Modeling biomolecular site dynamics in immunoreceptor signaling systems
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Abstract

The immune system plays a central role in human health. The activities of immune cells, whether
defending an organism from disease or triggering a pathological condition such as autoimmunity,
are driven by systems of molecular machinery. To understand this machinery, we are interested in
a systems biology approach that parallels approaches used to engineer manmade machines, one
that involves computational modeling based on empirical mechanistic knowledge and integrated
experimental efforts to test model predictions and to quantify key parameters of system behavior.
Decades of experimentation have elucidated many of the biomolecules and interactions involved
in immune signaling. Recently developed technologies are providing new quantitative information
about these processes and inviting us to explore a new horizon of systems-level understanding,
such as the dynamical aspects of biomolecular interaction networks responsible for information
processing and decision-making in immune cells. It is important for modeling methods to keep
pace with experimental advances. In this chapter, we focus on the dynamic, site-specific, and
context-dependent nature of interactions in immunoreceptor signaling (i.e., the biomolecular site
dynamics of immunoreceptor signaling), the challenges associated with capturing these details in
computational models, and how these challenges have been met through use of a rule-based
modeling approach. Focusing on models for signaling processes that involve the B-cell antigen
receptor (BCR) and the linker for activation of T cells (LAT), we discuss how the rule-based
modeling approach can capture multi-site phosphorylation and multivalent binding interactions
responsible for formation of signaling complexes. We propose that novel questions about
biomolecular site dynamics can now be asked because of newly developed rule-based modeling

capabilities and complementary experimental capabilities.



Introduction

Immune cells must process information about their changing environment to respond to
signs of damage and infection. These cells possess surface receptors that bind extracellular ligands
and initiate intracellular signaling, with information propagating through complex networks of
molecular interactions. Dysregulation of these networks, and resulting dysregulation of immune
responses, can lead to pathological conditions such as allergies, asthma, and autoimmunity. Thus,
an understanding of signaling in immune cells is needed for improved understanding and
treatment of disease. The complexity of cell signaling challenges intuition, but computational
modeling offers the possibility of expanding our reasoning capabilities to obtain a predictive
understanding of how immune cells respond to stimuli (Germain et al.,, 2011; Chakraborty and
Das, 2010).

Intracellular signals are propagated through enzyme-catalyzed reactions and noncovalent
interactions, which are mediated by specific sites within biomolecules, which tend to each contain
multiple functional components or sites. Examples of biomolecular sites involved in cell signaling
include tyrosine residues that undergo phosphorylation, SH3 and proline-rich motifs that interact
with one another, and PH domains that bind phospholipids. The outcomes of biomolecular
interactions are changes in population levels of chemical species (e.g., multimolecular complexes
and protein phosphoforms). The biomolecular site dynamics of cell signaling are governed by the
same laws of physics and chemistry that govern chemical reaction kinetics (Kholodenko, 2006).
Chemical reaction kinetics have long been modeled through the formalism of ordinary differential
equations (ODEs). Use of ODE models is widespread in systems biology (Hucka et al., 2003; Le
Novere et al., 2005; 2006) and has yielded useful insights (Kreeger and Lauffenburger, 2010).

However, formulation of an ODE model depends on availability of a reaction network, for which



one must enumerate all species that can be populated, and make definite statements about how
these species are connected and influence each other. In the case of cell signaling systems, this
requirement can become a significant obstacle to model specification. This difficulty arises from
the multisite structures of biomolecules.

