

Advances in analytical biochemistry and systems biology: Proteomics

Brett Boghigian

Department of Chemical & Biological Engineering

Tufts University

July 29, 2005

Proteomics

- The basics
- History
- Current and developing techniques and technologies
- How we can use proteomics in our research

Genome vs. Proteome

Transcriptional profiles cannot be directly correlated to proteomic profiles

- Genome
 - All of the genetic information and material possessed by an organism
- Proteome
 - The complete profile of proteins expressed in a given tissue, cell, or biological system at a given time

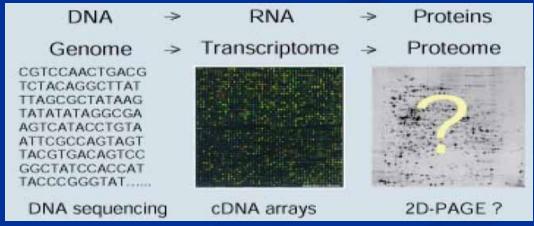
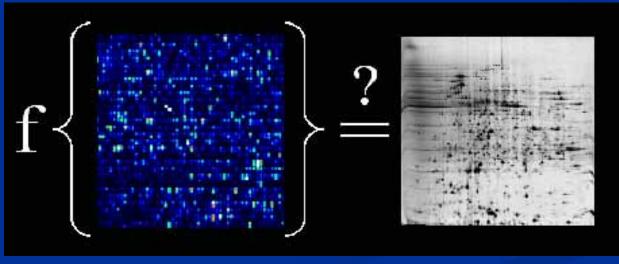


Figure 1 (DNA \rightarrow RNA \rightarrow protein)

Mapping the genome

- 1995 first prokaryote *Haemophilus influence* mapped
- 1996 first eukaryote *Saccharomyces* cervisiae mapped
- 1998 first multicellular organism Caenorhabditis elegans mapped
- 2000 first plant Arabidopsis thaliana mapped
- 2001 human mapped

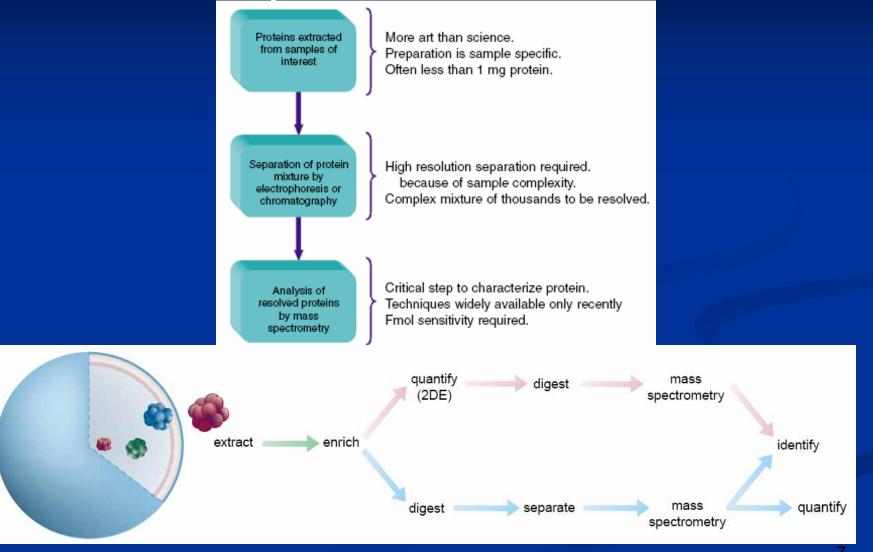
Mapping the proteome?


