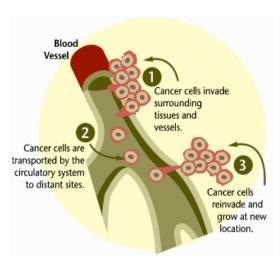

Metastasis and Angiogenesis

Advanced Topics in Cancer Biology 2009 Sears

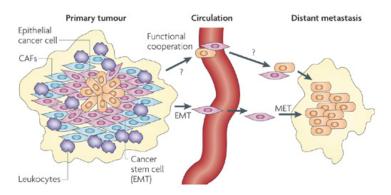
- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.


Malignant versus Benign Tumors

- Benign tumors generally do not spread by invasion or metastasis
- Malignant tumors are capable of spreading by invasion and metastasis – leading cause of cancer deaths

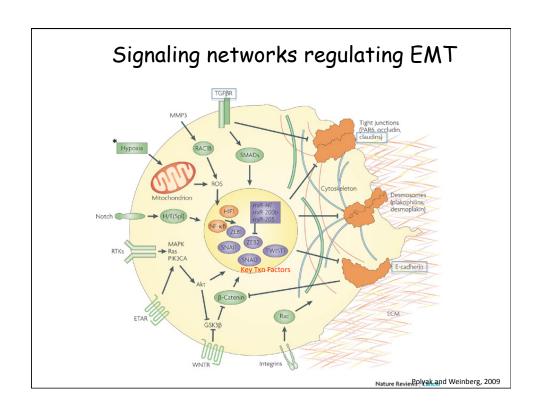
3

Invasion and Metastasis



- Abnormal cells proliferate and spread (metastasize) to other parts of the body
- Invasion direct migration and penetration into neighboring tissues
- Metastasis cancer cells penetrate into lymphatic system and blood vessels

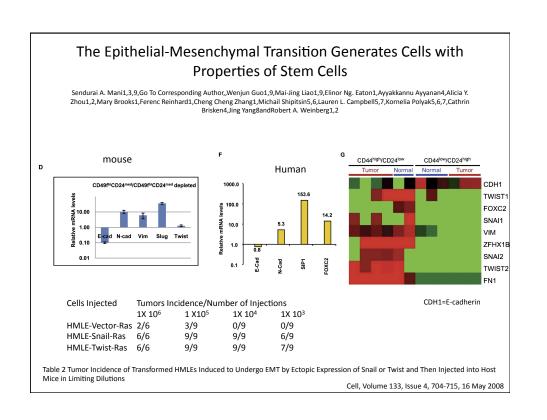
4

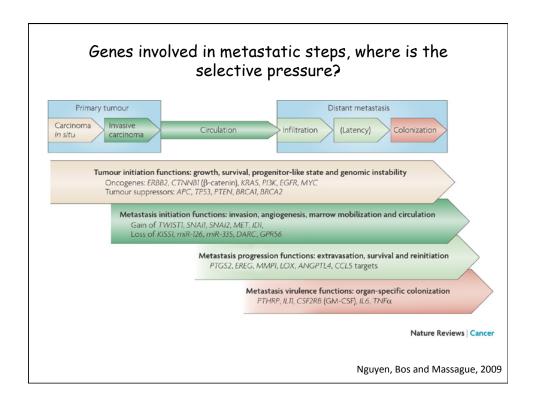

- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

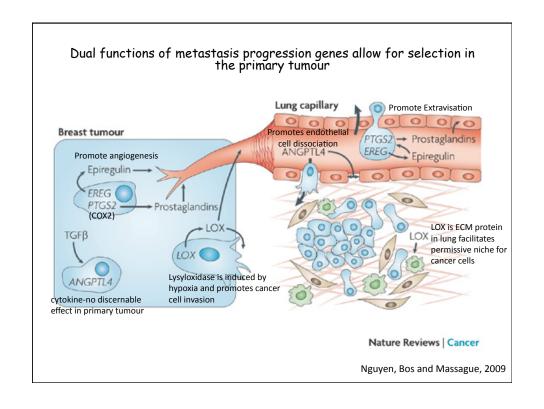
A Role for EMT in The Metastatic Process

- **The epithelial-mesenchymal transition (EMT) is triggered by a diverse set of stimuli including growth factor signalling, tumour-stromal cell interactions and hypoxia.
- # EMT has been shown to result in cancer cells with stem cell-like characteristics that have a propensity to invade surrounding tissue and display resistance to certain therapeutic interventions.
- # The mesenchymal—epithelial transition (MET) may have a role in the reversion of disseminated mesenchymal tumour cells to a more epithelial state in distant metastases.
- # microRNAs have been identified as a new class of EMT regulators, in part owing to their regulation of EMT-inducing transcription factors.

