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Microbes in the ocean dominate biogeochemical processes and are far more diverse than anticipated.
Thus, in order to understand the ocean system, we need to delineate microbial populations with
predictable ecological functions. Recent observations suggest that ocean communities comprise
diverse groups of bacteria organized into genotypic (and phenotypic) clusters of closely related
organisms. Although such patterns are similar to metazoan communities, the underlying mechanisms
for microbial communities may differ substantially. Indeed, the potential among ocean microbes for
vast population sizes, extensive migration and both homologous and illegitimate genetic
recombinations, which are uncoupled from reproduction, challenges classical population models
primarily developed for sexually reproducing animals. We examine possible mechanisms leading to
the formation of genotypic clusters and consider alternative population genetic models for
differentiation at individual loci as well as gene content at the level of whole genomes. We further
suggest that ocean bacteria follow at least two different adaptive strategies, which constrain rates and
bounds of evolutionary processes: the ‘opportuni-troph’, exploiting spatially and temporally variable
resources; and the passive oligotroph, efficiently using low nutrient concentrations. These ecological
lifestyle differences may represent a fundamental divide with major consequences for growth and
predation rates, genome evolution and population diversity, as emergent properties driving the
division of labour within microbial communities.
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1. INTRODUCTION
Why, if species have descended from other species by

fine gradations, do we not everywhere see innumerable

transitional forms? Why is not all nature in confusion,

instead of the species being, as we see them, well

defined?

Darwin (1859)
The extent to which prokaryotic and eukaryotic
microbes dominate ocean ecosystem functions is a
surprisingly recent insight. Ocean microbes form
tightly integrated food webs and are responsible for
the lion’s share of primary production and nutrient
cycling. Indeed, bacteria, the smallest and most diverse
of organisms, represent the major biomass component
in many oceanic regions (Whitman et al. 1998). Their
genomes encode functions which have evolved in
response to biotic and abiotic environmental con-
straints, and reflect the intricacies of biogeochemical
cycles (DeLong & Karl 2005). Over the last 20 years, it
has been established that the ocean, like most natural
environments, harbours enormous genetic and
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genomic diversity (Giovannoni & Stingl 2005). Yet,

one of the central challenges that remains is the search

for structure–function relationships at the level of
alleles at individual genetic loci, genes within genomes,

individuals within species and species within commu-

nities. Essential questions are to what extent microbial

genomes are organized into functionally cohesive and
evolutionarily defined populations, what are functional

units beyond the single cell and how do such units

originate and self-organize under different environ-
mental constraints?

The ocean, owing to its enormous expanse, may seem

an improbable environment to examine and establish
structure–function relationships in microbial commu-

nities. However, several factors make planktonic

microbes a better model system than those from other
globally important ecosystems. First, microbial diver-

sity has been the focus of intense studies, especially by

modern, culture-independent techniques. As a result,

many of the major prokaryotic groups have been
identified. Although molecular techniques have shown

that microbes in the ocean, like in all other major

environments, are much more diverse than previously
anticipated (Giovannoni & Rappé 2000), they are

probably orders of magnitude less diverse than sediment

and soil communities (Gans et al. 2005). Second, many
relevant biogeochemical gradients vary over relatively
This journal is q 2006 The Royal Society
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Figure 1. Estimated temporal and spatial relationships of micro- and mesoscale features in the environment affecting the growth
and productivity of marine bacteria. The region to the right and above the arrows indicates features that are captured by standard
oceanographic sampling methods (modified from Dickey (1991) and Seymour (2005)).
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large spatial scales (metres to kilometres), but even

small-scale heterogeneities will ultimately be easier to

resolve in the context of aquatic environments
compared to soils and sediments. Third, metagenomics

is starting to be systematically applied to ocean

environments and will allow correlation of major
differences in genome features with environmental

parameters and biogeochemical gradients (Venter et al.
2004; DeLong et al. 2006). These factors combined

with the availability of several well-studied model
organisms representing diverse ecological strategies

hold promise for major advances in deciphering the

patterns and determinants of microbial diversity.
Ocean water represents a complex and dynamic

landscape of physio-chemical parameters (Goldman

1984). While it is possible to define ‘average’ conditions
(e.g. nutrient concentration, temperature, light

penetration) for large regions of the ocean, many

relevant parameters show variation on much smaller

scales (Azam & Ammerman 1984). Thus, when
considering how bacterioplankton adapt to ecological

conditions, it is important to evaluate processes at the

relevant scale (figure 1). Rather than a uniform
environment, the ocean is better represented as an

evolving mosaic of microenvironments with varying

spatial and temporal scales. While there has been some

success in correlating genetic and genomic diversity
with large-scale gradients, it remains largely unknown to

what extent the heterogeneity on smaller scales select for

genomic differentiation, which may ultimately result in
population structure. We therefore begin our discussion

by drawing a picture of relevant ecological parameters in

the surface ocean with special emphasis on spatial and

temporal heterogeneities on bacterial scales. Second, we
provide an overview of the status of microbial commu-