As an example, let us consider the T-cell receptor (TCR)/CD3 complex. This receptor
contains 10 immunoreceptor tyrosine-based activation motifs (ITAMs) (Cambier, 1995), each of
which contains two tyrosine residues. Each of the 20 ITAM tyrosine residues has two possible
states: phosphorylated or unphosphorylated. As a result, the TCR/CD3 complex has accessible to it
220 =1 million possible phosphorylation states. Without quantitative characterization of
phosphorylation kinetics, the exact phosphoform of a given receptor at a given time cannot be
narrowed through logical reasoning alone to less than 1 million possible phosphoforms. A reaction
network capturing the full spectrum of TCR phosphoforms would contain 1 million (chemical
species) nodes, corresponding to 1 million ODEs, which would be impractical to specify. Thus,
despite a wealth of information available about this receptor and proteins associated with it,
specifying a reaction network that fully captures the possible consequences of known protein
interactions and modifications is a challenge. Even if the populated chemical species and active
chemical reactions could be identified within an experimental system to narrow the scope of
modeling, any changes of the system, such as protein copy number variations, could alter the
populated chemical species and active chemical reactions. Thus, traditional modeling approaches
are problematic when one is interested in the site-specific dynamics of a biomolecular interaction
network, i.e., biomolecular site dynamics.

The problem is not that biomolecular site dynamics cannot be modeled but rather that

available mechanistic knowledge is difficult to translate into a traditional model form. Arising



more naturally from available mechanistic knowledge of cell signaling is a view that leverages the
modular, multisite nature of proteins and other biomolecules. This view is the rule-based
perspective, in which interactions between sites of binding partners are taken to be modular,
meaning somewhat independent of molecular context. An interaction is modular if a rule can be
specified to represent the interaction (i.e., to define when the interaction occurs and with what
rate) and the rule does not completely define the reactants. For example, if ligand-receptor
binding is independent of receptor phosphorylation, then the interaction is modular. A rule can be
specified for ligand-receptor binding that is agnostic with respect to receptor phosphorylation
status. Rule-based modeling allows the translation of mechanistic knowledge into computational
models consistent with chemical reaction kinetics. Because an interaction can be represented
without complete knowledge of the participating reactants, there is no need to specify a reaction
network, which eliminates a major barrier to modeling of biomolecular site dynamics.

A rule concisely describes the necessary and sufficient conditions required of reactants for
areaction to occur. A rule-based model captures the same chemical kinetics as an ODE-based
model (up to assumptions of modularity, which may be relaxed as needed to accommodate
empirical observations), while permitting simulation of chemical kinetics without pre-generation
of a reaction network. This method has been reviewed in detail elsewhere (Hlavacek et al., 2006;
Hlavacek, 2011; Chylek et al.,, 2012) and comprehensive guides to rule-based modeling software
tools are available (Faeder et al,, 2009; Smith et al., 2012). Here, rather than reviewing the method,
we review how this approach has been used to study biomolecular site dynamics of
immunoreceptor signaling systems

These systems are characterized by at least two mechanisms that, as we will discuss, the

rule-based approach is well-suited to capture: aggregation (or multivalent binding) and multi-site



phosphorylation. Aggregation of receptors is induced by interactions with multivalent ligands, and
serves to initiate signaling (Metzger, 1992; Dintzis et al.,, 1976; 1983). Following aggregation of the
IgE receptor (FceRI), for example, the first biochemically detectable event in intracellular signaling
is multi-site phosphorylation of receptor ITAMs. Each of these motifs contains two canonical
tyrosine residues that, when phosphorylated, serve as docking sites for SH2 domains of Src- and
Syk-family kinases, which trigger subsequent signaling events. Aggregation reemerges in the
cytoplasm, as signaling complexes assemble through multivalent interactions of
scaffold/adaptor/linker proteins (Houtman et al.,, 2006). Aspects of these complex processes have
been formalized, simulated, and analyzed in the example models that we will discuss in this

review.

Comparison of modeling assumptions

An ODE model is specified by making statements about how concentrations of chemical
species change with time. Thus, a modeler is steered towards making assumptions about which
species can be populated. These assumptions must sometimes be ad hoc, and may be at odds with
available data. For example, the number of phosphorylation states of a TCR/CD3 complex could be
reduced through a “virtual phosphorylation site” assumption, as it has been called in a study of
ErbB receptor signaling by Birtwistle et al. (2007). Under this assumption, multiple ITAM tyrosine
residues would be treated as a single site. This assumption would be serviceable for some
purposes, such as a model that aims to elucidate how overall features of TCR signaling are affected
by ligand-receptor binding kinetics (Lipniacki et al., 2008). However, if a modeler aimed to
investigate the dependence of signaling events on the number or identity of specific ITAMs, a

question that has been investigated experimentally (Holst et al., 2008), a virtual phosphorylation



site assumption would be limiting. A virtual phosphorylation site could also be problematic in
cases where different phosphotyrosines interact with different binding partners, as is the case for
the linker for activation of T cells (LAT), because if multiple sites are treated as one, a false
competition between binding partners may arise.