- Genome
 - Essentially static over time
 - Non site-specific
 - Human genome mapped (2001)
 - ~22,000 genes
 - PCR used to amplifyDNA

- Proteome
 - Dynamic over time
 - Site-specific
 - Human proteome *not* mapped
 - ~400,000 proteins
 - No equivalent of PCR for proteins

Genome → Proteome

- Large increase in protein diversity due to:
 - Alternative splicing of pre-mRNA (introns and exons)
 - Post-translational modifications (phosphorylation, glycosolation, hydroxylation, etc.) of proteins
 - Cell-age and health



cDNA Array

2D SDS-PAGE

SCHOOL OF ENGINEERING

The basic proteomics "workflow"

Proteomics

- The basics
- History
- Current and developing techniques and technologies
- How we can use proteomics in our research

History – 2D PAGE

- 1975 Patrick O'Farrell at CU Boulder
- Two-dimensional polyacrylamide gel electrophoresis
 - Protein separation

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 250, No. 10, Leon of May 25, pp. 4607-4621, 1975 Printed in U.S.A.

High Resolution Two-Dimensional Electrophoresis of Proteins*

(Received for publication, September 5, 1974)

Patrick H. O'Farrell‡

From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80302

SUMMARY

A technique has been developed for the separation of

than bacteriophage the response to pleiotropic effectors, developmental transitions or mutation cannot be adequately analyzed by means of any open-dimensional technique for protein senerg-

A. CROSS SECTION B. FRONT PLATE OF ASSEMBLED (Viewed from back) PLATES isoelectric N focusing gel BACK FRONT C. BACK PLATE (Viewed from front) -164-D. PERSPECTIVE

Fig. 1. Illustration of the slab gel plates. These plates are prepared as described in the text. All measurements are given in mm.

Figure 5 (Basic 2-D gel assembly)

a

History – 2D PAGE



Fig. 2. Separation of Escherichia coli proteins. E. coli (1100) was labeled with ¹⁶C-amino-acids as described under "Materials and Methods." The cells were lysed by sonication, treated with DNase and RNase and dissolved in lysis buffer. Twenty-five microliters of sample containing 180,000 cpm and approximately 10 ag of protein were loaded on the gel. The isoelectric focusing gel was equilibrated for 30 min. The gel in the SDS dimension was a 9.25 to 14.4% exponential acrylamide gradient. A volume of 10 ml of 14.4% acrylamide was used in the front chamber of the gradient

mixer. The total volume of the gel was 16 ml. At this exposure, 825 hours, it is possible to count 1000 spots on the original autoradiogram. All autoradiograms of two-dimensional gels were photographed with a metric ruler along two edges of the autoradiogram. These rulers establish a coordinate system which is used to give spot positions. The verticle scale is given in units from top to bottom. The borizontal scale is given in units from left to right. The coordinates are given as horizontal × vertical.

History – from protein chemistry to proteomics

- 1980s advances in molecular biology:
 - Gene cloning
 - Sequencing
 - Expression analysis
- Led to a link between observed activity or function of a single protein and the gene that encoded it → protein chemistry

History – from protein chemistry to proteomics

- Successful sequencing projects led to the development of "reverse" approaches
 - Focus on phenotype instead of genotype
- Also led to gene sequence databases
- With a wide array of complete gene sequences, why not look at all of an organism's proteins instead of one? → **proteomics**
- Now the only limitation was not correlating genotype to phenotype, but in the ability to sequence proteins and peptides → mass spectrometry

History – mass spectrometry

- 1899 J.J. Thompson publishes first article on mass spectrography
- Principle is that molecules must first be ionized
 - Difficult to do to with larger molecules such as proteins without destroying them
- Late 1980s advent of electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) techniques

