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Outline

Goal: Identification of transcriptional regulators that control cell cycle
regulated genes of Saccharomyces cerevisiae using non linear model

A new nonlinear differential equation model of gene expression
Dynamic transcriptional control and optimization using least squares
minimization

Algorithm utilizes dynamic model of time continuous gene expression
Method for determining correct regulators

Trends in expression profiles for selected genes and their regulators
Compared to linear model, nonlinear model gives better results in terms
of correct identification of the regulator and better fit to gene expression
profile of target.



Transcriptional regulation leads to changes in
gene expression

Transcriptional regulatory proteins recognize specific promoter
sequences and allow binding of RNA polymerase and initiating
transcription

DNA microarrays allow for the visualization and recording of changes in
gene expression over time

Changes in gene expression throughout the cell cycle of
Saccharomyces cerevisiae provides insight into regulator-target gene
relationships and the network interactions that result

Therefore, many studies focus on analyzing microarray data through
clustering methods to identify cell cycle controlled genes



Previous Methods Identify Upstream Regulatory
Genes through Generalized Linear Model

Wolf and Wang: used fuzzy logic

Nachman et al.: used dynamic Bayesian networks with a kinematic
model

Bar-Joseph: used gene expression analysis and genomic info alongside
one another

Wang et al. and Makita et al.: extending the work of Bar-Joseph,
incorporated promoter sequence analysis into gene expression analysis



Alternative Method Replaces Linear Model with
Non Linear Model

e 184 potential regulators chosen

e Set of 40 specific target genes within S. cerevisiae selected

e Genes from within set of potential regulators selected and applied to
model in order to see if regulator fits target gene expression profile
correctly

e Repeated for other target gene and potential regulator combos

e True regulators determined by identifying regulators that model the
target gene profile correctly and are found in YEASTRACT database
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Dynamic Model for Transcriptional Control
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e g:regulatory effect for a
particular gene
w: regulatory weights

e y: expression levels of
regulators

e b: transcription initiation
delay

e o: regulatory effects of
non-target genes

e k: rate constants

e z: target gene expression

e j:regulators




Simplified Model for One Transcriptional Control

e Simplified version of equation

three, focusing on the case of ds k;

only one transcriptional factor — — koz, 4
e Polynomial coefficients [a,,...,a ] dt 1+ exp(-wy+Db)

0 n

are computed from the gene

expression profile using least

square minimization.
e Polynomial used as an Vi

approximation for ‘true’

expression profile with

experimental errors.




Mean Square Error Function

o Z {z(t)}: Expression I Q _ S,
profiles of the target genes E = 5 Z z(tr) —2" ()]
o Y{y(t)}: Expression - =
profiles of the regulator
genes
e Time pointstr=17,7=1,2,...,
0 2
e Search for gene profiles: — =do + d1y — dsz,
Y € {Y,1,2,....m} (the m dr

pool of regulators) that
minimize E
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Computational Algorithm

Goal: select a set of potential regulators of a particular target gene by
estimating its expression profile

Method: find possible regulators using least squares minimization and
the model equation 4 to minimize error function

Degree of polynomial (equation 5) is chosen according to number of
data points in in the profile and the level of fluctuations for each
experiment.

Differential equation 4 is solved numerically and parameters are
optimized in least squares loop until desired predifined number of
iterations is obtained.



Computational Algorithm Continued

Use equation 5 to fit regulator genes with polynomial of degree n
Choose specific target gene

Choose possible regulator from large pool of potential ones

Use least squares minimization (equation 4) on target gene/ regulators &
error function (equation 6)

Repeat starting at step 3 for all potential regulators

Choose best fit regulators that match criteria

7. Repeat for all the target genes starting at step 2

hOODbD-=
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Dataset Selected Based on Previous Work

Used eukaryotic cell cycle dataset (Spellman et al.) to evaluate model
which includes..
o gene expression changes at 18 time points over 2 cell cycle periods
o 6178 open reading frames on microarray chip
o identified 800 genes associated with cell cycle according to their
expression
However, number of regulators controlling cell cycle < 800, therefore
pool of 184 chosen by researchers for this experiment based on
YEASTRACT database and previous papers
Chose same 40 target genes from Chen et al. paper to compare data



Inference of Regulators

e Data put into log base 2 of ratio [actual value of mMRNA divided by value

of a standard]
e Prior to use of algorithm, data squared and least squares minimization

applied to target gene for potential regulator

B o B B e LB, 8

e 7 = approximation of the unknown real profile of target gene
Approximation takes into account error due to experimentation and natural
fluctuations by polynomial fit



Calculation of Deviation from Experimental Data
Allows for Identification of Best Regulators

e In order to identify most probable
regulator for target gene, must

determine which regulator profile best
Q

models target gene profile (Equation 4) I | E
and minimizes error (Equation 6) Ey, = 5 Z 2(tr)—2" (t)]”- 9
e Therefore, chose regulators with an E - 1=1

less than or equal to the deviation E1
e Bestregulators=those that have a
recognizably smaller E than others



Outline

Goal: Identification of transcriptional regulators that control cell cycle
regulated genes of Saccharomyces cerevisiae using non linear model
Dynamic transcriptional control and optimization using least squares
minimization

Algorithm utilizes dynamic model of time continuous gene expression
Method for determining correct regulators

Trends in expression profiles for selected genes and their regulators
Compared to linear model, nonlinear model gives better results in terms
of correct identification of the regulator and better fit to gene expression
profile of target.