In contrast, a rule-based model is specified by making statements about site-specific
requirements that must be met by reactants for a reaction to occur. A modeler is then steered
towards making assumptions about the modularity or cooperativity of interactions. Which set of
assumptions is preferable depends on what type of information is available. Given that signaling
proteins are generally composed of modular domains (Pawson and Nash, 2003), specification of a
model in the form of rules is often more efficient than specification in the form of ODEs. However,
the two approaches are complementary, mirroring alternate modeling formalisms that are found

in other fields (e.g., use of Lagrangian and Eulerian coordinates in fluid dynamics).

Summary of recent modeling work

The rule-based modeling approach has been used to investigate a number of biological
systems. In Table 1 we summarize recent applications aimed at understanding immune signaling,
and in Table 2, we summarize applications aimed at understanding other types of cell signaling
systems, as well as general mechanisms of cell signaling. We consider only applications from 2007
to present; earlier applications have been reviewed elsewhere (Hlavacek et al., 2006). It is worth
noting that the rule-based approach, although developed for and most commonly used for
modeling of cell signaling systems, has been used to model other processes, such as metabolism
(Mu et al,, 2007; Faulon, 2010), viral capsid assembly (Jamalyaria et al., 2005; Zhang et al., 2005),

and labor market dynamics (Khiin and Hillmann, 2010). A number of software tools for rule-based



modeling are available (Faeder et al., 2009; Moraru et al., 2008; Mallavarapu et al., 2009; Lok et al,,
2005; Lis et al., 2009; Colvin et al.,, 2009; Colvin et al., 2010; Sneddon et al,, 2011; Xu et al., 2011;
Clarke et al, 2008; Ollivier et al, 2010, Gruenert et al., 2010; Smith et al, 2012, Meier-
Schellersheim et al., 2006; Angermann et al., 2012; Feret and Krivine, 2012; Andrews et al., 2010).
In addition, a number of rule-based models have been developed as demonstrations in
methodological work. For example, to demonstrate use of a model visualization tool, a rule-based
model of the MAP kinase signaling network in yeast was developed, with all parameter values set
to 1 (Tiger et al,, 2012).
[Table 1 here]
[Table 2 here]
Modeling of LAT aggregation

In Tables 1 and 2, we list several examples of applications of rule-based modeling. We will
now discuss one topic in detail: interactions of the linker protein LAT. This protein is subject to
multi-site phosphorylation and forms aggregates with other signaling proteins through
multivalent interactions, exemplifying two processes commonly found in immunoreceptor
signaling. We will discuss a series of recently developed models for investigation of LAT
aggregation. These models were obtained through traditional modeling methods and rule-based
modeling, which provides an opportunity to highlight differences in model specification and the
type of information that can be gained from the different approaches.

LAT is a transmembrane protein that undergoes multi-site phosphorylation following
stimulation of immunoreceptor signaling. Its four distal tyrosine residues have well-characterized
roles as binding sites for SH2 domains of other signaling proteins. One of these proteins is Grb2,

whose SH2 domain can bind phosphorylated tyrosines 171, 191 and 226 in LAT. Grb2 also



contains a pair of SH3 domains, which interact with proline-rich sequences in SOS1. The presence
of at least four proline-rich sequences in SOS1 allow it to cross-link two Grb2 molecules. In this
way, aggregates of LAT-Grb2-SOS1 can form. LAT aggregation has been observed following
stimulation of T cells (Bunnell et al,, 2002) and mast cells (Wilson et al.,, 2001), and the Grb2
binding sites in LAT are required for this process (Houtman et al., 2006). Expression of a SOS1
proline-rich region that can bind only one Grb2 molecule inhibits LAT aggregation and attenuates
downstream signaling events, including calcium mobilization (Houtman et al, 2006). These
results indicate that LAT’s capacity to aggregate is relevant for its physiological function.