History – Systems biology technologies

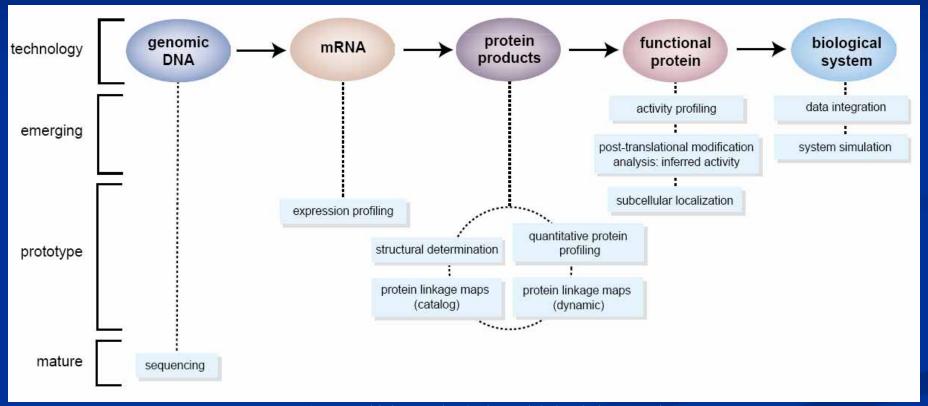
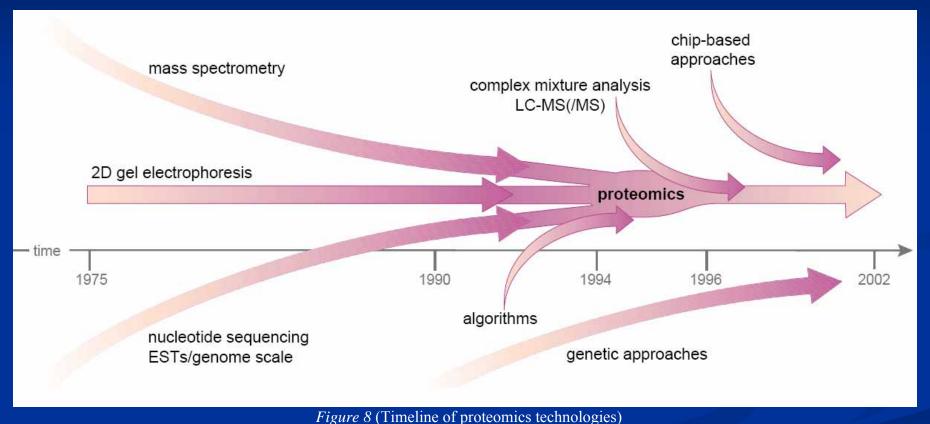



Figure 7 (Systems biology technologies and their relative maturity)

History – Proteomics technologies

Proteomics

- The basics
- History
- Current and developing techniques and technologies
- How we can use proteomics in our research

Gel vs. gel-free methods

• 2D SDS-PAGE

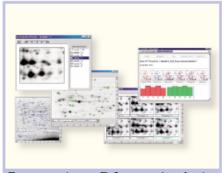
- Gold standard in proteomic analysis
- Very low and very high MW,
 and very basic and very acidic
 proteins have limited
 sensitivity
- Can detect post-translational modifications with various protein stains
- Multiple proteins in one spot

• HPLC

Developing technology typically used in tandem with ESI-MS/MS

Gel-based proteomic workflow

IMAGING


ProXPRESS™ Proteomics Imaging System

SAMPLE PREP and TARGET SPOTTING

MultiPROBE® II Proteomics Workstation

ANALYSIS

Progenesis™ 2-D Image Analysis Software

TARGET SPOTTING

TOFprep™ MALDI Spotting System

SPOT EXCISION

ProXCISION™ Proteomics Gel Cutting Robot

PROTEIN IDENTIFICATION

prOTOF™ 2000 MALDI O-TOF Mass Spectrometer

Step 1: Protein separation

- 2D SDS-PAGE
 - First dimension separate by charge
 - Second dimension separate by size

New technologies in gel-based protein separation

Increased first-dimensional focusing power

Figure 10 (Bio-Rad ReadyStrip IPG Strips)

Figure 11 (Bio-Rad PROTEAN IEF Cell)