Comparison to YEASTRACT Database
Determines Correct Regulators

Table 1. Summary of identification of regulators for 40 selected yeast cell cycle regulated genes

Id Target best E=E, E = E<12*E Min(m) Min(m) lin E
m m m m Nonlin Lin

| YERIS0OW SPI1 3 4 5 8 4 2 0.0253 0.8339
2 YOR323C PRO2 1 8 75 182 7 35 0.0010 0.0236
3 YKL177W NA 0] 0 0 5 7 3 0.0006 0.0277
4 YMR288W HSHI155 2 10 11 26 10 12 0.0019 0.0588
5 YMR316W DIAI 4 15 29 40 21 1 0.0052 1.0992
6 YPL223C GREI 0 0] 0 1 5 6 0.0017 0.0373
7 YPRO35W GLNI1 2 2 2 10 2 6 0.0021 0.2907
8 YEROO3C PMI40 1 ' 3 4 1 11 0.0017 0.2779
9 YIL15aC FBP26 2 16 157 180 10 4 0.0003 0.0892
10 YMRI145C NDEI 0 0 3 10 4 16 0.0010 0.1342
11 YBRO&OW NA 2 4 4 5 4 3 0.0577 1.4703
12 YDR285W ZIP1 2 6 45 76 4 1 0.0274 1.8964
13 YFRO57TW NA 0 0 13 46 8 4 0.0039 0.1206
14 YALOISC NA 5 18 68 148 5 22 0.0003 0.1219
15 YOR383C FIT3 2 2 2 6 2 14 0.0219 1.4964
16 YOR319W HSH49 12 18 31 44 12 32 0.0801 4.7275
17 YOR264W DSE3 7 7 16 20 7 7 0.0097 1.1955
18 YOLI116W MSNI 4 6 32 84 4 4 0.0045 0.1843
19 YGR269W NA 0 0] 1 5 2 1 0.0108 0.0778
20 YKLOOIC MET14 4 13 23 27 3 | 0.0019 0.1988



As Criterion Decreases, Rate of False Positives
Increases

Id Target best E < E, E=<11%*E E=s12%E Min(m) Min(m) lin E
m m m m Nonlin Lin
21 YDR 146C SWI5 0 0 0 | 4 12 0.0096 0.5309
22 YPL256C CLN2 1 6 12 18 | 5 0.0253 1.2436
23 YIL187C SWEI | 2 3 6 | 4 0.0072 0.2139
24 YOR372C NDDI | 2 3 4 8 17 0.0062 0.1479
25 YLR274W CDC46 2 7 5 6 7 7 0.0303 0.6388
26 YHR152W SPOI12 2 3 5 7 3 12 0.0012 0.3448
27 YCRO65W HCM1 2 §] 6 8 6 16 0.0037 0.7056
28 Y ALO40C CLN3 2 4 15 19 21 14 0.0105 0.7826
29 YDR224C HTBI | 3 3 3| 3 2 0.0218 0.7135
30 YGLI16W CDC20 2 10 10 11 10 17 0.0050 0.5054
31 YPRI119W CLB2 4 i 9 13 8 21 0.0173 3.5841
32 YPL163C SVSI 4 6 8 9 6 22 0.0360 7.7809
33 YLR210W CLB4 0] 0 0 0] 15 3 0.0070 (0.0858
34 YGR109C CLB6 4 4 7 8 10 10 0.0922 5.9788
35 YBRO1OW HHTI 0] 0 1 1 7 5 0.0504 1.4994
36 YERI11C SWi4 2 21 24 2 1 | 0.0023 0.0000
3 YLRO79W SIC1 3 5 7 11 5 4 0.0384 0.5123
3 YEROOIW MNNI1 | 2 6 9 | 11 0.0193 3.5400
39 YDR225W HTAI 1 4 4 3 4 9 0.0429 6.9192
40 YKLIZSW ASHI1 8 8 15 28 6 | 0.0173 0.0000
% found 35 375 60 fi] 100 — - —

Vu, T. T., & Vohradsky, J. (2007)
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Repressor and Target Gene Display Opposite Trends
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Activator and Target Gene Display Similar
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Figure 1. Expression profiles of 12 cell cycle regulated genes and their predicted regulators. (A) repressors, (B) activators. Horizontal axis—time points, vertical
axis—expression relative to time point zero. Gene names in captions are arranged as target/regulator, symbols—target gene profile, dotted line—target gene
profile fitted using the model, solid line—profile of the best fitting regulator (the lines are interrupted at the positions where the original data points were
missing).

Vu, T. T., & Vohradsky, J. (2007)



Non Linear Model Give Better Results Compared
to Linear Model
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Figure 2. Histogram of distribution of the order of correctly identified
regulators in the sorted list of potential regulators [columns Min(m) and
Min(m) lin in Table 1], horizontal axis—the order in the sorted list.
Regulators were sorted according to the error of approximation of the target
gene expression profile (Equation 6). (A) Nonlinear model Equation 4,
(B) linear model Equation 7.
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Summary

Found that non linear model correctly identifies the regulators of target genes
associated with the cell cycle in yeast and correctly determines their function
(activator or repressor)

Linear model gave lowest fit and lowest prediction ability when compared to both
non linear model and model presented in Chen et. al (generalized linear model)
When 3 models were compared (non linear, linear, Chen et. al) found that all 3
gave different results for the sets of genes

The non linear model overall showed good accuracy and reasonable fit

Since the model captures the behavior of transcriptional regulation/ provides info
on influence of possible regulators and correctly predicts regulators, it can act as
a useful tool in interpreting gene expression time series

However, large scale network may require a large number of computations that
may be unrealistic