The valency of LAT for Grb2 can vary from zero to three, and depends on how many LAT
tyrosine residues are phosphorylated. Thus, aggregation of LAT is influenced by its
phosphorylation state. This dependence has been explored quantitatively by Goldstein and co-
workers, using a combination of equilibrium theory borrowed from polymer chemistry, and rule-
based modeling.

[Fig 1 here]

Nag et al. (2009) formulated an equilibrium continuum model to compare aggregation of
bivalent LAT vs. trivalent LAT. The molecules and interactions considered in the model are
illustrated in Fig. 1. The equilibrium model predicted that an increase in valency from two to three
leads to a dramatic increase in average LAT aggregate size. For a homogenous population of
trivalent LAT, a sol-gel coexistence region is predicted if concentrations of LAT, Grb2, and SOS1
are within certain ranges. The following equation was derived for the fraction of LAT molecules in
the gel, which is a super aggregate, containing a significant fraction of all LAT present in

equilibrium with unclustered LAT and small LAT aggregates:
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where s is the fractional concentration of free SOS1 and o is a negative cooperativity factor. The
parameter fis given by the following equation:

B=K,G2K, K. GS+20K ;K. G’S (2)

where Kg. is the solution equilibrium constant for Grb2 binding to LAT, Kgs is the solution
equilibrium constant for Grb2 binding to free SOS1, G is the cytosolic concentration of Grb2 free of
SOS1, and S is the cytosolic concentration of SOS1 free of Grb2. The nondimensional parameters a,
X W and @ are defined as follows:

a=3Kal,; x=K,G, (3)

u=2K;S;; 0=K;G; (4)

where K. is the surface equilibrium cross-linking constant for membrane-associated Grb2
binding to LAT at the end of a chain, and Gr, Lt, and St are the total concentrations of Grb2, LAT,
and SOS1, respectively.

The equilibrium relations given above were found by enumerating all possible complexes
of LAT, Grb2, and SOS1, with the exception of cyclic aggregates. Enumeration of these complexes
requires insights from the field of branching processes, because binding of trivalent LAT to three
Grb2 molecules can form linear chains and tree-like networks. A statistical weight (relative
concentration) is assigned to each complex. These weights enter into a partition function, which is
a convergent infinite sum that can be reduced to an algebraic expression. The partition function
can be used to obtain conservations laws for each molecule in the system, from which one can
calculate the free concentrations of these molecules as well as concentrations of other species. The

terms of the partition function are obtained by assuming detailed balance, which holds under
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equilibrium conditions. Thus, the model is silent about reaction kinetics. An ODE model for the
chemical kinetics of this system cannot be feasibly specified because of the large number of
distinct chemical species that can be populated (Yang et al., 2008). The equilibrium model is
analogous to an earlier model for binding of a trivalent ligand to a bivalent cell-surface receptor
(Goldstein and Perelson, 1984), and can be thought of as a model for binding of a soluble cytosolic
bivalent ligand (Grb2-SOS1-Grb2) to a trivalent membrane receptor (LAT).

The equilibrium model of Nag et al. (2009) is exact in the continuum limit, i.e., for a system
of infinite size. However, a cell is of finite size. To evaluate the effect of finite system size, a rule-
based model was developed and simulated (to steady state), and its predictions were compared to
those of the equilibrium model. The rules of the model are presented in Fig. 2, and the model was
simulated using a network-free simulation method (Yang et al., 2008). At the time at which the
model was developed, problem-specific code was required to perform network-free simulation.
General-purpose network-free simulators have since become available (Colvin et al., 2009; Colvin
et al, 2010; Sneddon et al., 2011). Steady-state results obtained from the rule-based model were
found to be consistent with the equilibrium model. Information equivalent to Eq. 1 can be
obtained by simulating the rule-based model to steady state and calculating the fraction of LAT
molecules in the largest aggregate. The rule-based model is analogous to other rule-based models
for ligand-induced receptor aggregation that have recently been studied (Yang et al., 2008; Monine
etal., 2010).

