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What have we learned last lecture:

Negative lens

Concept of diffraction

Fourier property of a lens

Microscope resolution — diffraction picture and Fourier picture
Definition of PSF

Definition of OTF

Definition of numerical aperture



A typical biomedical optics experiment
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Physical Principle of High Sensitivity Optical Detectors

High sensitivity photodetectors today are mainly based on two physical processes:
(1) Photoelectric effect

(2) Photovoltic effect

One can detect light by other processes such as heating.
Power meter for laser light is called a thermopile and is based
on heating by light — not very sensitive



Photoelectric Effect

First observed by Becquerel in 1839, he observed current in conductive
solutions as electrode is exposed to light

Theoretically explained by Einstein: An electron knocks out of a material
by a photon. It is one of the major evidence in the quantization of light.

hv=¢+E

¢ is the work function characterizing the barrier in the material for electron
Ejection. E, is the kinetic energy of the ejected electron.

The kinetic energy depends only on the color (energy) of the photon
but not light intensity (number of photons)

The number of electrons ejected is proportional to the number of photons



Photovoltic Effect

QM predicts that the electrons in a periodic lattice occupy energy bands
that has gaps.
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Photovoltic Effect Il
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Signal and Noise in Optical Detection

Signal — the amount of light incident upon the detector per unit time

N is the number of photons detected per unit time

Al is the data acquisition time
<l >=anq/ At
q is the electron charge= 1.6x107° ¢
(1A = 1C/sec)

o is a gain factor of the detector

Noise — the “disturbance” on the signal level that hinders an accurate measurement




Signal-to-Noise Ratio and Noise Equivalent Power

Signal: S =<1 >2 R

SNR: Signal power/Noise power = S/N

NEP: Signal power at which SNR =1



Source of Noise in Optical Detectors

(1) Optical shot noise (N,) —
iInherent noise in counting a finite number of photons per unit time

(2) Dark current noise (N) —
thermally induced “firing” of the detector

(3) Johnson noise (N;) —

thermally induced current fluctuation in the load resistor

Since the noises are uncorrelated, the different sources of noise add in quadrature

NZoc N2+ NZ + N3



Optical Shot Noise

Photon arrival at detector are statistically independent, “uncorrelated”, events

What do we meant by uncorrelated?

IT_irorg% Tf(n(t +7)—m)(N(t) =) * =< An(t + 7)An*(t) >=0 7 #0

(* denotes complex conjugate)

Although the mean number of photons arriving per unit time, A, IS constant on average,
at each measurement time interval, the number of detected photons can vary.

The statistical fluctuation of these un-correlated random events are characterized
by Poisson statistics.



Poisson Statistics

If the mean number of photon detected is N , the probability of
observing n photons in time interval t is:
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Spectrum of Possion Noise |
AT(F) = T Alt)e-2tge where Al (t) = gAf (n(t) — )
Assume |_oo:10ton number is Poisson distributed
Power spectral density: P(f) =RAFAI *(f)AI (f)
Noise power: N(f ,Af) = 5( f)Af

The power spectral density can be evaluated in a slightly round about way by
considering the autocorrelation function:

Autocorrelation function: g(7) = RAf jAl (t+7)Al (1) *dt

Because the event of Poisson process is completely independent of each other

9(7) = RO',25(T)/Af



Spectrum of Poisson Noise Il

5(1‘) is the Dirac-Delta function with the following properties:

It has the unit of frequency

0(0) =o0; 6(t) =0 fort =0

[omadt=1 [ f®5t-r)dt = f () o
From Poisson process: GIZ — 2anf <| >
Factor of 2 account for positive and negative frequency bands

The autocorelation function of Poisson noise is:

gd(7) =2Rag < | > (1)



Spectrum of Poisson Noise llI

Wiener-Khintchine Theorem: 5( f)= J- g(r)e "™ dr

—0o0

Let’'s why Wiener-Khintchine theorem is true:

jg(r)e 247 - = RAT j [ j ALt +7)Al (t)dt]e 27 d 7

—OO —OO

— RAf j [ j Al (t+7)e 7 2*7d 7] Al (t)dt

—00 —00

— RAf j [ j Al (e 747 d 7' Je 27 AL () dit

—00 —00

r'=t+7,dr'=dr
— RAF[ j AL(2)e 227 d ][ j Al (e 2™ dt]

— RAFAT (f)AI (F)*

Fourier transform of the autocorrelation function is the power spectral density



Spectrum of Possion Noise IV

P(f)= jzRaq <1 >8(r)e 2 df =2Rag <1 >

| A
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Poisson noise has a “white” spectrum

Noise in a given spectral band:

N(f,Af)=2Raq < | > Af



Photon Shot Noise

The origin of the photon shot noise comes from the Poisson statistics of
the incoming photons itself

The shot noise power is:

Log(S/N) 1

iy
I

N, (f,Af)=2Raq < | > Af

The signal power is; S =< | >2 R

<> ogn/At 2oqnAf

SNR = -
200Af  20QAf 20 Af

=N

logS
Used sampling theorem: 1/ At = 2Af

A detector is consider to be “ideal” if it is dominated by just shot noise.



