symmetry of our specific problem to simply get that the energy
minimum value will be located at (-0.2767, -0.2767) with avalue of -13.5740, knowing the
results from the previous section. Thisis because the u(x,y) valueis only dependent upon the
sum of x termsand y terms and it is not interdependent. Although this argument might work
for this problem, it cannot be generalized to more complex problems that are not symmetrical.
For these cases, it is not possible to use the fsolve() function in matlab since that is only valid
for one variable.

However, another similar function called fminsearch() is available for usto use which finds
the local minimaof afunction. Thistime, we can again sample various pointson agrid
where we believe the global minimum lies and then save the lowest value and the x value
which givesthat lowest energy. Thisisimplemented in the code below.

%$To do the 2 dimensional minimization

myfunc = @(x) (1+0.5%x(1)-130.1*x (1) "2+589*x (1) "3+2688*x (1) "4+cos(x(1)*pi/0.04)+1+0.5*x(2) -
130.1*x(2)"2+589*x(2) "3+2688*x(2) "4+cos (x(2)*pi/0.04));

xguessvals = -0.4:0.01:0.3;
yguessvals = -0.4:0.01:0.3;
minval = 0;

minx = 0;

for i = 1l:length(xguessvals)

xguess = xguessvals (i) ;
for 1 = 1:length(yguessvals)
yguess = yguessvals (i) ;
[x, fvall = fminsearch(myfunc, [xguess yguess]) ;
if fval < minval
minval = fval;
minx = x;
end
end
end
minval
minx

This method gives us the value of the global minimum quite quickly, but if our spaceistoo
large to sample along a mesh, then we might to obtain the correct value.

To get around this problem, we need to use a heuristic search algorithm such as metropolis
monte carlo or simulated annealing to search for the global minima. Pseudocode for a monte
carlo heuristic search algorithm is shown below.

Pick arandom number in agiven range
Calculate the energy at that value
If new energy < old energy
Accept change
Also accept given probability determined by exp(-dE/KT)
Else



Do not accept change
Decrease the temperature over time
Repeat n times

Running the implementation below for the one dimensional case seemsto work quite well to
find the minima. The implementation pretty much throws many darts and allows changes to
occur given a probability if the energy changeisupward. Thisalowsfor the algorithm to
escape local minima in search of the global minimum. Astemperature decreases even further,
the probability that large variations will be accepted decreases and only small variations in
energy are accepted with successive iterations.

$We want to confine ourselves within a certain window where we know the
$minima lie: -0.5 to 0.5
%Select a random number between -0.5 and 0.5 to initiate the algorithm
xvalue (1) = rand()-0.5;
%Calculate the energy of the point
en(l) = metroMC(xvalue(l)) ;
$Initial Temperature
T = 5;
for i = 2:20000

$Perturb the x value randomly up or down (random walk)

xvaluenew = xvalue(i-1) + randn();

$Clalculate the new energy

ennew = metroMC (xvaluenew) ;

$Accept if energy is less

randnum = rand() ;

if ennew < en(i-1)

en(i) = ennew;
xvalue (i) = xvaluenew;
$Accept sometimes given a probability
elseif randnum < exp (- (ennew-en(i-1))/T)

en(i) = ennew;
xvalue (i) = xvaluenew;
$Otherwise, don't accept the change
else
en(i) = en(i-1);
xvalue (i) = xvalue(i-1);
end
$Decrease temperature slowly to minimize jumpiness
T = T*0.99;

end
Energy = en(length(en))
MinXValue = xvalue (length (xvalue))

We can again visualize the effectiveness of the algorithm by plotting the result on the graph
as shown in figure 3.

Figure 3. Monte Carlo Method Result
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Moving to two dimensions, this becomes slightly more difficult and it takes severa runsto
finally find the minimum. The code is shown below, implementing asimilar algorithm to
above except now our random walk is now in the direction of the gradient asiit is better to
have a directed approach.