Although Nag et al. (2009) focused on equilibrium behavior, their rule-based model
enables study of the kinetics of aggregation, which are not captured in their equilibrium model.
Kinetics of aggregation of multivalent binding partners have been modeled using traditional

modeling methods (e.g., ODEs) by restricting the scope of the model to consideration of, for
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example, only ligand states (Perelson and DeLisi, 1980); consideration of the full range of possible
complexes requires a rule-based approach. In addition, a rule-based approach allows cyclic
aggregates to be considered, as demonstrated by Monine et al. (2010). The approach of Perelson
and DeLisi (1988) becomes unwieldy when cyclic aggregates, or rings, can form (Posner et al,,
1995).

[Fig 2 here]

A second set of models related to LAT aggregation has recently been used by Nag et al.
(2012) to evaluate the robustness of their earlier predictions. Rather than assuming a
homogenous population of trivalent or bivalent LAT, a mixed population of trivalent, bivalent, and
monovalent LAT was assumed. Monovalent LAT blocks aggregate growth, and bivalent LAT
prevents branching. It was found that the presence of monovalent and bivalent LAT reduced the
size of the sol-gel coexistence region in parameter space. Consideration of varying valency is
important, because a distribution of LAT phosphoforms is likely to be found in cells. This
distribution could shift as signaling progresses because of different kinetics of phosphorylation at

different sites (Houtman et al., 2005), which we discuss in more detail below.

Modeling early events in BCR signaling

The rule-based approach has also been applied to study of early events in BCR signaling
(Barua et al., 2012). A rule-based model was used to study the roles of two related but distinct Src-
family kinases: Lyn and Fyn. These kinases are involved in interlocked positive and negative
feedback loops. Positive feedback arises as receptor ITAMs are phosphorylated, generating
binding sites for Lyn, Fyn, and Syk. Negative feedback arises as the adaptor protein PAG is

phosphorylated. Phosphotyrosines in PAG recruit Csk, a kinase that phosphorylates Lyn and Fyn
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at negative regulatory sites. By incorporating available mechanistic knowledge into a rule-based
model capturing the interactions of the receptor (BCR), Lyn, Fyn, Syk, Csk, and PAG, the site
dynamics of this system were explored, and the effects of perturbations (e.g., protein knockdown
and overexpression) were evaluated. It was found that oscillations in Syk activity could arise for
certain ranges of the stimulatory signal, and for certain expression levels of Lyn and Fyn. It was
also found that bistability could arise in cells lacking Lyn or Csk. These results represent model

predictions that are experimentally testable.

Integration with experimentation

Development of detailed computational models is justified by availability of detailed
experimental data. Emerging technologies have enabled examination of site-specific aspects of cell
signaling, in some cases at the single-molecule level. Insights and questions derived from these
studies motivate modeling efforts to capture a comparable level of detail.

In the case of LAT, site-specific antibodies have been used to monitor phosphorylation
kinetics of tyrosine residues 132 and 191 following TCR stimulation (Houtman et al., 2005). It was
found that tyrosine 191 becomes phosphorylated significantly faster than tyrosine 132. This
difference could have noteworthy consequences for regulation of downstream signaling, because
these sites have distinct binding partners: phosphorylated tyrosine 132 binds phospholipase Cy1,
whereas phosphorylated tyrosine 191 binds Gads and related adaptor proteins. These types of
site-specific interactions are captured naturally in a rule-based model.