nity analysis. We emphasize recent observations of

nucleotide sequence clusters and the emergence of
hypotheses that these clusters represent ecologically
Phil. Trans. R. Soc. B (2006)
differentiated populations. This will be followed by a
theory- and observation-based critical assessment of the
evolutionary origins of sequence clusters. Finally, we
give a genomic perspective on population differentiation
and end with considerations of the evolutionary
consequences of adaptation to prevalent environmental
parameters in the ocean. Overall, we focus on several
well-researched bacterial groups in the photic zone, i.e.
the first 100 m or so penetrated by light, where enough
data on diversity and ecological constraints are available
to speculate about their implications for population
structure and dynamics. For more comprehensive
overviews of microbial life and diversity in the ocean,
we refer the reader to excellent recent reviews
(Giovannoni & Rappé 2000; DeLong & Karl 2005;
Giovannoni & Stingl 2005).
2. THE LIFE AQUATIC (ECOLOGICAL
PARAMETERS IN THE OCEAN SURFACE)
Despite extensive and complex variation in physio-
chemical parameters and large differences in nutrient
status of different ocean regions, the average total cell
concentration in seawater is remarkably constant. In
open ocean and coastal regions, it is typically
approximately 105 and 106 cells mlK1, respectively
(Whitman et al. 1998). Predation is thought to control
this average since bacteria and their predators (viruses
and protozoa) possess comparable reproductive rates.
Prokaryotic cell numbers in the water column are thus
considered to be in steady state, with the exception of
bloom situations when populations can temporarily
escape predation control. Thus, an important conse-
quence of such tight control of total cell numbers is that
increase in one population needs to be coupled to
decrease in at least some others.

A second consequence is that communities are
roughly in a steady state and an increased nutrient
supply results primarily in higher turnover rather than
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increases in total cell numbers. On the other hand,
microbial growth rates in the ocean are relatively slow
owing to the typically low nutrient concentration in
bulk seawater. This is particularly true for the vast
expanse of the subtropical gyres where major resources,
such as nitrogen and phosphorus, are frequently too
low to be measured. Although other ocean provinces,
in particular coastal environments and estuaries,
contain considerably higher and more variable nutrient
concentrations, the ocean can overall be considered a
desert-like environment. In bulk seawater, bacterial
growth dynamics are improbable to ever exceed first-
order kinetics. This is reflected in low doublings per day
of 0.05–0.3 for open ocean environments but up to 1–2
for coastal zones (Ducklow 2000; Crump et al. 2004).
However, ocean water is not homogeneous and locally
confined higher growth rates can be achieved by
bacteria clustered around or attached to small particles
(Worden et al. 2006; figure 1). Yet such relationships
are rarely captured since present analysis techniques
still require sampling of relatively large volumes, which
average conditions and overlook spatially small nutrient
inhomogeneities.

The distinction between nutrient-poor interstitial
water and nutrient-rich particles and patches probably
represents a key parameter in structuring oceanic
microbial communities. Bacteria inhabiting the inter-
stitial water experience low but relatively steady
nutrient concentrations, while those exploiting nutrient
patches live in a temporally and spatially highly variable
landscape requiring frequent abrupt changes in metab-
olism. This basic distinction is probably a general
feature of ocean environments even though bulk
nutrient concentration and particle concentration and
quality can vary considerably.

The causes of small-scale nutrient microenviron-
ments are varied and include patches of dissolved and
particulate organic matter: high- and low-molecular
weight algal exudates; cellular material released by viral
lysis or autolysis; particles produced by sloppy zoo-
plankton feeding; faecal pellets; marine snow; aban-
doned food webs; detritus; transparent exopolymers;
and colloids (figure 1). Within nutrient patches,
biologically labile compounds can be two to three
orders of magnitude more abundant than in the
surrounding water (Fenchel 2002). Although the
relative importance of different patches can vary, in
the surface ocean, phytoplankton are the major agents of
dissolved organic matter (DOM) transfer to the
heterotrophic bacterial component of food webs. Algae
can reach densities of the order of 103 cells mlK1 and
have been reported to exude from less than 1 to 50% of
their daily photosynthate resulting in a diffusion zone
enriched in DOM (Hellebust 1974; Bertilsson & Jones
2003). Similarly, organic particles (e.g. faecal pellets,
marine snow) may leak DOM because the rate of
polymer hydrolysis by attached bacteria exceeds mono-
mer uptake rates. It has thus been suggested that sinking
particles leave behind a wake of enriched nutrients,
which can be exploited by heterotrophic bacteria. In
fact, use of such patchy nutrient sources may increase
the rate of mineralization in the ocean by a factor of 2,
relative to a uniform nutrient scenario (Fenchel 2002),
and experiments show that bacterial productivity
Phil. Trans. R. Soc. B (2006)
decreases by 12–20% when seawater samples are
homogenized (Moeseneder & Herndl 1995).

To what extent bacteria can actively exploit nutrient
patches is strongly dependent on the spatial and
temporal distributions of their nutrient sources, as
well as their ability to track and cluster around them.
Additionally, quality and duration of nutrient supply
from individual patches is highly variable (figure 1). For
example, algal cells might exude carbon monomers and
polymers when sufficient light allows for photo-
synthesis (Bertilsson & Jones 2003); faecal pellets
most probably leak more complex DOM and have
been suggested to lose the majority of their DOM
during the first 6 h after they are released (Urban-Rich
1999), while nutrient patches from lysed cells contain
complex organic matter and may dissipate within
minutes (Blackburn et al. 1998).

Motility and chemotaxis (i.e. the ability to sense and
respond to gradients of a chemical compound) thus
become valuable assets in the exploitation of these
transient and localized nutrient sources. However,
motility also comes at considerable metabolic cost so
that motility may increase evolutionary fitness only if
there is a minimum density of patches in the water
column (Kiorboe et al. 2002; Mitchell 2002). Recent
metagenomic observations indirectly support this
notion; genomes from surface water have higher
incidence of flagellar genes than those from deep
waters where patches are at much lower concentration
and consist of more recalcitrant material, so that the
cost of getting from one patch to another may outweigh
the benefits (DeLong et al. 2006). Theoretical
considerations similarly support this hypothesis that
cost optimization limits the adaptive value of chemo-
taxis (Kussel & Leiber 2005).