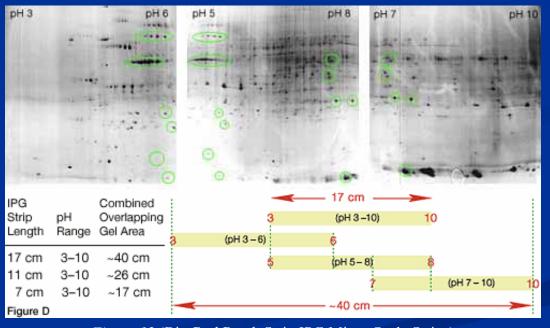


Figure 12 (Bio-Rad ReadyStrip IPG Micro-Scale Strips)

Step 2: Gel dying

 Coomassie Brilliant Blue (CBB) stain

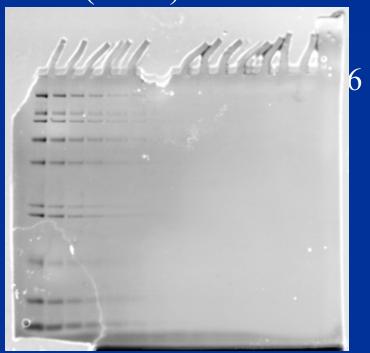


Figure 13 (Pierce GelCode Blue stain)

- Silver stain
 - Complex staining

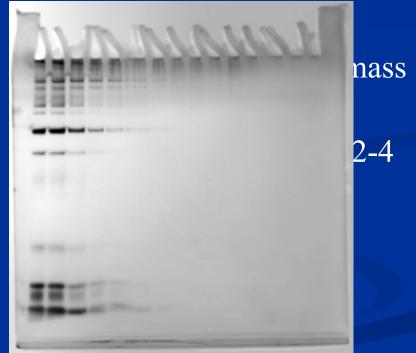


Figure 14 (Bio-Rad Silver stain)

New technologies in protein gel staining

- Fluorescent stains and multiplexing proteomics
 - SYPRO Ruby (all proteins)
 - Pro-Q Diamond (phosphoproteins)
 - Pro-Q Emerald (glycoproteins)

Figure 15 (1D gels stained with Pro-Q Diamond (left) and SYPRO Ruby (right))

Step 3: Gel imaging and analysis

- Charge-coupled device (CCD) cameras
 - Filters define wavelength diversity
 - Higher resolution but relatively slow

Figure 16 (PerkinElmer ProXPRESS 2D Proteomic Imaging System)

- Laser imaging devices
 - Fixed wavelengths
 - Lower resolution but relatively fast

Figure 17 (Bio-Rad Molecular Imager FX Pro Plus System)

New technologies in gel imaging and analysis

• Three-dimensional gel analysis

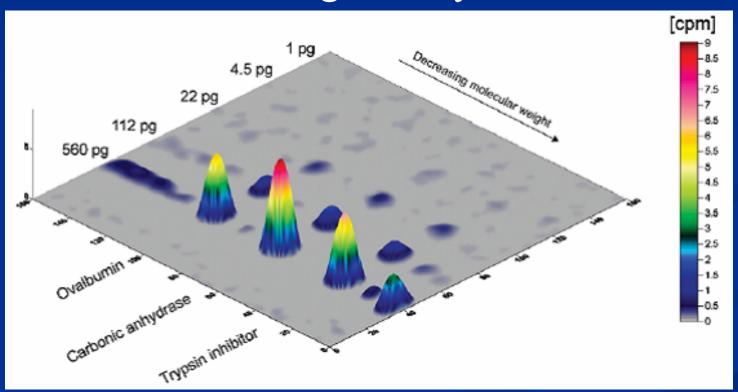


Figure 18 (3-D image analysis of a 1-D gel)

