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Today we take a closer look at one of the solution thermodynamics key points
from Steve’s presentation. Here it is:

d[ln(koff)]

d[osmolal]
= −

∆Nw

55.6

the change in the protein-DNA unbinding rate with respect to the water activity
(in terms of solute osmolal concentration) is proportional to the change in the
number of the "excluding" water molecules during dissociation.
Some of us may see how this result comes about right away, but if you are like
me, understanding it takes some time. What I am going to do today is show
how we can arrive at this important formula, one baby step at a time.

Solution thermodynamics

First we will review the basics of the solution thermodynamics briefly, especially
the quantities that are important for this talk: chemical potential µ, Gibbs free
energy G, and osmotic pressure Posm. Then we will look at how water activ-
ity changes with osmotic pressure. Finally, we’ll arrive at the aforementioned
dissociation – water activity dependence.

Let us start with conservation of energy. We postulate that the energy
is conserved or, more specifically, that the internal energy of the system E
is conserved unless heat is added (changing entropy), work is done (changing
volume), or more matter is introduced into the system (changing the number of
particles). Thus, we write E = E(S, V, Ni). The change in E is given by chain
rule as

dE =

(

∂E

∂S

)

V,{Ni}

dS +

(

∂E

∂V

)

S,{Ni}

dV +

(

∂E

∂Ni

)

V,S

dNi .

We call various partial derivatives in the above equation: T, -P, µ:

T ≡

(

∂E

∂S

)

V,{Ni}

, −P ≡

(

∂E

∂V

)

S,{Ni}

, µ ≡

(

∂E

∂Ni

)

V,S

in other words, the first law of thermodynamics becomes

dE = TdS − pdV +
∑

i

µi dNi .

Since the state variables S, V , and N are all extensive, we can use Euler’s
homogeneous function theorem and write explicit definition of internal energy
as

E = TS − pV +
∑

i

µiNi .
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In context of experimental observation, we are interested in things like: what
reactions are going to take place; in what direction and to what extent; what
will be the final equilibrium state. Examining the internal energy potential
differential, we see that when all the state variables are kept constant, the change
in E is zero. In other words, the thermodynamic potential “internal energy” has
an absolute minimum at equilibrium: when S, V , and Ni of a closed system are
held constant, the internal energy E decreases and reaches a minimum value.
This, in theory, should determine the direction of all chemical reactions that
take place under given conditions, as well as their extent. In practice however,
we rarely deal with isentropic processes: for example, diluting salt in water is
driven by entropy change.

The internal energy potential therefore is not very convenient when looking
at chemical reactions that take place in a lab, where the constant parameters
are pressure and temperature. Fortunately, we can use a more suitable ther-
modynamic potential, which has P and T as state variables. This potential is
defined as

G = E + PV − TS (=
∑

i

µiNi) .

Taking a differential, we obtain

dG = dU + p dV + V dp − TdS − SdT ,

dG = TdS − p dV +
∑

i

µi dNi + p dV + V dp − TdS − SdT ,

dG = V dp − SdT +
∑

i

µi dNi ,

along with a useful identity (Gibs-Duhem corollary)

∑

i

µi dNi = V dp − SdT .

The Gibbs free energy G is minimized when a system reaches equilibrium at
constant pressure and temperature. As such, it is a convenient criterion of
spontaneity for processes with constant pressure and temperature.

Also, note that the chemical potential is now conveniently defined as a partial
derivative of G with respect to Ni :

µ ≡

(

∂G

∂Ni

)

T,P

.

Transitional entropy of solution, free energy, chemical po-

tential, osmotic pressure

Consider a binary solution - a mixture of 2 kinds of molecules. Assume that
before mixing both substances had equal temperature and pressure. Then the
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spontaneous process of mixing is driven purely by entropy: the only state vari-
able that changes is entropy S, and so the change in G is going to come from
increase in entropy of mixing alone (rearrangement of molecules). Before mix-
ing, the free energy of constituents is given by

G0 = (E + PV − TS)0 = µ0N0

i ,

while after the mixing it is

G =
∑

i

µ0

i N
0

i − T∆S .

To figure out the change in Gibbs free energy we need to know the change in
S due to rearrangement. If we start from two substances (say water "w" and
solute "s") perfectly separated, and end up with a perfectly mixed solution at
equilibrium, the change will be given by Boltsman’s entropy formula

S = kB lnW ,

where W is the number of ways Nw molecules of water and Ns molecules of
solvent can be rearranged on a lattice of the size N = Nw + Ns. The number
of such permutations, taking into account that Nw molecules and Ns molecules
are identical among themselves, is given by

W =
N !

Nw!Ns!
.