Polyak and Weinberg, 2009


Expression and clinical relevance of selected EMT-associated genes


Gene	Cancer type	Tumour stage	Association with clinico- pathological features	Refs
miR-200 and miR-205 family	Serous papillary ovarian cancer	FIGO stage III–IV	ND	46
miR-200 and miR-205 family	Breast cancer	ND	ND	44
miR-335 gene signature	Breast cancer	Primary invasive tumours	Decreased metastasis-free survival	50
miR-10b	Breast cancer	Primary invasive tumours	Presence of metastasis	49
EMT markers	Breast cancer	Primary invasive tumours	Basal-like subtype	58
FOXC2	Breast cancer	Primary invasive tumours	Basal-like subtype	59
SNAI1	Breast cancer	Primary invasive tumours	Poor prognosis	83,85, 86
SNAI2	Breast cancer	Primary invasive tumours	Poor prognosis	83,85, 86
TWIST1	Breast cancer	Primary invasive tumours	Poor prognosis	86
ZEB2	Breast and ovarian cancer	Tumours of different stages	Poor prognosis	87
ZEB1	Uterine cancer	Primary invasive tumours	Aggressive tumour characteristics	83,85


EMT, epithelial-mesenchymal transition; FOXC1, forkhead box protein C1; ND, not determined.

Polyak and Weinberg, 2009

Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression Y Usami 1 2, S Satake 1, F Nakayama 1, M Matsumoto 1, K Ohnuma 1, T Komori 2, S Semba 1, A Ito 1, H Yokozaki 1 * TE-15-Mock TE-15-Snail cl. 1 Snail E-cadherin E-cadherin 8 h claudin-1 claudin-1 claudin-7 claudin-7 16 h vimentin vimentin β-actin β -actin 24 h TE-15-Mock TE-15-Snail cl. 1 epithelial-type OESCC cells low density high density low density high density 2008 J. Pathology

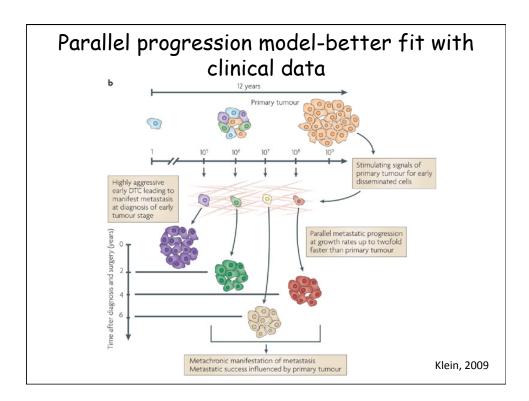
- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

Two Fundamental Models of Metastasis

Linear Model of Metastasis

In this model, tumour ontogeny proceeds to full malignancy within the primary tumour microenvironment, after which tumour cell dissemination founds a metastasis. Therefore, the primary tumour prescribes the molecular characteristics of DTCs (Disseminated Tumour Cells) spread throughout the body.

Parallel Model of Metastasis


In this model, tumour cells depart the primary lesion before the acquisition of fully malignant phenotypes to undergo somatic progression and metastatic growth at a distant site. The proposition of early dissemination and divergent progression of primary tumours and DTCs towards metastasis questions the role of the primary tumour for therapy prediction.

Linear progression model Primary tumour Primary metastasis Secondary metastasis metastasis Nature Reviews | Cancer Support for: Correlation with tumour size and frequency of metastasis.

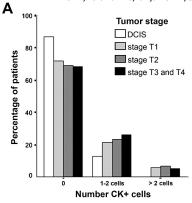
Support against: average doubling time 157 days for breast cancer so 12 years to reach 1 CM, then another 6-12 years for first met to reach 1 CM, not consistent with evidence.