Given these considerations, particles and nutrient
inhomogeneities probably represent a highly stochastic
ecological landscape, with major consequences on
bacterial distributions (figure 1). It has been observed
that prokaryotic cell clusters form and dissipate within
minutes (Blackburn et al. 1998) and that order
of magnitude variability in prokaryote numbers over
small sample scales exists in environmental samples
(Duarte & Vaque 1992; Muller-Niklas et al. 1996;
Seymour et al. 2000). Community profiling by
molecular techniques also showed genetic differences
in 1 ml but not in 25 ml seawater samples, indicating
inhomogeneity at smaller scales (Kirchman 2001;
Long & Azam 2001). Cells can also actively attach to
particles to hydrolyse polymeric substances, and there
has been considerable debate as to whether free-living
and particle-attached bacteria constitute independent
populations: some studies have found no significant
difference between these groups (Martinez et al. 1996;
Hollibaugh et al. 2000; Riemann & Winding 2001;
Worm et al. 2001), while other investigators observed
differences (DeLong et al. 1993; Acinas et al. 1997,
1999; Crump et al. 1999; Fandino et al. 2001; Knoll
et al. 2001; Moeseneder et al. 2001).

As we will argue below, adaptive strategies tuned
either to exploitation of the low-nutrient bulk water or
high-nutrient patches may represent a fundamental
divide among ecological strategies, with major con-
sequences for growth and predation rates, genome
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evolution and, ultimately, population diversity and
structure. First, we review relevant knowledge of
bacterioplankton diversity and then consider what may
represent an ecologically or evolutionarily coherent
bacterial population.
3. PATTERNS OF MICROBIAL DIVERSITY
Studies of microbial diversity have made considerable
progress in recent years and are increasingly informed
by population genetics and comparative genomics.
What presently emerge are testable hypotheses of how
to recognize ecologically differentiated populations.
This is possible through observation of fine-scale
patterns in bacterial community structure coupled to
formulation of hypotheses regarding their origins, which
will ultimately motivate establishment of environmental
correlates on appropriate spatio-temporal scales.

Microbial diversity in the ocean, like most environ-
ments, has primarily been studied by assessing
sequence diversity of 16S rRNA genes (‘ribotypes’)
retrieved by PCR amplification, cloning and sequen-
cing as a proxy for organismal diversity (Rappé &
Giovannoni 2003). This has yielded at least 52
phylogenetically broadly defined bacterioplankton
phyla, of which half have no cultivated representatives
(Giovannoni & Stingl 2005). Novel culturing tech-
niques and metagenomic approaches are revealing
some of the features of these previously unknown
types (Rappé et al. 2002; Venter et al. 2004; DeLong
et al. 2006); however, the vast majority of bacteria in the
ocean remain inaccessible to these techniques so that
diversity estimation will rely on clone libraries for some
time to come.

One basic observation (and problem) has been that
microbial communities contain so much sequence
diversity that clone libraries contain almost exclusively
unique sequences. Some of this is certainly owing to
PCR-induced sequencing artefacts. For example, we
have shown that the fraction of unique sequences was
reduced from 76 to 48% when sequence artefacts were
constrained in a large 16S rRNA library (Acinas et al.
2004, 2005). However, this is still a high fraction of
unique sequences considering that the 16S rRNAs are
evolutionarily highly conserved. Similarly (PCR-
amplification independent), shotgun sequencing of
Sargasso Sea bacterioplankton detected 643 unique
sequence types among 1412 rRNA genes using a 99%
similarity cut-off to define unique sequence types
(Venter et al. 2004).

Despite such low redundancy, important patterns of
distribution of different phylogenetic groups have
emerged from clone library sequence analysis and
some fingerprinting methods. It is customary to lump
sequences into phylotypes according to varying
sequence cut-offs and then to compare the distribution
of phylotypes among different samples. This has shown
that many such phylotypes occur in both open ocean
and coastal environments, but apparently not every
phylotype is found everywhere (at least not in the same
proportions; Giovannoni & Rappé 2000). For example,
it was from clone libraries that the first members of the
SAR11 group were identified; these, now named
Pelagibacter, comprised at least 16% of total cells in the
Phil. Trans. R. Soc. B (2006)
mesopelagic and up to 50% of bacterioplankton in the
surface ocean (Morris et al. 2002; Malmstrom et al.
2005). Moreover, it has generally been found that easily
cultivable phylotypes are frequently not the most
abundant members of bacterioplankton, although
abundance may in some cases underestimate import-
ance owing to higher turnover rates (Worden et al.
2006). The notable exception is theRoseobacter clade, of
which some groups are easily cultivable and can account
for upwards of 20% of coastal bacterioplankton cells
(Buchan et al. 2005).

Although many phylotypes show differential distri-
bution in environmental samples, a central question
has been how sequences should be grouped to allow
identification of ecologically distinct populations.
Some metabolic guilds of bacteria carry rRNA
signatures (e.g. sulphate-reducing bacteria, methano-
trophs, nitrifiers), but most metabolic or physiological
functions have yet to be linked to clearly delineated
phylogenetic groups (Pernthaler & Amann 2005).
Thus to identify cohesive ecological populations in
clone libraries, two basic approaches appear possible.
On the one hand, a priori (or arbitrary) sequence cut-
offs might be defined, corresponding to the thresholds
that have been seen to correlate to known taxonomic
units in other clades. On the other hand, it may be
possible to search for emergent hierarchical patterns of
variation among communities (i.e. naturally occurring
clustering in sequence diversity), which can be
interpreted based on evolutionary theory.