%Monte carlo methods on a 2D system

%$Set a random initial guess on the interval -0.5 to 0.5, since we know
$that is where the minima lie

xvalue (1) = rand()-0.5;

yvalue (1) = rand()-0.5;

%$Calculate energy (value of function)
en(l) = metroMC2D(xvalue(1l),yvalue(l));

RT = 10; %$Initial temperature
$Implementation of the Metropolis-Monte Carlo Algorithm
for i = 2:50000
%$Calculate gradient at point
xgrad = assnlqgl (xvalue(i-1));
ygrad = assnlqgl (yvalue(i-1));
$Perturb the point (random walk simulation) on the gradient
randoml = randn() ;
newxval = xvalue(i-1) + xgrad*randoml;
newyval = yvalue(i-1) + ygrad*randoml;
$Evaluate the energy at this random number
newen = metroMC2D (newxval,newyval) ;
randnum = rand() ;
if newen < en(i-1)
en(i) = newen; %Always select if less
xvalue (i) = newxval;
yvalue (i) = newyval;
$Accept with given probability sometimes for increases
elseif randnum < exp (- (newen-en(i-1))/RT)

en(i) = newen;
xvalue (i) = newxval;
yvalue (i) = newyval;
else
en(i) = en(i-1);
xvalue (i) = xvalue(i-1);
yvalue (i) = yvalue(i-1);
end
RT = RT*0.99; %Reduce temperature slowly
end
minxval = xvalue (length (xvalue))
minyval = yvalue (length(yvalue))
MinEn = en(length(en))

The minimum was found to be at the values expected when considering symmetry introduced
earlier. Unfortunately, this method does not work as well for multidimensional problems as
with one dimensional problems perhaps because there isn’t enough iterations or the
temperature is being decreased too quickly. For now, on two dimensional system which you
can visualize, then it is best to use fminsolve, the standard function in matlab.

In general, for an N dimensional system similar to the one we just had, there will be 7"
number of minimathat need to be considered.

Question 1.2: Multivariate Least Squares

The least squares regression method seeks to minimize the error of a curve of n dimensions
with m number of points, where m>n. For alinear regression, we fit the curve to the general
equation:

Yi = ag +aix;



Our m number of points can be generalized to the equation below:

Y1 1 Xq 1 x aq .
y:<:>=ao<5)+a1<:):(f §>(a1)=xA

We can make a prediction to the line goes through the data points with y; values being y,, and
the task now becomes to minimize the error between y; and ;. The mean squared error can
then be defined below.

mse =e'e = (y;— %) (v =)
Substituting j = A and taking the derivative with respect to A, we get that:
VE = —xTy —xTy +2(x"x)a
Setting this equation to zero to find the minimum, we get the relationship:
xTy = (xTx)a
And solving for a, the coefficients of our equation yields:
a=(xTx)"1xTy

To ensure that we have a minimum, we can take the second gradient of the error and see if it
is positive definite:

VZE=2(xTx) =0

Aswe can see, multiplying the transpose of a vector with the vector is equivalent to taking
the squares and this will always be positive. So indeed, we have succeeded in obtaining the
minimum.

In matlab, this can be easily implemented with the code below to find the value of b for
pointsl.dat.

%$Least Squares on one dimension for fit 1
C = cat(2,ones(length(xlvals),1),xlvals);

b = ((transpose(C)*C)”(-1))*transpose (C)*yvals
ycalc = b(1) + b(2)*xlvals;
figure;

plot (xlvals,yvals, 'o',xlvals,ycalc) ;
error = ycalc - yvals;

meansgerr = mean (error.’2)

% or meansgerr = mse (error)

We obtain that the best fit line for the pointsl.dat with the graph shown below
y = 3.7393 + 8.3811x



Figure 4. Linear Least Squares Method for Fit 1
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The mean squared error for this plot comes out to be 5.5609.

Similar, we can calculate the value of ¢ with the other set of pointsin pointsl.dat. We get
that the best fit line and corresponding plot is shown below. The mean squared error for this

plotis5.6367.

y = 3.8845 + 3.2663x

Figure 5. Linear Least Squares Method for Fit 2
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Now we can combine the two independent variables and say that y is dependent on both x;
and x, and perform the linear regression correspondingly. We have to alter the code slightly

to accommodate for this other variable as shown below.

Cl = cat(2,ones(length(xlvals),1),xlvals,x2vals);
Al = ((transpose(Cl)*C1l)”(-1))*transpose (Cl)*yvals

ycalcl = A1(1) + Al(2)*xlvals + Al(3)*x2vals;

errorl = ycalcl - yvals;
meansgerrl = mse (errorl)

And from this, we obtain that the best fit lineis:

y = 0.0329 + 8.0221x, + 3.1245x,



The corresponding mean squared error is 0.2654, which is much lower than any of the one-
dimensional fitsthat we attempted. This suggests that both are principle components to the
problem and both are required properly describe the data. We should remember that when
we ignored one of the variables to perform the one-dimensional fit, we were taking the
projection of the data along that plane. Now that we have another dimension, we can more
accurately describe the data using two-dimensions.