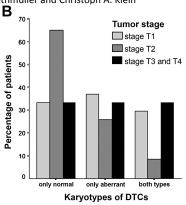
Klein, 2009

Parallel progression model 12 years Bone Liver Bone Liver Bone Liver Bone Liver Brain Bone Liver Brain Bone Liver Brain Bone Liver Metastasis Late-disseminating tumour cells from large printing tumour or metastasis Fossibly less capable of forming a metastasis or death of patient before relevance for disease Klein, 2009

Genetic evidence supporting the Parallel progression model

Seminal paper by Schlimok and Riethmuller detecting cytokeratin positive cells in bone marrow in patients with M0 and M1 breast cancer. Only 1-10 cells per 2 million bone marrow cells. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8672-6


Advent of single cell CGH showed bone marrow DTCs had significantly fewer genetic aberrations than primary tumour cells. In BC 50% of cytokerratin-positive cells had normal karyograms whereas all matched primary tumour karyograms were abnormal. But while DTC were karyotypically normall they contained small deletions typical of BC indicating that they disseminated before genome-wide instability was acquired (Schardt et al., 2005 Cancer Cell 8:227)


ERBB2 amplification in DTCs did not correlate with amplification in primary tumour. Interestingly, ERBB2 amplification in primary tumour (T1,T2) did not correlate with reduced survival, but patients displaying a gain in ERBB2 in a single DTC from bone marrow or lymph node died within 23 months. (Stoecklein et al., 2008, Cancer Cell 13:441)

KRAS and P53 mutations show heterogeneity within and between primary colorectal carcinomas and matched metastases. (Albanese et al., 2004, Biochem. Biophys. Res. Commun. 325:784)

Systemic Spread Is an Early Step in Breast Cancer

Yves Hüsemann, Jochen B. Geigl, Falk Schubert, Piero Musiani, Manfred Meyer, Elke Burghart, Guido Forni, Roland Eils, Tanja Fehm, Gert Riethmüller and Christoph A. Klein

- A. Number of detected CK+ cells per 2 X10⁶ bone marrow cells in patients with different tumor stages (DCIS, n = 39; T1, n = 328; T2, n = 202; and T3/4, n = 38). There was no association between tumor stage and the presence of disseminated cells, and specifically, the finding of CK+ cells in patients with ductal carcinoma in situ (DCIS; 13%) andT1-stage patients (22%) was statistically not different (p=0.093, Pearson's chi-square test).
- B. 105 single CK+ cells isolated from 56 patients showed no significant difference between patients with small and large, indicating that the well-known association of large tumor size and development of manifest metastasis is not explained by an increased frequency of genetically progressed cancer cells in bone marrow

Cancer Cell, 13, 58-68, 2008

Linear and Parallel progression modelsconsequences for therapy a Primary tumour DTC Analyse metastasis Second metastasis Second metastasis of the primary tumour. Catch-all therapies can be selected based analysis of the primary tumour. DTC at different sites Operating the primary tumour subtype; primary tumour less relevant for detailed response prediction. Predicting responses to therapies will require the molecular characterization of DTCs.