The first approach led to the use of 16S rRNA cut-
offs at 3% sequence divergence to delineate taxonomic
units; this is based on data suggesting that above 70%
DNA–DNA hybridization (i.e. the traditional though
theoretically dubious species cut-off ), no 16S
rRNA similarities of less than 97% have been found
(Stackebrandt & Goebel 1994; Rosselló-Mora &
Amann 2001). However, the notion of using 3%
sequence cut-offs as ecologically cohesive units has
been repeatedly challenged on both empirical and
theoretical (see below) grounds. Most recently, analysis
of such closely related strains has shown that they can
have diverse and apparently ecologically differentiated
genomes, suggesting that the traditional definition is far
too broad. This was first discovered for pathogenicity
determinant genes, which are frequently clustered in
genomic islands unique to otherwise largely homo-
geneous pathogen genomes (Hacker & Carniel 2001).
Indeed, most bacterial genomes contain a number of
such differentiating islands. For example, comparative
analysis of E. coli strains has revealed that typically
hundreds of genes are unique to a given strain (Welch
et al. 2002).

The second approach led to the search for naturally
hierarchical units that requires datasets large enough
to examine relationships at multiple levels of differen-
tiation. This has only recently become possible but has
already revealed fine-scale patterns of differentiation
within ribotype sequences, which suggest prevalence
of natural clusters with 1% internal sequence diver-
gence. In both coastal bacterioplankton and marsh
sediment sulphate-reducing bacteria samples, most
sequences fell into such microdiverse sequence
clusters indicating predominance of closely related
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taxa (Acinas et al. 2004; Klepac-Ceraj et al. 2004).
Indeed, it has been proposed that sequence clusters
may represent natural units of differentiation
equivalent to populations or species (Cohan 2002).
But importantly, note that the numeric value of
genetic diversity corresponding to observed clusters
may probably vary from taxon to taxon. In §4, we
evaluate present theories of how clusters may arise and
thus their probable ecological significance.
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Figure 2. Schematic of the effects of selection and HR on
sequence-based phylogenetic trees. (a (i)) In the absence of
selection, branch lengths reflect the coalescent process of
genetic drift. (ii) After a selective sweep, branch lengths are
shortened, reflecting the loss of genetic diversity. (b (i, ii))
Low rates of HR between loci result in shared genealogical
histories at these loci, reflected by high correlations among
phylogenies. (iii, iv) Recombination disrupts this correlation,
and even after a selective event, shortened branch lengths are
only observed at or genetically near the target of selection.
4. SEQUENCE CLUSTERS AS POPULATIONS
OR SPECIES?
It is generally accepted (indeed, rarely even remarked
upon) that multicellular organisms are highly clustered
phenotypically, i.e. the phenotypic variance within
groups is far less than the variance between them,
and this forms the basis of the vernacular, intuitive
concept of species. Importantly, similar phenotypic
clustering is observed in many other taxa, including
bacteria (e.g. Goodfellow et al. 1997). However,
criteria for ordering bacterial isolates into phenotypic
clusters have frequently been biased by the goals of the
researcher, so that many phenotypic groupings should
perhaps be considered arbitrary. In particular, from this
phenotypic point of view, pathogen classification has
suffered from excessive splitting; for example, Shigella is
now considered to be merely a variant of E. coli
differentiated by a few traits, which have arisen
independently multiple times (Pupo et al. 2000; Fukiya
et al. 2004).

How are phenotypic clusters manifested geneti-
cally? Recent methods for classification of strains into
populations and species have focused on the dis-
covery of sequence clusters. In particular, multilocus
sequence analysis (MLSA), which has grown out of
the typing of pathogenic strains, may hold promise
for the search for functionally defined populations
and species (Maiden et al. 1998; Gevers et al. 2005).
Since this approach targets multiple putatively neutral
loci within each bacterial genome, the phylogenetic
signal obtained from the concatenated gene sequence
is more robust than for a single gene (Hanage et al.
2006a). Indeed, MLSA reveals sequence clusters
which are congruent with some well-defined bacterial
species (Godoy et al. 2003; Priest et al. 2004), and
this concept is similar to the phylogenetic species
concept (Taylor et al. 2000).

Of fundamental interest is to what extent sequence
clusters denote ecologically differentiated populations
and/or species. Under the classical view developed from
metazoan biology, reproductive isolation arises
primarily when ecological or geographical isolation
defines the boundaries of species. These boundaries,
in turn, ensure that mutations that give advantageous
phenotypic effects in one environment are not diluted by
genetic recombination with immigrants and are thought
to be responsible for the relatively larger diversity
between than within species. However, the elements of
this classical model are not present in many biological
systems, e.g. populations developing in sympatry (or
parapatry) and asexual organisms. This calls into
question the generality of this mechanism for under-
standing the basis of phenotypic clustering. Nor is this
Phil. Trans. R. Soc. B (2006)
process intrinsic to the more fundamental conception of
species, as populations of organisms selectively
optimized to distinct ecological opportunities.