The same methods can be applied to points2.dat. We have found the best fit line and have
plotted the points and best fit line below. The mean squared error for this univariatefit is
0.3697.

y = 0.0005 + 15.9095x,

Figure 5. Linear Least Squares For Points2 Fit 1
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For the second set of x values, we have aso found the best fit line and plot. The mean
sgquared value for this set is 0.3697.

y = 0.1030 + 6.2733x,

Figure 6. Linear Least Squares For Points2 Fit 2
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And now taking both x; and X, into consideration, we obtain that the best fit equation. The
mean squared error thistime is 0.2656.

y = 0.0127 + 7.9949x, + 3.1516x,

Compared to the analysis on pointsl.dat, there is not a significant decrease in mean squared
error when using a multivariate regression. We can get afurther insight into this by plotting
x1 vs x2 for each of the pointsl and points2 and these are shown in figures 7 and 8.



Figure 7. Plot of x1 vs x2 values for points1 Figure 8. Plot of x1 vs x2 values for Points2
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Asis seenin the above figures (7 and 8), in pointsl, the values of x1 and x2 do not show any
correlation and thisis confirmed when we get alarge decrease in the mean squared error
when we take into account both independent variables x1 and X2. In comparison, we can see
in figure 8 that x1 and x2 are highly correlated. Because of this, we do not see a greater
reduction in the mean squared error since either x1 depends on x2 or vice versa already.
Thus, only one variable is necessary to explain the behavior of y in the system.

If we perform the singular value decomposition of the matrix with all of our data (not
assuming any dependence rel ationships between any of the variables), we can hopefully gain
a better understanding of what we see in the data and plots above. The singular values are
just the eigenvalues of the covariance matrix.

To do this, we first subtract the mean value for our data sets. Then we calculate the
eigenvalues and eigenvectors of the covariance matrix. For points 1, the corresponding
eigenvalues and eigenvectors of the data are:

vV =

-0.9304 0.3617 0.0593
-0.3492 -0.9239 0.1561
0.1113 0.1245 0.9860

D =
0.0034 0 0
0 0.3008 0
0 0 11.7707

And for points 2, the corresponding eigenvalues and eigenvectors of the data are:

vV =

0.9815 0.1814 0.0609
-0.1888 0.9698 0.1546
-0.0311 -0.1632 0.9861

D =
0.0011 0 0
0 0.0093 0
0 0 22.1716

From the data above, we can see that there are two larger principal components in points 1
than in points 2 meaning that we could potentially discard 2 variables in points 2 but only one
variable in points 1. Looking at the plot above, we recall that for points 1, x1 and x2 were
not well correlated and the points were on the plane. Furthermore, by adding in both x1 and



X2 into the least squares linear fit, we were able to get a significant decrease in the mean
squared error. This meansthat it is not possible to discard 2 of the variables to describe the
data, but can only discard one of the variables, confirmed by our principal component
analysis. In points2, we recall that x1 and x2 were generally very well correlated and hence
we didn’'t get a decrease in the mean squared error when we used both x1 and x2 to do our
least squaresfit. Thefact that we got similar mean squared errors shows that we can discard
two unnecessary variables in our data as confirmed by our principal component analysis.

Question 2.1: A numerical exploration of the logistic map

In this problem, we consider afishery whose population can be described by the difference
equation shown below. In the equation, we have that the population at the next time step is
dependent upon the population at the previous time step but is limited by the resources and so
thus cannot have a population density greater than 1.

X = % (1= %)

The main parameter that is adjustable isthe value of r, or the effective rate at which the
population grows when not limited. We set the value of r to only lie between the values of O
and 4. Whenr =0, the population dies out at the next time step since there is no growth.
Intuitively, we can also see that if the growth rateislessthat 1, this means that there is not
enough species going to the next time step and the population will eventually decrease to zero.
But what happens at other values of r? To investigate this, we can first plot the bifurcation
diagram with values of r versus values as x approaches infinity, x_. Sinceit isnot

computationally practical to actually obtain the value at infinity, we assume that the system
will reach a steady state (if it ever reaches a steady state) at time step 1000. Graphical
anaysis has shown that the system can oscillate between different points, so to ensure that we
have sampled enough time points to get all values x oscillates through, we take the last 200
time points from 800 to 1000. Below in figure 2.1ais the bifurcation diagram of the system
along with the code used to produce the diagram.