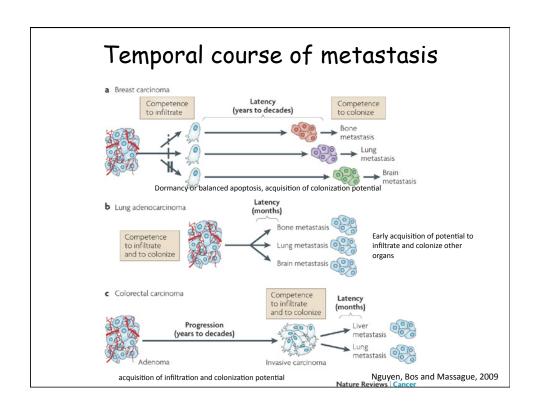
Questioning metastasis from metastasis

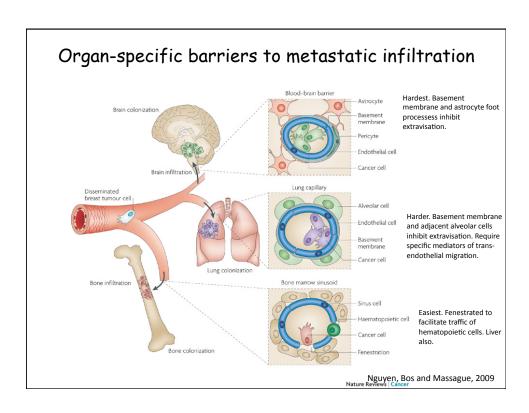
- A cascade model previously argued that targeting the first metastasis might prevent additional metastasis. (Weiss et al., 1988, J Cancer Res. Clin. Oncol. 114:605)
- Median time for 50% of BC patients with M0 disease and surgery to develop a single met is the same as for multiple mets. (Klein and Holzel, 2006, Cell Cycle 5:1788)
- Halsted's theory of continuous cancer spread by lymphatic dissemination (1907) is the basis for surgeon's removal of 10-12 lymph nodes in patients with a positive sentinel node.
- However, three randomized trials showed no effect of removal of clinically negative nodes on distant metastasis or survival. (Rudenstam et al., 2006, J. Clin. Oncol. 24:337)

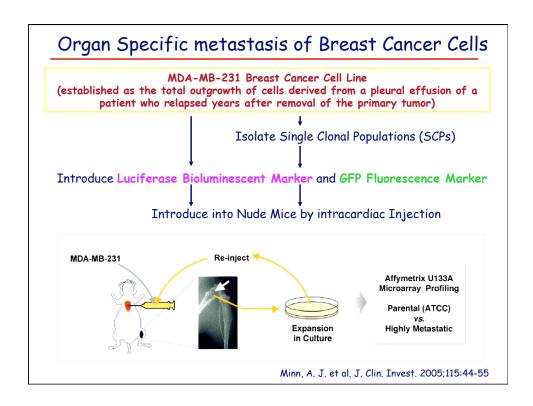
- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

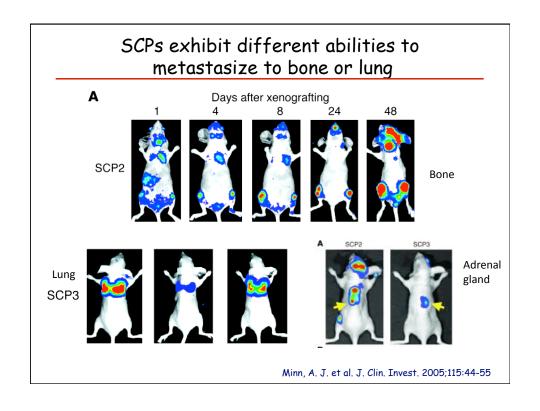
Metastasis is not random

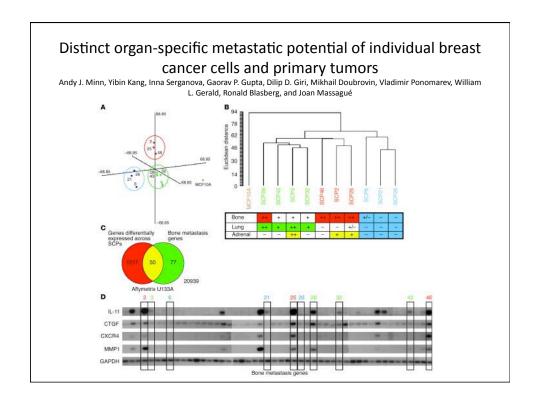
- Seed and soil hypothesis
 - 1889: Stephen Paget analyzed autopsy records of 735 women with breast cancer
 - Metastasis to distant sites was not due to chance
 - Certain tumor cells (the "seed") has an affinity for the milieu (the "soil") of certain organs. Metastases resulted when the seed and soil were compatible
- Regional metastases can be attributed to anatomic and mechanical factors but distant organ metastases is specific
 - 1964: Sugarbaker
 - Lymphatic drainage to regional lymph nodes
 - Organ-specific metastases: breast, prostate, and lung cancer metastasize to the bone, while colorectal cancer metastasized to the liver and lymph nodes