Bacteria offer the opportunity to ask the more
fundamental question: can clusters arise as a conse-
quence of ecological specialization? One possible
mechanism is that selective sweeps may periodically
purge genetic variation from coexisting genomes
(Cohan 2002, 2006). This assumes that clonally
reproducing bacteria will accumulate mutations,
which, in rare cases, are adaptive. The carrier of such
adaptive mutations will increase in frequency until it
has outcompeted all other strains within its niche. In
strictly clonally reproducing organisms, genetic vari-
ation would be reset to zero at all loci, since only the
winning clone remains. Subsequent to the sweep, all
loci will begin to diversify and similar patterns of
clustering should be apparent at most housekeeping
loci (figure 2b(ii)). Importantly, variation within a
niche-specific cluster would then persist because
competition is not strong enough to purge variants
from within the cluster. Such clusters have been termed
ecotypes (Cohan 2002). One of the attractive features
of the ecotype concept is that it would indeed give
ecological meaning to sequence clusters observed in
environmental clone libraries (Acinas et al. 2004).
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Figure 3. Idealized environmental distribution of sequence clusters assuming different degrees of ecological differentiation
and/or stochastic processes of niche colonization. (a) Random distribution across niches with no apparent fitness differences
among genotypes. (b) Clonal expansion within local niches owing to population bottlenecks or founder effects leading to
apparent population structure. (c) Strong correlation with niche space indicating fitness differences. (d ) Special case:
microepidemics create a clonal expansion such that one genotype dominates in a localized area (bold line). Large boxes and
circles denote distinct niche spaces; different symbols represent distinct populations within each niche space whereas the same
symbol denotes individual strains from within the same sequence cluster.
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The main critique for the potential of sweeps leading
to clustering that can be observed using any locus arises
from considerations of gene transfer among bacterial
lineages (figure 2b(iv)). Bacteria reproduce clonally
and gene transfer is an episodic event, which typically
affects only small genome regions and is decoupled
from reproduction. All genetic exchange in bacteria is
therefore horizontal and takes the form of homologous
or illegitimate recombination, where new alleles or loci
arrive in the cell via transformation, transduction or
conjugation. As we will argue later, each of these
processes follows different rules, at least some of which
will be ecologically determined so that the expected
variation among bacterial genomes may be contingent
on their lifestyle in the wild.

Cluster formation may be governed by a complex
interplay of homologous recombination (HR) and
selection, and may result in distinct patterns for different
loci and genome regions (figure 2b(iv)).For example, HR
can blur boundaries of nascent clusters if gene transfer
rates are highand fitness differences between competitors
low (slowing the rate of genetic homogenization in the
population). In this case, both selectively favoured and
neutral alleles can move among genomes, thereby
diversifying clusters. In the other extreme, high selection
and low recombination rates lead to entirely clonal
populations after a selective sweep (figure 2b(ii)).
However, neither HR rates nor fitness differences are
presently well characterized among natural microbial
populations. In particular, even relatively large fitness
differences for resourceacquisition could bedepressed by
negative frequency-dependent selection. For example,
phage predation can disproportionately remove the
winner of competitive events (Thingstad 2000), off-
setting apparent fitness advantages. Moreover, modelling
has recently suggested that clusters may arise at least
transiently in the absence of positive selection assuming
high rates of HR (Falush et al. 2006; Hanage et al. 2006b);
Phil. Trans. R. Soc. B (2006)
if these early results are confirmed, then some observed
clusters may bear little to no ecological information.

On the other hand, once clusters are formed, they
may indeed become strongly genetically isolated from
each other. It has been shown in pure culture
experiments that the probability of HR decreases log-
linearly with sequence divergence (Roberts & Cohan
1993; Vulic et al. 1997; Majewski et al. 2000). This
means that HR between divergent clusters may be so
improbable that they are effectively sexually isolated
(Dykhuizen & Green 1991). Patterns from MLSA are
indeed consistent with this expectation. The majority
of strains typically fall within defined clusters but some
do not, possibly as a result of occasional introduction of
divergent alleles by HR (Hanage et al. 2005).

Theoretical considerations suggest that divergent
clusters may also form gradually by horizontal gene
transfer by illegitimate recombination, because insertion
of novel genetic material preventsHR in adjacent genome
regions (Lawrence 2002). In this way, genetic isolation
may propagate neutrally through the genome via
accumulation of point mutations further inhibiting HR
(Vetsigian & Goldenfeld 2005). Such processes may
occur at different rates in different genomic regions
(Gavrilets & Vose 2005), but they may continue until
clades become essentially genetically isolated throughout
their genomes (Lawrence 2002). Clusters originating via
this process would then be free to diverge ecologically
while carrying considerable genotypic diversity.

In order to decide whether sequence clusters arise
neutrally or represent ecologically differentiated popu-
lations, we must correlate them to relevant environ-
mental parameters or niches. Figure 3 represents an
idealized scenario for expected environmental distri-
bution of different clusters assuming varying levels of
adaptation to different niches. A number of studies have
indeed succeeded in establishing that organisms
denoted by different clusters show different distribution
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and dynamics within the same bacterioplankton
communities. This was first described for SAR11
(Pelagibacter) clades in environmental clone libraries of
16S rRNA genes, where different depth distribution for
two clusters was established (Field et al. 1997). A third
cluster, which could initially not be correlated to
environmental factors, was later discovered to have
distinct temporal occurrence patterns probably trig-
gered by stratification of the water column (Morris et al.
2005). Similarly, in the cyanobacterium Prochlorococcus,
sequence clusters containing high- and low-light-
adapted strains show distinct depth distribution
(Moore et al. 1998; Rocap et al. 2003). Additionally,
six clades denoted by differences in internal transcribed
spacer (ITS) sequences displayed distinct distribution
patterns on ocean-scale gradients ( Johnson et al. 2006).
In particular, temperature correlated with occurrence
and tolerance limits of different isolates from within the
clusters, but other ecological factors also showed a
relationship (Bouman et al. 2006; Johnson et al. 2006).
Temperature was also identified as a key regulator in
analysis of coexisting Vibrio populations identified as
microdiverse 16S rRNA clusters. These showed distinct
shifts in population abundance between cold and warm
seasons in a year long study of a temperate estuary
(Randa et al. 2004; Thompson et al. 2004).