Figure 2.1a. Bifurcation diagram for difference equation
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:0.01:4;
ength (rvals)
r = 1s(3);
x(j,1) = 0.5;
for i = 2:1000
x(j,1) = r*x(j,1i-1)*(1-x(j,1i-1));
end
end

rvals
for j

=0.1
= 1:1
rva
)

figure;

plot (rvals,x(:,800:1000))

axis ([0 4 0 1])

title('Figure 2.la. Bifurcation diagram for difference equation');
xlabel ('r'); ylabel ('x(inf)');

In figure 2.1a, we can see that the fixed point begins to move away from 0 as we increase the
value of r and we observe different regimes of behaviour in the system. Atr = 3, the system
begins to oscillate between two fixed points (period 2) and as we increase r further past about
3.5, the system oscillates between 4 fixed points (period 4) and becomes chaotic soon after.
This effect is known as period doubling. Even though it is not possible to see this or chaotic
behaviour in one dimensional continuous systems, this effect is clearly seen in this seemingly
simple one dimensional discrete system.

We can explore the function more analytically by finding the fixed points and performing
stability analysis, similar to what we did with continuous systems last term. However to find

the fixed pointsin discrete systems, we set x,,, = x, and solve for the valuesof x . Doing

this, we get that the fixed pointsareat X =0 and X’ :1—3. If we constrain the value of x to
r

be positive and real, then this puts a constraint on the stability of the fixed point at X =1— % .

One can easily see that thisfixed point is not valid for r lessthan 1. On the other hand, the
fixed point at X =0 will always exist as thisisindependent of the value of r. What about the
stability of these two points? To perform linear stability analysis, we take the derivative of
the equation and evaluate it at the fixed point. This procedure is derived similarly to deriving
the linear stability analysis of continuous systems. Doing this for the system presented yields
the following:

o rd—rx)

Instead of having limiting value at O, the limiting value for difference equationsis 1 such that

stability is given by the condition df <1. Evaluating the above derivativeat X =0 gives

dx,

o
dx,

Now we can also evaluate the derivative at X’ :1—2. Thistime we get that
r

=r. Asrisaso positive and rea, thisfixed point is only stable for valuesof r < 1.

X =0

dt
dx,
fixed point is only stable between 1 and 3. Asseen in the bifurcation diagramin figure 2.1a,
we indeed see that at r = 3, the behaviour of the system changesto being oscillatory. Using

=2-r . Setting the condition for stability (—1<2—r <1), we obtain that this

Kot
r

11



cobweb diagrams, we can gain agreater intuition of what is going on. Cobweb anaysis
allows usto visualize the time evolution of the system on the phase plane, similar to looking
at the tragjectories of the system.
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Figure 2.1b. Cobweb analysisfor various values of r.

Up to values of r = 3.3, our analysis from above is confirmed. Whenr = 0.5, we arein the

regime where the stable fixed point isat X =0. For r = 2.8, we see that we have changed to

the regime where the stable fixed point isat x =1—l =0.64. Abovethevaueof r = 3, we

r

see oscillatory regimes beginning with period 2 (r = 3.3), period 4 (r = 3.5). Whenr = 3.83,
we see something quite remarkable, a period 3 solution, and when r = 4, the behaviour
becomes chaotic. For r = 3.3, 3.5, and 3.83, the attractor of the system isalimit cycle. If we
look again at the bifurcation diagram close to the 3.83 value (Figure 2.1c), we can see that
thisregimeis actually awindow of periodicity within the chaotic regime.
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Figure 2.1c. Bifurcation diagram close to r = 3.83
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Now looking back at r = 3.3, we can clearly see that thisiswithin the period 2 oscillatory
regime, but how can we actually determine the points at which it oscillates? We can make
the assumption that for a period 2 oscillator X, ., = X, . If we definex, ., = f(x, ), we can then

define x,, = f(f(x)). Then, we only need to find the fixed points of this system to find the

points between which the system oscillates in thisregime. We can do this with matlab both
graphically and numerically. The equation we now need to solve for the fixed pointsis:

Xero = M1 (1= X )AL= 1% (1- %))

We can use the fsolve function to find the values which satisfy X, ., = X, which represent our

fixed points. We see that we have 4 fixed pointsat X =0, 0.4794, 0.6970, and 0.8236 which
are graphically shown on the phase planein figure 2.1d below.