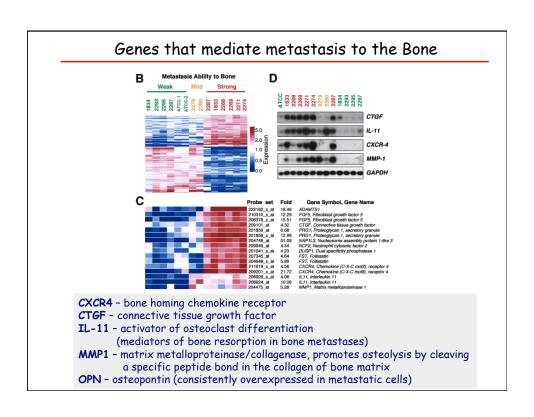

Typical sites of metastatic relapse for solid tumours

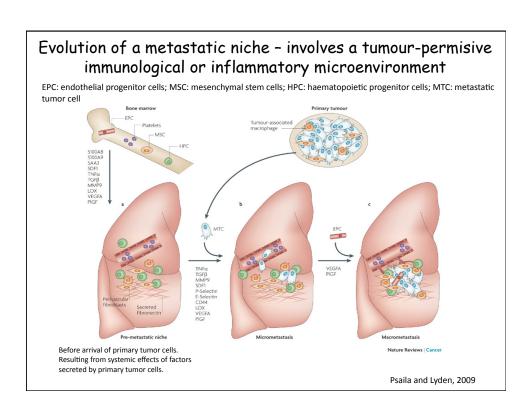

Tumour type	Principal sites of metastasis	
Breast	Bone, lungs, liver and brain	
Lung adenocarcinoma	Brain, bones, adrenal gland and liver	
Skin melanoma	Lungs, brain, skin and liver	
Colorectal	Liver and lungs	
Pancreatic	Liver and lungs	
Prostate	Bones	
Sarcoma	Lungs	
Uveal melanoma	Liver	

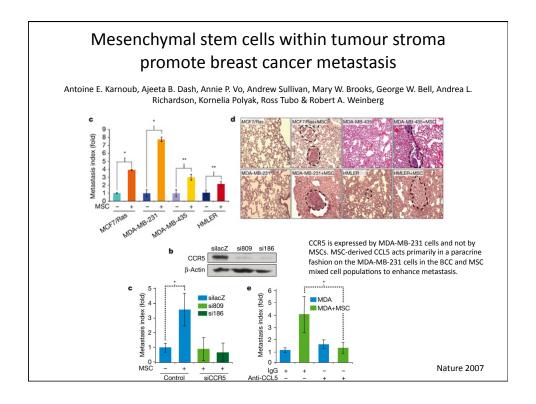

[•]Kinetics of metastasis is based on the temporal gap between organ *infiltration* and *colonization* producing a period of metastatic *latency*.


Nguyen, Bos and Massague, 2009


[•]Dramatically different latency for different cancer types: For example, adeoncarcinomas of the breast and lung relapse in a similar range of organs. However BC recurrence take years or decades while lung cancers establish distant metastases within months of diagnosis.



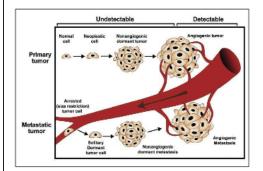




- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

Bone marrow-derived cells (BMDCs) foster tumorigenesis and metastasis

- Haematopoietic progenitor cells are implicated as initiators of the premetastatic niche and are involved in angiogenesis. Mature monocyte and macrophage cells and neutrophils secrete chemokines and matrixdegrading enzymes that modulate the local microenvironment and mediate the chemoattraction of other inflammatory cells to the premetastatic niche.
- Endothelial progenitor cells are mobilized from the bone marrow during angiogenesis. It has been suggested that recruitment of endothelial progenitor cells instigates the micrometastatic to macrometastatic switch.
- Mesenchymal stem cells give rise to fibroblasts, which are important components of the tumour stroma. They may also directly interact with tumour cells to enhance their metastatic phenotype



- General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

Angiogenic Switch - Hypothesis

Expansion of a tumor mass beyond the initial microscopic size of a non-angiogenic tumor is dependent on the recruitment of its own vascular supply, by angiogenesis and/or blood vessel cooption. The ability of a tumor to progress from a non-angiogenic to angiogenic phenotype is central to the progression of cancer and is termed the "angiogenic switch".