Sequence clusters are dynamic entities on evolution-
ary time-scales and the genes used to distinguish any
clusters must have an adequate level of genetic
variation. Although we recently established that
clusters are a general phenomenon within a coastal
bacterioplankton community where clusters were on
average less than 1% divergent in 16S rRNA gene
sequences (Acinas et al. 2004), such community
averages cannot be universally applied to all clades. In
other words, some clusters may be more ancient and
thus be visible in conserved genes like 16S rRNAs;
some may have originated more recently and thus will
only be apparent using more rapidly evolving genes.
For example, Roseobacter 16S rRNA gene sequences
grouped into 99% similarity clusters showed that some
of these groupings were strongly related to the
environment in which these sequences were obtained
(e.g. polar environments, eukaryote-associated), but
overall the 16S rRNA gene was not sufficiently
discriminatory to allow functional-based grouping
(Buchan et al. 2005). Similarly, in the diverse
cyanobacterial group Prochlorococcus, clusters are appa-
rent in 16S rRNA genes, but clusters in the ITS
correspond better to ecological differentiation (Rocap
et al. 2002; Johnson et al. 2006).

Moreover, all clusters are not equally informative
with respect to environmental correlations. As detailed
above, some clusters may arise by neutral processes
while others may originate by selective sweeps. Indeed,
MLSA datasets, which are based on protein-coding
sequences, typically reveal hierarchies of clusters, i.e.
clusters within clusters. Which clusters correspond to
ecologically differentiated genomes must be decided by
correlation of each cluster hierarchy with relevant
environmental parameters and genomic diversity in a
population genetic framework. And ultimately what will
be sought are detailed mechanistic explanations linking
spatial and temporal variations in physico-chemical
Phil. Trans. R. Soc. B (2006)
gradients with particular genetic elements conferring
selective advantages.
5. TOWARDS BACTERIAL POPULATION
GENOMICS IN THE OCEAN
The two theoretical extremes outlined, that clusters
arise either by frequent sweeps (figure 2) or neutral
processes (e.g. Fraser et al. 2005), suggest different
expectations of genomic diversity. In the first case,
clusters should contain relatively homogeneous gen-
omes; in the second case, variation within clusters
should be unevenly distributed among genome regions
and genetic isolation may arise by the suppression of
HR mediated by sequence divergence alone.

Two approaches are presently being applied to
decipher patterns of sequence variation among phylo-
genetically closely related genomes (approx. equivalent
to clusters). For the highly abundant but poorly
cultivable Prochlorococcus and Pelagibacter, genome
sequences of individual strains have been compared
with metagenomic libraries (Giovannoni et al. 2005;
Coleman et al. 2006). For less abundant but more easily
cultivable organisms, such as Vibrio, genotypic infor-
mation can be mapped onto the populations by isolation
of coexisting strains (Thompson et al. 2005). This has
the advantage that information on the individual (strain)
within a population is obtained but bears the obvious
danger that important types are missed owing to culture
bias; culture-independent verification is thus important
(Thompson et al. 2005). The metagenomic approach
does not suffer from isolation bias (although certain
genes and genomic regions may be missed owing to
cloning bias); however, in these analyses, linkage across
loci is ambiguous so that genomes cannot be assembled.
Thus, only a population average can be obtained, and
while the existence of clusters can be established for
individual loci (or genome regions if large-insert
bacterial artificial chromosome (BAC) cloning is
employed), they cannot be mapped to entire genomes.

Both metagenomics and culturing have suggested
that protein-coding genes form clusters in coexisting
Prochlorococcus, Pelagibacter and Vibrio and that these
contain considerable synonymous sequence divergence
(Giovannoni et al. 2005; Thompson et al. 2005;
Coleman et al. 2006). Thus if sweeps generate these
clusters, they must occur relatively rarely. The average
nucleotide identity level ranges from 78 to 95%
(Giovannoni et al. 2005; Thompson et al. 2005;
Coleman et al. 2006), suggesting that the clusters are
not of recent origin. As pointed out by Stingl and
Giovannoni, such rarity of sweeps is in apparent contrast
to the Kimura postulate that even minor fitness
differences should sweep effectively through large
populations, in which case bacterioplankton with their
potentially enormous effective population sizes should
be continually perfected by selection (Giovannoni &
Stingl 2005). On the other hand, in the vast expanse of
the ocean, sweeps may take considerable time so that
genomes may diversify as they sweep. Therefore,
resolution of these problems will require better
definition of effective population sizes, which may
indeed be much smaller than the immense census sizes.
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A further factor, which is presently poorly under-
stood, is genome diversification by illegitimate recom-
bination and gene loss. In general, comparison of
closely related genomes has revealed very high
heterogeneity in gene content. This was first shown in
three E. coli strains, which surprisingly shared only
approximately 40% of their combined gene comp-
lements (Welch et al. 2002), and this has also been
recently documented in bacterioplankton species
(Thompson et al. 2005; Coleman et al. 2006). Such
observations have led to proposed division of genomes
into sets of core (shared by all within a group) and
flexible (unique to some members of a group) genes
(Hacker & Carniel 2001; Lan & Reeves 2001). The
flexible genome represents the balance between
illegitimate recombination and deletions and has been
suggested to comprise up to approximately 20% of
genes in genomes (Hacker & Carniel 2001). On the
other hand, the core genome is thought to be a stable
complement of genes, such as ribosomal and house-
keeping genes. This core reflects overall evolutionary
history of the lineage, since lateral gene transfer across
wide phylogenetic bounds appears rare (Lan & Reeves
2001; Daubin et al. 2003; Acinas et al. 2004).