Figure 2.1d. Phase Plane for Period 2 Regime
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We can also consider the stability of these points to see which of the 4 points the system
df (f (%)
dx,
not. For X =0, we obtain that the derivativeis 10.89, for X =0.4794, the derivativeis-

0.29, for X =0.6970, the derivativeis 1.69, and for X = 0.8236, the derivativeis-0.29.

oscillates between. We now use the criteria <1 to determineif apoint is stable or
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Only the fixed points X =0.4794 and X =0.8236 have evaluated derivatives whose
absolute valueisless than or equal to 1, and hence these values are the two values the system
oscillates between whenr = 3.3. Thisis shown graphically in figure 2.1b.

What happens when we start to harvest the fish at certain time points such that the equation
now becomes:

X1 =% (1% )-Q

In the equation above, Q is the depletion term and is constant for each time step. We cando a
similar analysisto above, except now we fix the value of r to be 4 and see what happens as
we change the parameter Q. The bifurcation diagram for sweeping values of Q is shown
below for values between 0.1 and 0.5 and we can easily see the different regimes which we
saw without the depletion term. However now, we see that the effect of Q is opposite to the
effect of r. With increasing values of Q, we actually move away from the chaotic behaviour
of the system and go into an oscillatory period followed finally by a steady state period,
ultimately dying off when the value of Q goes beyond a certain point (related to the initial
conditions of the system).

Figure 2.1e. Bifurcation diagram for Depletion model
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Now that we' ve established the bifurcation diagram, we can more carefully ook at time
traces for each value of Q in which we areinterested in. Below in figure 2.1f, we see the
time evolution of the system as we change the value of Q.
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Figure 2.1f. Time evolution of system with various Q values

In figure 2.1f, we clearly see that we progress from chaotic behaviour (Q =0.1) to a
multiperiod behaviour (Q = 0.15) to a period 2 behaviour (Q = 3) and finally to a period 1
(steady state) behaviour (Q = 0.35).

In terms of operation of the fishery, this meansthat in all of the regimes, the fish will survive,
given ahigh enough initial condition (if the initial conditions are set below the value of Q, it
is observed that the fish die out after a period of time). Since a stable fish population is the
most desirable and easiest to control in terms of feeding and caging, we would want to stay in
the period 1 regime, observed above Q values of approximately 0.31. It would be best to not
go into the period 2 oscillatory regime because although it produces predictable behaviour, it
is not desirable to have fish populations which oscillate so dramatically. Sincexisa
population density, we also want to maximize the population density while getting a good
yield sinceit is also costs less to fish when the population density is higher. Looking at the
bifurcation diagram, the best point at which the fishery should be operating in would be
dlightly to the right at which the bifurcation occurs to turn the behaviour into a period 2
system (approximately x = 3.1). Thisalows leeway for in terms of harvesting and maintains
the fish population at a constant level.
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Question 2.2: A model for the evolution of a population of genes

We consider the discrete time evolution of agenein adiploid organism. There are two
alleles, the dominant allele A, and the recessive allele a. In the population, it follows that
there are three genotypes that are possible: AA, Aa, and aa.

We define p and g to be the proportion of A and aalelesin the population, suchthat p+ q=
1 (and hence p®+q° +2pg=1), and it follows that the proportion of AA genotypesis

defined by p? the proportion of aa genotypesis g7, and the proportion of Aa genotypesis 2pg.
The fitness, or the proportion of each genotype population that survives to the next time step
isgiven by thefollowing: ®,,,®,,,and®_ . From this, we can deduce that the proportion

of A alelesthat will be present at the next step in timeis given by the formula below.

2

1
pn cI)AA + 5(2 pnqnq)Aa)
pnzq)AA + qnzq)aa + 2pnqnq)Aa

Pria =

We can rearrange this formula as follows

pnzq)AA + pn (1_ pn)q)Aa
pnzq)AA + qnz(baa + (1_ pn2 - an)CDAa

pn+l =

pnq)Aa - pnz(q)Aa _q)AA)
cDAa - an(CDAa _q)AA)_qnz(cDAa _q)aa)

pn+l =

(q)Aa_q)AA> and L = ((I)Aa_q)aa)

Now welet K = , we note here that since the fitness levels

Aa Aa
are bounded between 0 and 1, the values of K and L are also bounded between -1 and 1.