Another area in which site-specific phosphorylation has proven significant is partial
phosphorylation of ITAMs. The consensus view is that, when doubly phosphorylated, ITAMs

recruit the tandem SH2 domains of Syk-family kinases. However, it is now clear that
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phosphorylation of a single ITAM tyrosine residue may lead to recruitment of a different set of
signaling proteins, with distinct consequences for downstream signaling. By using mono-SH2 and
dual-SH2 domain recombinant proteins as probes for singly- and doubly-phosphorylated ITAMs, it
has been found that ITAM monophosphorylation is associated with anergy and activation of the
negative regulators Dok-1 and SHIP-1 in BCR signaling (O’Neill et al,, 2011). Activation of this
inhibitory circuit may be linked to recruitment of the kinase Lyn to singly-phosphorylated ITAMs
of the Igo/p subunits of the BCR.

Development of wuseful models will depend on suitable data sets for model
parameterization. A potentially rich source of data is likely to come from quantitative high-
resolution mass spectrometry (MS). MS can be used to detect phosphorylation of specific residues
in an unbiased manner (Cox and Mann, 2011), enabling discovery of previously uncharacterized
phosphorylation sites in receptor subunits and their downstream targets (Nguyen et al., 2009;
Brockmeyer et al.,, 2011). MS can also be used to quantitatively track changes in phosphorylation
levels of known phosphorylation sites as signaling progresses, including changes that occur on
short time scales (Dengjel et al.,, 2007). In the near future, novel methods for single-molecule MS
may even offer the possibility of characterizing the phosphoforms of individual proteins (Naik et
al, 2009). We propose that rule-based modeling is well-suited for mechanistic interpretation of
large-scale MS datasets, because the rule-based formalism entails the same site-specific resolution
(Creamer etal., 2012).

Other advances in quantitative measurements will also provide modelers with systematic
measurements of binding constants for protein domains involved in immunoreceptor signaling.
High-throughput platforms have been developed and used to measure the affinities of SH2

domains of human proteins for specific phosphotyrosine peptides (Kaushansky et al., 2008; Hause
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et al, 2012). Such tools can potentially be used to determine the parameters needed for
mechanistic modeling.

Lastly, super-resolution imaging techniques have enabled observation of signaling
complexes on the nanoscale (Huang et al, 2010). These studies have elucidated the spatial
reorganization of proteins that occurs during immunoreceptor signaling, including aggregation of
LAT following TCR stimulation (Sherman et al,, 2011). The ability to image aggregation at high
resolution, such that individual molecules can be distinguished, means that predictions from rule-
based models about aggregation, such as a predicted aggregate size distribution, could potentially

be tested in a direct manner.

Conclusions & Future directions

A great deal of knowledge about immunoreceptor signaling has been accumulated. In
addition, modern experimental methodologies allow us to obtain data that pertains to the site-
specific details of molecular interactions. We believe that these aspects can be integrated to form a
more complete, and more predictive, picture of how immune cells sense and respond to their
environment. Our approach to piecing together this picture is to translate biological knowledge
into chemical kinetics, using a formalism that naturally captures the way that biological
knowledge is often characterized informally in scientific discourse. This formalism, in which rules
are used to represent interactions and their contextual dependencies, allows us to capture
molecular site dynamics (e.g., site-specific details of protein-protein interactions), more
comprehensively simulate the reaction networks that mediate cell signaling, and manipulate
specific features of cell signaling systems in silico. Until recently, only a subset of rule-based

models could be simulated. With the development of network-free simulation methods (Danos et
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al, 2007; Yang et al,, 2008; Colvin et al., 2009; Colvin et al., 2010; Sneddon et al., 2011; Yang and
Hlavacek, 2011), simulation of a much wider array of models is now possible.

Mechanistic models have value as hypothesis generators and as vehicles of understanding
(Lander, 2010). A number of interesting biological questions can now be addressed via rule-based
modeling, in part because this approach facilitates consideration of the full spectrum of possible
phosphoforms for a protein of interest, which could be especially valuable for the study of ITAMs
and related motifs that can have opposing regulatory functions that depend on phosphoform
(Blank et al., 2009). We believe that the rule-based modeling approach is needed to address these
and other questions that will emerge as the intricate machinery of immune signaling is explored

further.
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Table 1: Recent studies of immune signaling that have employed rule-based modeling

