Series 2: Cross Diagrams - Mapping

There are two alleles for each trait in a diploid organism

In C. elegans gene symbols are ALWAYS italicized.

To represent two different genes on the same chromosome:

When both genes are wild-type: + is the wild type or non-mutant form of a gene:

The phenotype of this worm is wild type

When both genes are mutant:

The phenotype of this worm is double mutant Dpy and Unc phenotype.

When one gene is wild type and the other mutant:

The phenotype of this worm is Unc

The phenotype of this worm is Dpy

The phenotype of these worms is wild type

To represent two different genes on different chromosomes:

There is noticeable space between the two chromosomes

The phenotype of this worm is wild type

When both genes are mutant:

The phenotype of this worm is double mutant Dpy and Unc.

When one gene is wild type and the other mutant:

The phenotype of this worm is Unc

$$\frac{dpy}{dpy} + \frac{+}{+}$$

The phenotype of this worm is Dpy

The phenotype of these worms is wild type

Mating symbols:

- X symbolizes mating between two different individuals
- \bullet X symbolizes a self cross when the hermaphrodite worms fertilize their own eggs

NAME:			

In order to determine how closely linked two genes are on a chromosome you must determine the distance, in map units from one gene to the other. This is one kind of "mapping".

You have identified which chromosome your *dpy* gene is on from the linkage analysis. We will continue from the progeny of the linked cross.

Two possible scenarios present themselves.

- 1) Worms are Unc and carry the dpy gene
- 2) Worms are Unc and DO NOT carry the dpy gene

Work through the expectations for each cross scenario. Show all work and answer all questions for full credit.

Cross 1: Self cross of Unc (non-Dpy) hermaphrodites with dpy gene.

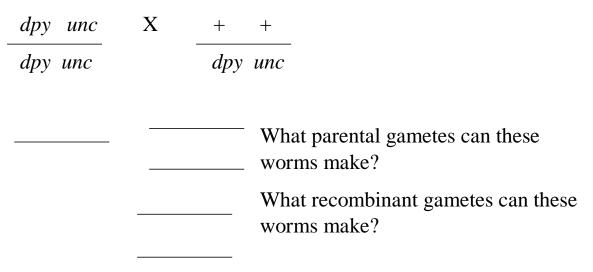
$\frac{+}{dpy}$	unc	Sel	f cross of Unc non Dpy worms
			t the gametes each parent can
			Give the genotype of the F1 progeny
			Give the phenotype of the F1 progeny

What progeny will you continue with for the final mapping? WHY?

Cross 2: Self cross of Unc (non-Dpy) hermaphrodites lacking the dpy gene.

+	unc	
+	unc	_
		What gametes can this worm make?
		Give the genotype of the progeny
		Give the phenotype of the progeny

These worms are not useful to us. WHY?


Continue on for final mapping crosses.

Cross 3: Making heterozygous double mutant Dpy Unc males

dpy unc	X	+ -	
dpy unc		+ -	+
			What gametes can these worms make?
			What is the genotype of the progeny?
			XXI 4: 41 1 4 C41 9
			What is the phenotype of the progeny?

Why do we have to make heterozygous males?

Cross 4: Test Cross of double mutant hermaphrodite with heterozygous males.

Recombinant genotypes
progeny?
Parental phenotypes
Recombinant phenotypes

or map distance?