New technologies in gel imaging and analysis

• Three-dimensional gel analysis

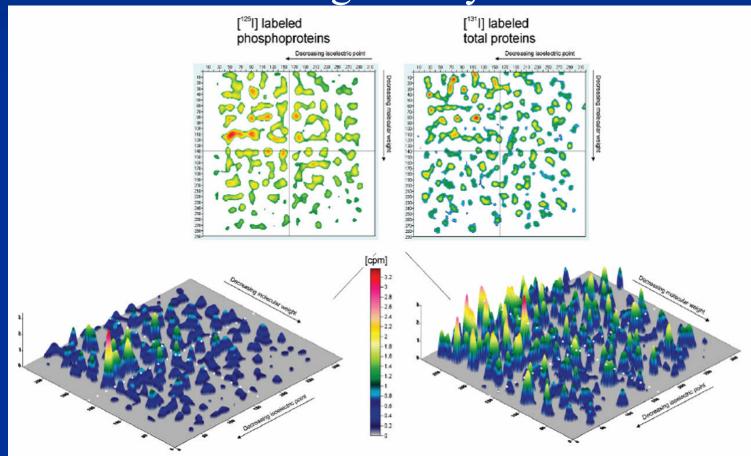


Figure 19 (3-D image analysis of multiplexed 2-D gels)

Step 4: Gel-spot excision

- Cut protein spots from 1-D and 2-D gels for subsequent mass spectrometry analysis
- Typically done manually
 - Extremely labor intensive and time-consuming
 - May miss some of a spot and therefore miss protein
 - Disrupt quantitative-intensive experiments

New technologies in gel-spot excision

- Automation
 - Some systems have a CCD camera on board
 - Use in tandem with a standalone imager

Figure 20 (Genomic Solutions Investigator ProPic II)

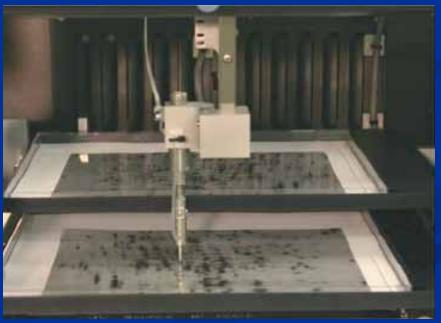


Figure 21 (Robot cutting two, 2-D gels)

Step 5: Sample digestion and plating

- Typically done manually
 - Extremely labor intensive and time-consuming
 - Large problem with contamination

New technologies in sample digestion and plating

- Automation
 - Saves time and manpower

Figure 22 (Genomic Solutions Investigator ProPrep)

Step 6: Mass spectrometry

• Identify and quantify proteins and peptides

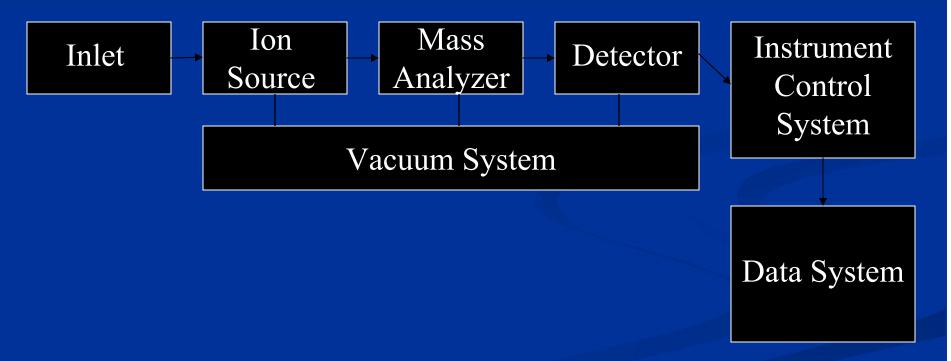


Figure 23 (General flow diagram of a mass spectrometer)

Step 6: Mass spectrometry

- Ion sources (ESI and MALDI) are coupled with mass analyzers
 - MALDI is commonly coupled with a time-offlight (TOF) analyzer
 - ESI is commonly coupled with a ion-trap or quadrupole analyzer