Reference Topic of study Software used
Lipniacki et al. (2008) Feedbacks in T-cell receptor BioNetGen

signaling
Nag et al. (2009) LAT aggregation Problem-specific code

An and Faeder (2009)
Nag et al. (2009)
Monine et al. (2010)

Nagetal. (2010)
Artymov et al. (2010)

Nagetal. (2012)

Barua et al. (2012)

Toll-like receptor signaling
Serial engagement of FceRI
Steric effects on aggregation of
FceRI

Syk activation in mast cells
Co-receptors in T-cell receptor
signaling

LAT aggregation with varying
valency

Interlocked feedbacks in B-cell
antigen receptor signaling

BioNetGen
BioNetGen
Problem-specific code

BioNetGen
SSC

Problem-specific code

BioNetGen
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Table 2: Other recent studies of cell signaling that have employed rule-based modeling

Reference

Topic of study

Software used

Barua et al. (2007)
Barua et al. (2008)

Barua et al. (2009)
Gong et al. (2010)
Ray and Igoshin (2010)

Malleshaiah et al. (2010) (see
supplemental material of this
paper)

Dushek et al. (2011)
Selivanov et al. (2011)
Sorokina et al. (2011)

Thomson et al. (2011)
Geier et al. (2011)

Ghosh etal. (2011)

Abel et al. (2012)

Deeds et al. (2012)
Kocienewski et al. (2012)

Michalski and Loew (2012)

Interactions of Shp-2
Interactions of tandem SH2
domains

Jak kinase activation

HMGB1 signaling in cancer
Transcriptional feedback in
bacteria

Scaffold proteins and switch-like
behavior

Multi-site phosphorylation
Mitochondrial respiration

The post-synaptic proteome of the
neuronal synapse

Yeast pheromone signaling
Integrin activation

Iron homeostasis in tuberculosis
Influence of the membrane
environment on bistability
Combinatorial complexity in
protein interaction networks
Dual phosphorylation in the MAP
kinase cascade

Activation of CaMKII

BioNetGen
BioNetGen

BioNetGen
BioNetGen
BioNetGen, Mathematica

Facile, ANC, Matlab

Smoldyn
Problem-specific code
RuleStudio, jsim, R

BioNetGen, MATLAB
BioNetGen

KaSim, Cytoscape
SSC

KaSim

BioNetGen

BioNetGen, VCell
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Figure 1: A model of interactions among LAT, Grb2, and SOS1 (Nag et al., 2009; 2012),
represented as an extended contact map (Chylek et al.,, 2011). Boxes represent proteins, domains,
and motifs. Double-headed arrows represent non-covalent interactions, and arrows are numbered
to correspond to rules in Fig. 2. Post-translational modifications are designated by small squares
connected to flags that indicate the site and type of modification (e.g., “pY171” refers to
phosphorylation of tyrosine 171). LAT contains three tyrosine residues that can be
phosphorylated and serve as binding sites for the SH2 domain of Grb2. Grb2 also contains a pair of
SH3 domains, which are taken to be a single site in the model. Four proline-rich sequences in SOS1
are taken to be a pair of sites that can bind Grb2. Thus, Grb2 can bind SOS1 to form a 1:1 complex,
which can be bound by a second Grb2 molecule to form a Grb2-SOS1-Grb2 complex. This ternary
complex can cross-link two LAT molecules. An example of a molecule type definition is

LAT (PY, PY, PY) , which represents LAT containing three phosphorylated tyrosine residues,
which by being assigned the same name are taken to be indistinguishable by convention. An
example of aruleis LAT (PY) + GRB2 (SH2,SH3) <-> LAT(PY!1l) .GRB2 (SH2!1,SH3).
This rule indicates that free Grb2 can reversibly bind a free phosphosite in LAT via its SH2 domain.
[t is assumed that the other two phosphotyrosines in LAT do not influence the interaction, and are