Figure 1. Dr. Judah Folkman (1933-2008)

History of Angiogenesis Research

- 1970's Hypothesis of Folkman that tumor growth depends on angiogenesis
- 1980's- Identification of vascular growth factors Proof of concept in animal models
- 1990's Clinical Trials of angiogenic inhibitors Early clinical failures monotherapy
- 2004- FDA approval of bevacizumab for metastatic colorectal CA
- 2007- Bevacizumab + irinotecan efficacious for glioblastoma

Tumor Angiogenesis

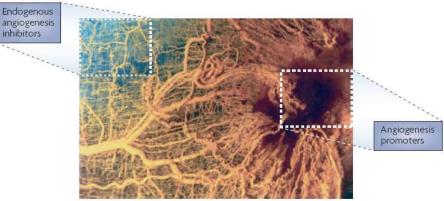
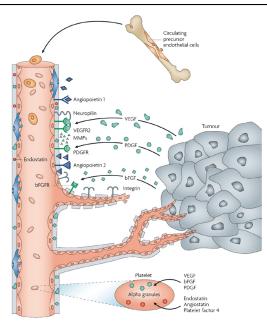


Figure 2 | Angiogenesis in rat sarcoma. In this micrograph, blood vessels grow towards a sarcoma (dark area at right) in rat muscle. This contrasts with the normal grid-like pattern of blood vessels that appears at the upper left. (Courtesy of L. Heuser and R. Ackland, University of Louisville, USA)

Folkman J, Nature Drug Discovery 6:274, 2007

Escape from tumor cell dormancy requires the angiogenic switch


Table 1 Human tumor cell lines that spontaneously switch to the angiogenic phenotype after a prolonged dormancy period in immunocompromised mice

Human cell line	Cancer type	Dormancy period	Spontaneous angiogenic switch (% of tumors that switch to the angiogenic phenotype)	Reference
MDA-MB-436	Breast	4 months	~80%	Naumov et al., JNCI 2006
KHOS-24OS	Osteosarcoma	8 months	~20%	Naumov et al., JNCI 2006
T98G	Brain	8 months	~60%	Naumov et al., JNCI 2006
SAOS-2	Osleosarcoma	12 months	~10–15%	Udagawa et al., FASEB 2002 and unpublished results
ST-2	Gastric	>8 months	<3%	Udagawa et al., FASEB 2002
MG-63	Osleosarcoma	12 months	~5%	Udagawa et al., FASEB 2002 and unpublished results
MDA-MB-436-A1*	Breast	8 months	~20%	Naumov et al., JNCI 2006
SW 872*	Liposarcoma	4 months	>95%	Almog et al., FASEB 2006

*Single cell done-derived tumor cell populations.

During dormancy cells: (1) remain harmless to the host until they switch to the angiogenic phenotype (i.e., may be harmless for 1 year or more, which is half the life-span of a mouse); (2) express equal or more antiangiogenic (i.e., thrombospondin-1) compared to angiogenic (i.e., VEGF, bFGF) proteins; (3) grow to approximately 1 mm in diameter or less in vivo, at which time further expansion ceases; (4) show active tumor cell proliferation in mice (balanced by apoptosis), and remain metabolically active during the dormancy period.

Naumov, Akslen and Judah Folkman, 2006 Cell Cycle

Folkman J, Nature Drug Discovery 6:274, 2007 Nature Reviews Drug Discovery 6:274, 2007

- •Angiopoietin 1 (ANGPT1) maintains normal blood vessels. Tumour cells secrete ANGPT2, which competes for binding to the endothelial TIE2 receptor. ANGPT2 increases the degradation of vascular basement membrane and migration of endothelial cells, therefore facilitating sprout formation.
- Vascular endothelial growth factor (VEGF) is secreted by tumour cells. It is the most common of at least six other pro-angiogenic proteins from tumours. Others include Platelet-derived growth factor (PDGF) and Basic fibroblast growth factor (bFGF; also known as FGF2). Endostatin is antimitogenic.
- •Integrins facilitate endothelial cell binding to extracellular matrix and promote cell viability. Proangiogenic proteins upregulate endothelial integrins to sustain endothelial cell viability during the intermittant detachments required for migration.
- •New endothelial cells are also recruited as precursor bone-marrow-derived endothelial cells.
- •Some angiogenic regulatory proteins (both proand anti-angiogenic) are scavenged by platelets, stored in alpha granules and released within the tumour vasculature.

- · General metastasis.
- Epithelial to mesenchymal transition.
- Linear versus parallel models of metastasis.
- Organ site specific metastasis.
- The metastatic niche.
- Angiogenesis.
- Anti-angiogenic therapy.