MALDI-TOF MS

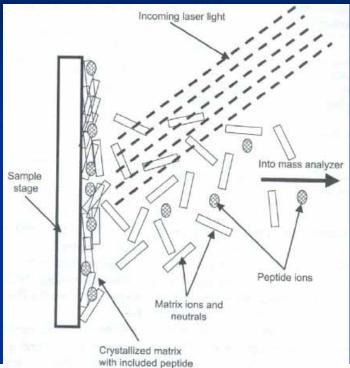


Figure 24 (MALDI ion source and TOF mass analyzer)

ESI Quadrupole MS

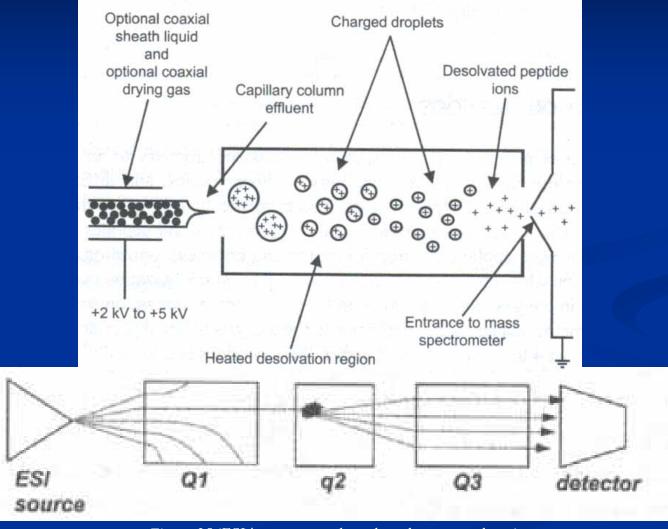


Figure 25 (ESI ion source and quadrupole mass analyzer)

MALDI-TOF vs. ESI-quadrupole

MALDI-TOF

- Sample on a slide
- Spectra generate masses of peptide ions
- Protein identification by peptide mass fingerprinting
- Expensive
- Good for sequenced genomes

ESI-quadrupole

- Sample in solution
- MS-MS spectra reveal fragmentation patterns – amino acid sequence data possible
- Protein identification by cross-correlation algorithms
- Very Expensive
- Good for unsequenced genomes

Step 7: Protein databases

- **SWISS-PROT** database of annotated protein sequences. Contains additional information on protein function, protein domains, known post-translational modifications, etc. (http://us.expasy.org/sprot)
- **TrEMBL** computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot.
- **PIR-International** –annotated database of protein sequences. (http://www-nbrf.georgetown.edu/)
- **NCBInr** translated GenBank DNA sequences, Swiss-Prot, PIR.
- **ESTdb** expressed sequence tag database (NIH/NSF)
- **UniProt** proposed new database. Will join Swiss-Prot, TrEMBL, PIR. http://pir.georgetown.edu/uniprot/

Proteomics

- The basics
- History
- Current and developing techniques and technologies
- How we can use proteomics in our research

Applying proteomic techniques to metabolic engineering

- Advantage 2DE provides excellent quantitative results on protein expression
- Better resolution than running 1D gels
 - DEBS1 (370 kDa), DEBS2 (380 kDa), and DEBS3
 (332 kDa) are large proteins; therefore, difficult to view on 1-D gels
- Specific Aim 1 correlate DEBS protein expression under standard culture conditions to 6dEB production

Applying proteomic techniques to metabolic engineering

- **Advantage** MS provides extremely sensitive measurements based on *m/z* ratio
- Detect proteins (DEBS) and organics (6dEB) on very low levels
 - Much more sensitive than HPLC

• Specific Aim 2 – use MALDI-TOF MS or LC-MS/MS to test viability of MS instruments on our system

Applying proteomic techniques to metabolic engineering

- Advantage fluorescent multiplexing techniques provide information on post-translationally modified proteins
- Using specific stains, view phosphorylated and glycosolated proteins

• Specific Aim 3 – after 2-D protein maps have been generated, run again with different stains to multiplex images

Questions?