Illegitimate recombination into the flexible genome
appears to be the most important source of evolution-
ary innovation in bacterial genomes, since it can
introduce adaptive loci. This was first discovered in
the context of pathogenesis (Hacker & Carniel 2001),
where the flexible genome has been implicated in niche
differentiation and host adaptation. In free-living
bacteria, it may help to maintain a mobile gene pool
that increases fitness under specific environmental
conditions (Hacker & Carniel 2001; Coleman et al.
2006). Moreover, illegitimate recombination has been
shown to be responsible for novel functions within
metabolic networks (Pal et al. 2005).

To what extent can new genes transferred by
illegitimate recombination persist in genomes if they
are not adaptive? Genomes must be able to tolerate a
certain amount of non-functional gene content without
detriment, since even adaptive genes may not be
immediately fully functional and may undergo periods
of amelioration and/or acclimation. However, deletion
rates for unused genes must be roughly matched to
illegitimate recombination rates since genome size does
not grow without bound. Indeed, modelling has
suggested that horizontally acquired sequences can
persist for a long time in a substantial fraction of
individuals within a bacterial population even when
they are neutral or slightly deleterious (Berg & Kurland
2002; Novozhilov et al. 2005). Consequently, a
microbial population is expected to have a large
diversity of transient neutral gene content (Berg &
Kurland 2002). This expectation fits observations of
high gene deletion rates in non-selective environments
(Nilsson et al. 2005), and very large genome size and
gene content differences among closely related bacteria
(Welch et al. 2002; Thompson et al. 2005).

The need for genomes to tolerate arrival of new genes
may select for their being channelled into dedicated
genomic regions and for mechanisms of re-establishment
of function after loss. Indeed, many bacteria maintain
plasmids, have lytic and lysogenic phages, and have
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large genomic regions (e.g. integrons) that can capture
(novel) genes (Faruque et al. 1999; Rowe-Magnus et al.
2001; Seguritan et al. 2003; Dunn et al. 2005; Purdy
et al. 2005). On the other hand, extrachromosomal
elements (like plasmids and phages) have their own
evolutionary ‘agenda’, which may lead to higher
transfer rates of specific types of genes. One such
example of channelization may be photosynthesis genes
transferred by phages in Prochlorococcus. These genes
are carried by phage and have been suggested to
increase their fitness during infection by increasing gene
dosage for proteins with extremely high turnover in the
host cell (Lindell et al. 2005). However, the phage may
also act as a highly efficient gene transfer agent, which
may spread alleles within or among populations that are
adaptive from the host’s point of view.

What fraction of genes in extrachromosomal
elements and genomic islands contain adaptive genes
remains unknown. Further, rates and bounds of such
transfer processes have not been sufficiently con-
strained, and so their evolutionary importance with
respect to niche specialization has not been addressed
within a population genetic framework. As we argue in
§6, recent data suggest that lifestyle may have strong
feedback on genomic mode of gene transfer and
genomic diversity.
6. GENOMIC CONSEQUENCES OF ADAPTATION
TO ENVIRONMENTAL VARIATIONS
In addition to these general considerations, lifestyle in
the wild may have significant influence on genomic
diversity. Although only few examples of comparative
genomics of closely related bacterioplankton groups
exist, these have already yielded some striking
differences.

The ocean represents a landscape of low- and high-
nutrient conditions on the microscale (figure 1). More-
over, vast regions of the open ocean contain such low
bulk concentrations of major nutrients that they are
difficult to measure. As detailed above, exploitation of
high- and low-nutrient conditions requires different
adaptations. Pelagibacter and Prochlorococcus represent
one extreme among bacterioplankton, as they can
exploit low-nutrient conditions so effectively that they
reach numerical dominance in the open ocean. They
grow relatively slowly but steadily as single, non-motile
cells, which are probably rarely in contact with each
other. On the other hand, Vibrio and Roseobacter (and
many other fast-growing bacterioplankton) are highly
motile and can move among or attach to nutrient
sources. Moreover, they can exploit many alternative
niches and have been detected in sediments, and in and
on animals; many also have pathogenic variants. In the
planktonic lifestyle, these organisms probably grow in
bursts, which are locally quickly erased by predation so
that overall they should have higher turnover rates than
other bacterioplankton (Mourino-Perez et al. 2003;
Worden et al. 2006). There are strong indications that
both Vibrio and Roseobacter sense and respond to their
surroundings by several mechanisms, including:
quorum-sensing systems (Gram et al. 2002; Moran
et al. 2004); production of antibacterial compounds
(Bruhn et al. 2005); chemotaxis (Miller et al. 2004;
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McCarter 2006); association with animal or algal cells
(Buchan et al. 2005); and rapid surface colonization
(Dang & Lovell 2000; Thompson & Polz 2006).