Using Stirling’s formula for large N ln N ! ≈ NlnN + N − 1, we obtain

∆S = −kB

(

Nwln(
Nw

N
) + Nsln(

Ns

N
)

)

.

The free energy of a binary mixture is given by

G = G0 − T∆S = µ0

wN0

w + µ0

sN
0

s + kBT

(

Nwln(
Nw

N
) + Nsln(

Ns

N
)

)

.

From here we calculate the chemical potentials of solvent by taking partial
derivatives of G with respect to Nw and Ns:

µs = µ0

s + kBT ln(xs) ,

µw = µ0

w + kBT ln(1 − xs) ,

where xs is a mole fraction of the solvent, and xs + xw = 1.
Let us examine these results. The equilibration of the chemical potential

is the driving force behind the molecular diffusion, just like the temperature
equilibration is the driving force behind the heat transfer. If we try to apply the
above formulation to the case when two solutions of different solvent concentra-
tion are brought in contact across a semi-permeable membrane, we seem to be
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“in trouble". Imagine two tanks, one with salt solution and the other with pure
water, separated by a membrane that is only permeable to water (just like RBC
membrane). Chemical potential of water in the solution is lower than that in
pure water, so more water molecules are going to be transported in the direc-
tion of the lower µ than in the opposite direction. But no matter how long this
continues, the solt concentration in solution is never going to go to zero, and
as a result the entropic parts of the chemical potential on the two sides of the
membrane will never balance. Is the osmoses going to drive all of the available
pure water into the solution, desperately trying to equilibrate µ? Not really,
because the enthalpic part of the chemical potential µ0 depends on pressure:

µw(T, P ) = µ0

w(T, P ) − Posmvw = µ0

w(T, P0) + Pvw − Posmvw .

The hydrostatic pressure in the tank with water and solt rises to counter the
osmosis across the semi-permiable membrane (the enthropic logarithmic term).
Hence we can talk of the "Osmotic pressure", defining it as Posm = (µ−µo)/vw.

Protein-DNA binding

In simple terms, a protein-DNA association reaction can be written as

P + D < − > PD .

The chemical potential is given by

µi = µ0

i + kBT ln(xi) .

At chemical equilibrium, we get

µPD = µP + µD ,

so the association constant can be calculated as

K =
koff

kon

=
[xPD]

[xP ][xD]
= exp

(

µ0

PD
− µ0

P − µ0

D

kT

)

= exp

(

−∆G

KT

)

,

where ∆G is change in free energy going from PD to P and D.
Imagine we introduce an osmotic agent (say PEG) in the water. Following
the argument of [2], we observe that the unbinding state differs from binding
state in the amount of molecules of water that are excluded, i.e. the amount
of molecules unable to solvate PEG. It is analogous to the case of the semi-
permeable membrane: in order to unbind, the system PD has to draw additional
water molecules against the chemical potential gradient (against the osmotic
pressure). The additional work to overcome the osmotic pressure resistance
is equal to the difference in chemical potentials multiplied by the number of
additional water molecules. This work can also be expressed as osmotic stress
multiplied by the volume of additional water molecules that need to be drawn.
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The additional work requirement will make the dissociation events less fre-
quent. In other words, the association constant depends on osmotic stress

K = K(Posm) .

Since ∆G = −kBT lnK (from above), and G has an additional osmotic pressure
contribution Posm∆Vw, we have

d(lnK)

dPosm

= −

∆Vw

kBT
.

Osmotic pressure is usually measured in osmolal units, so that

Posm = (kBT/νw)(osmolality/55.6) ,

where νw is the molecular volume of water, and 55.6 is the molarity of pure
water. Taken together, these numbers give an osmotic pressure of 24 atm per
osmolal at 20 ◦. We can rewrite the above expression as

d(lnK)

d[osmolarity]
= −

∆Nw

55.6
.

I don’t see how we can expand Parsegian’s derivation to case when the disso-
ciation reaction is not at equilibrium. In order to arrive at the result from [1]
that Steve used, we will need to resort to the phenomenological Arrhenius type
reaction rate for protein unbinding (this is from talking to Evan). Thus we
would postulate that the off-rate is given by

koff = k0exp

(

−∆G

kT

)

,

where ∆G is the potential energy barrier that needs to be overcome in order
for the protein to unbind. If we were to pull on the molecule (say with optical
tweezers), the potential energy barrier height ∆G would reduce, and the reaction
off-rate would increase accordingly. The osmotic stress on the other hand leads
to the increase of the barrier height commensurate with the product of the
additional excluding water volume and the osmotic pressure. Differentiating
the Arrhenius law above, we obtain the desired

d[ln(koff)]

d[osmolal]
= −

∆Nw

55.6
.
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