Current Angiogenic Inhibitors in Clinical Use and Clinical Trials

- Bevacizumab (Avastin™)
- Sunitinib (Sutent™)
- Sorafenib (Nexavar™)
- Cederanib (Recentin[™] AZD- 2171)
- Cilengitide
- VEGF-Trap

Many others in development

Different Mechanism of Action of 3 FDA-Approved Drugs

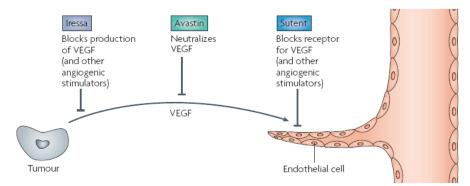
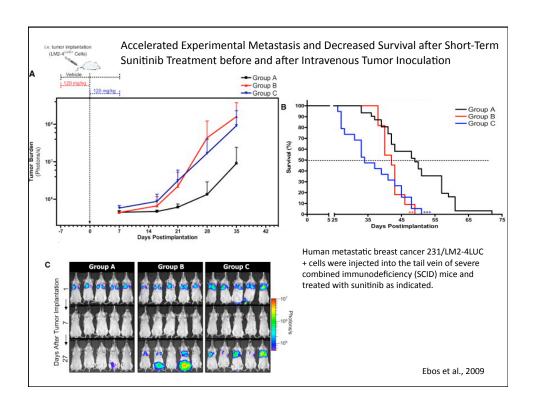
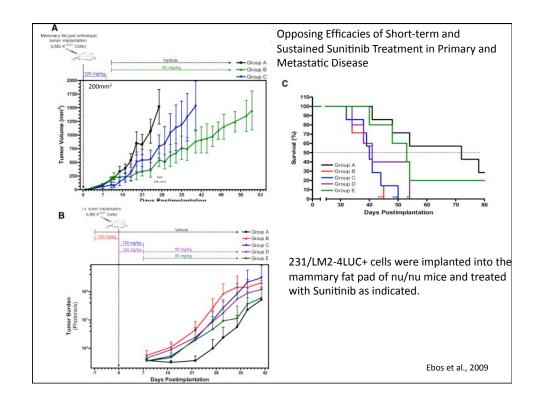
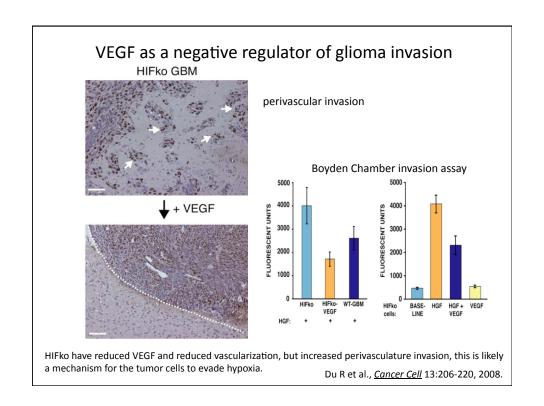
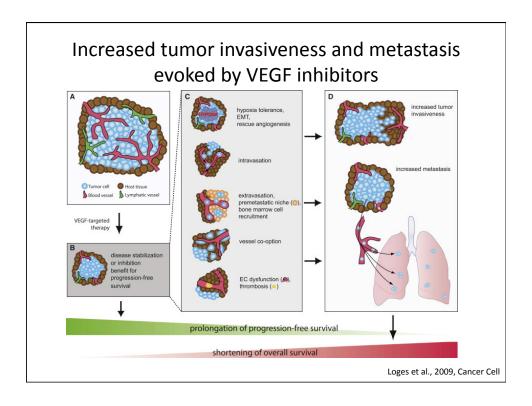


Figure 6 | Three general mechanisms of angiogenesis inhibitors currently approved by the FDA.


Folkman J, Nature Drug Discovery 6:274, 2007


Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis


Marta Pàez-Ribes, Elizabeth Allen, James Hudock, Takaaki Takeda, Hiroaki Okuyama, Francesc Viñals, Masahiro Inoue, Gabriele Bergers, Douglas Hanahan, Oriol Casanovas


Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis

John M.L. Ebos, Christina R. Lee, William Cruz-Munoz, Georg A. Bjarnason, James G. Christensen, Robert S. Kerbel

The End!