omitted from the rule. For a more complete model specification, see Fig. 2.
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Figure 2: Abbreviated BioNetGen input file for a model of LAT, Grb2, and SOS1 interactions. The
molecule types block specifies the molecules included in the model, and the components that each
molecule contains. The reaction rules block contains rules that represent interactions that can
occur in the model. Rules are numbered to correspond to arrows in Fig. 1. Note that multiple rules
correspond to each arrow. An arrow represents an interaction; the rules corresponding to a given
arrow each represents the kinetics of the interaction in a unique molecular context. The
simulation command at the bottom calls a network-free simulator. Not shown are the parameters
block, in which parameters are assigned values; the seed species block, in which initial conditions
are set; and the observables block, in which model outputs are specified. For more information

about the contents of a BioNetGen input file, see Faeder et al. (2009).
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Figure 2

begin molecule types
LAT (PY,PY,PY)

GRB2 (SH2,SH3)
SOS1(PRS,PRS)

end molecule types

begin reaction rules

# la: Free GRB2 binds free SOS1
GRB2 (SH2,SH3)+S0S1(PRS,PRS) <->
GRB2 (SH3!1,SH2).SOS1(PRS!1,PRS) kpl, kml

# 1lb: Free GRB2 binds SOS1 bound to GRB2
GRB2 (SH2,SH3)+S0S1(PRS,PRS!1).GRB2(SH3!1,SH2) <—>
GRB2 (SH3!2,SH2).SOS1(PRS!1,PRS!2).GRB2(SH3!1,SH2) s*kpl,kml

# lc: Membrane-associated GRB2 binds free SO0S1
GRB2 (SH3,SH2!+)+S0S1 (PRS,PRS) <->
GRB2(SH3!1,SH2!+).S0S1(PRS!1,PRS) kpl, kml

# 1d: Membrane-associated GRB2 binds SOS1 bounds to GRB2
GRB2 (SH3,SH2!+)+S0S1(PRS,PRS!1) .GRB2 (SH3!1,SH2) <->
GRB2(SH3!2,SH2!+).S0OS1(PRS!2,PRS!1).GRB2(SH3!1,SH2)
s*kpl, kml

# le: Free GRB2 binds membrane-associated SOS1
GRB2 (SH3,SH2)+S0S1(PRS,PRS!1).GRB2(SH3!1,SH2!+) <—>
GRB2 (SH3!2,SH2).S0S1(PRS!2,PRS!1).GRB2(SH3!1,SH2!+)s*kpl,kml

# 1f: Membrane-associated GRB2 binds membrane-associated SOS1
GRB2 (SH3,SH2!+)+SOS1(PRS,PRS!1).GRB2(SH3!1,SH2!+) <—>
GRB2 (SH3!2,SH2!+).S0S1(PRS!2,PRS!1).GRB2(SH3!1,SH2!+) kps,kml

# 2a: LAT binds free GRB2
LAT(PY)+GRB2 (SH2,SH3) <—>
LAT(PY!1).GRB2(SH2!1,SH3) kp2,km2

# 2b: LAT binds GRB2 bound to SOS1
LAT (PY)+GRB2 (SH2,SH3!1).S0S1(PRS!1,PRS) <—>
LAT(PY!2).GRB2(SH2!2,SH3!1).S0S1(PRS!1,PRS) kp2,km2

# 2c: LAT binds membrane-associated GRB2
LAT (PY)+GRB2 (SH2,SH3!1).
SOS1(PRS!1,PRS!2).GRB2(SH2,SH312) <—>
LAT(PY!3).GRB2(SH2!3,SH3!1).
SOS1(PRS!1,PRS!2).GRB2(SH2,SH3!2) kp2,km2

# 2d: LAT binds membrane-associated GRB2

LAT (PY)+GRB2 (SH2,SH3!1).SOS1(PRS!1,PRS!2).
GRB2 (SH2!3,SH3!2).LAT(PY!3) <->
LAT(PY!4).GRB2(SH2!4,SH3!1).S0S1(PRS!1,PRS!2).
GRB2 (SH2!3,SH3!2).LAT(PY!3) kp2,km2

end reaction rules

# Call network-free simulator
simulate nf({t _end=>1000,n steps=>100});
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