This gives us the following relationship:

P, — Kpn2
pn+l = 2 2
1- Kpn - LQn
1-K
pn+1 = pn ( pn )

1- Kpn2 - L(l_ P, )2
To begin to analyze this system, we can first define the fixed points and perform linear

stability analysis on these fixed points. We again set p,., = p,, and sovle for the value of pn* .
Through matlab or by hand, we can see that there are three fixed pointsat p, =0, p, =1,

and pn* = ﬁ . We can differentiate the above equation with respect to p,, and substitute

our fixed pointsto seeif they are stable and when they become unstable.

The matlab code below does thisfor us nicely.

$Finding the fixed points
syms k 1 p
xstar = solve(' ((p*(1-k*p))/(1-k*p*2-1*(1-p)~2))-p','p");
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%$Stability of fixed points
xdiff = diff (' ((p*(1-k*p))/(1-k*p*2-1*(1-p)~2))"','p");

for i = 1l:length(xstar)

stabfp (i) = subs(xdiff, {p}, {xstar(i)});
end

For the fixed point p, =0, we obtain the differentia to be dr

dp,| -

n WIO
definition of stability for the absolute value of the differentia to be less than 1, this means
that the fixed point at pn* =0will only be stable for valuesof L <0 and L > 2. Sincethe
value of L is bounded, this means that this fixed point will only be stable for -1 <L <O0.

:LL. Given the

For the fixed point pn* =1, we obtain the differential to be dr

Pn

_1+K
o 1=K

analysisto that done above, we conclude that this fixed point will only be stable for -1 < K <
0.

. With similar

For the fixed point p, = ﬁ , the differential is much more complicated, so we can

instead do numerical analysis and scan the values of L and K as shown in figure 2.2a. The
circles correspond to values at which the fixed point should be stable.
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However, if we put the condition such that the value of p is bounded between 0 and 1, then

the only values for which the fixed point pn* =% L C is stable are those for which both K
+
and L are positive (upper right quadrant).

With all of the above in mind, we can now split the final behavior of the system into four
categories which correspond to the four quadrants of the Cartesian coordinate system
bounded from -1 to 1 on both the L and K axis. In the upper right quadrant, the fixed point

pn* = ﬁ dominates and will be the attractor of the system. In the upper left quadrant, the

fixed point p, =1 dominates and will be the attractor of the system. Similarly, for the lower
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right quadrant, the fixed point p, =0 dominates and will be the attractor of the system given

corresponding values of K and L. In the lower left quadrant, the system depends on the initial
conditions, as seen in the following two cobweb diagrams (figures 2.2b and 2.2c) that
represent the time dynamics of the system.

Figure 2.2b. K = -0.5, L = -0.5, p0 = 0.4 Figure 2.2c. K= -0.5, L = -0.5, p0 = 0.6
T T T T T T T T T T
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In term of the allele frequencies of the gene, being in different regimes will yield different
proportions of A and aalleles. In the upper left quadrant, we know that the attractor of the

systemis p, =1, soal of theaalleleswill die out leaving A dleles. Inthe lower right

guadrant, the opposite occurs since pn* =0 and all of the A aleleswill dieout. Inthelower

left quadrant (both K and L negative), the final proportion of A will either be O or 1,
depending upon theinitial conditions of the system asis seenin figures 2.2b and 2.2c. Soin
thisregime, only one of the alleles will survive, dependent upon the relative fitness of each.
However, we have a unique situation where get a steady proportion of both alleles seen asa
fixed point in figure 2.2b and 2.2c. This point actually corresponds to the fixed point

P, =

K+L
for negative values of L and K. Any small perturbation away from this fixed point will cause
the system to go to either O or 1.

. Asisseeninthe figures above, thisis an unstable fixed point, but still exists

In the upper right, we see that the proportion of the different alleles are dependent upon the
values of both K and L, but will not die out asin the previous other two cases. Inthis

regime, the fixed point p, = " L i is stable and will be the attractor of the system.
+

Although the other two fixed points are still present, they are unstable and will only exist if
the initial conditions begin there.

In terms of the entire population, when oneis at the fixed point p. =1, only AA genotypes

will be present, when at the fixed point pn* =0, only aa genotypes will be present, and
finally at the fixed point pn* = ﬁ , al the genotypes will be present at amounts depending

upon the relative fitness values.

18