Life under conditions of extreme nutrient limitation
makes metabolic efficiency and energy conservation a
highly adaptive trait. Indeed, both Prochlorococcus and
Pelagibacter have small (approx. 2 and 1.3 Mbp,
respectively) and apparently efficiently organized
genomes; for example, the latter has the shortest
intergenic spacer regions known. On the other hand,
Vibrio and Roseobacter have relatively large genomes
(approx. 4–5 Mbp). Thus, a major difference among
these two ecological types may be that growth efficiency
optimization triggers lower ‘tolerance’ towards carriage
of unused or rarely used genetic material.

Aside from possible genome size optimization, there
may be significant differences in gene transfer potential.
Both Prochlorococcus and Pelagibacter so far appear to
lack plasmids and transposons, and integrative phages
seem also rare or even absent. Life as single, free-
floating cells also probably eliminates transformation as
an important gene transfer mechanism since total free
DNA has been shown to be at low concentration in bulk
seawater (0.06–0.6 ng mlK1; Karl & Bailiff 1989).
Thus, lytic phages may be the only effective gene
transfer agent. Vibrios appear to have many more
established means of gene transfer. Indeed, vibrios
typically devote approximately 1% of their gene
complement to recombinases/integrases, while in
Prochlorococcus and Pelagibacter less than 0.1% of
genes fall into these categories (S. C. Acinas & M. F.
Polz 2005, unpublished observations). For example, in
Vibrio cholerae, the role of integrative phage in
pathogenesis has been well established, and almost all
vibrios appear to have large integrons. These possess
genomic integrases, which can capture genes and
assemble regions up to 125 kb (Heidelberg et al. 2000;
Boucher & Stockes 2006). In V. cholerae, it has also been
recently shown that transformation can be induced by
biofilm formation on chitinaceous surfaces (Meibom
et al. 2005); this may have major consequences for both
rates of homologous and illegitimate recombination
among co-occurring strains in nature.

These constraints on genome optimization and gene
transfer may explain differences in observed number and
extent of variable genomic islands between Prochlorococ-
cus and Vibrio. In Vibrio, genomic islands can be
numerous (e.g. at least 14 in V. vulnificus; Quirke et al.
2006) and are associated with phages, transposons and
integrons.Roseobacter species have large fractions of their
genome encoded on plasmids (10% in Silicibacter
pomeroy), including important metabolic genes (Moran
et al. 2004). Moreover, strain-to-strain variation in
genomesizeandgenecontentwithina natural population
ofVibrio appears to be high. We have shown that within a
Vibrio splendidus population, defined as a cluster of less
than 1% 16S rRNA divergence, genome size variants
with differences of up to 20% coexist (Thompson et al.
2005). Indeed, the average concentration of a unique
genotype defined on the basis of gene content in the
bacterioplankton samples appeared so low that the
presence of a unique gene must have negligible
importance on individual fitness or overall population
function. On the other hand, Prochlorococcus MIT9312
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has recently been shown by comparison with metage-
nomic libraries to contain only five major variable island
regions, which comprise 10% of the genome. These have
indications of phage origin and contain genes of which at
least some are differentially expressed under different
types of stress; however, it remains unknown whether
they confer fitness under these conditions (Coleman et al.
2006).

Overall, these major differences may have important
consequences for evolution and adaptation in these
bacterioplankton groups. Vibrio and Roseobacter are
‘opportuni-trophs’ with versatile lifestyles which may
necessitate flexible genomes. Indeed, genes may be
adaptive under one ecological circumstance but
(nearly) neutral under another. For example, some
genes expressed in a fish gut may remain unused when
exploiting algal exudates. This may indeed explain the
high genotypic diversity of vibrios encountered in
bacterioplankton (Thompson et al. 2005). On the
other hand, genome optimization in Prochlorococcus and
Pelagibacter may limit their adaptability, since gene
import and presence of (frequently) unused genes may
have much stronger negative fitness effect. Finally, their
exclusively single-cell lifestyle may further limit
avenues of gene exchange and may lead to genomes
being more similar within clusters.
7. CONCLUSIONS
Microbes dominate marine biomass and are key players
in nutrient cycling and primary production in the
ocean. Although microbial diversity has been studied
extensively, there is still little theoretical understanding
or experimental evidence of ecologically coherent
groupings in the wild. Nonetheless, advances in
microbial ecology, genomics and evolution promise to
yield insights into structure–function relationships in
microbial communities. An important first step will be
the coalescence of theory and observation of genotypic
(and phenotypic) clusters within microbial commu-
nities. In order to decide whether such clusters
represent ecologically differentiated populations, their
dynamics will have to be correlated with distinct
environmental compartments (e.g. zooplankton,
particles, the microzone around algae) and environ-
mental factors (e.g. temperature, salinity, light) at
appropriate spatio-temporal scales (figures 1 and 3).
Increasing genomic and metagenomic data from
closely related organisms will also allow development
of mechanistic understanding of how these clusters
develop by testing the theoretical models for their
consistency with environmental data. Although popu-
lation genetic patterns such as those illustrated in
figure 2 are consistent with the action of selective
sweeps, one cannot rule out other processes, such as
demographics including migration and locally confined
bursts (e.g. microepidemics; Fraser et al. 2005;
figure 3). Just as selective and non-selective processes
can skew gene genealogies away from the neutral
coalescent expectation, so too can they skew expec-
tations for variation in gene content. Finally, many of
these fundamental challenges of developing functional
mapping from genetics and genomics to ecological and
evolutionary differences are not unique to microbes,
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but rather represent some of the central problems in
biology. We are optimistic that work in this field will
successfully lead to answers that were first posed by
Darwin almost 150 years ago.
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