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Abstract

Acidic pH is a common characteristic of human tumours. It has a significant impact on
tumour progression and response to therapies. In this thesis, we utilise mathematical
modelling to examine the role of acidosis in the interaction between normal and tumour
cell populations.

In the first section we investigate the cell-microenvironmental interactions that mediate
somatic evolution of cancer cells. The model predicts that selective forces in premalignant
lesions act to favour cells whose metabolism is best suited to respond to local changes in
oxygen, glucose and pH levels. In particular the emergent cellular phenotype, displaying
increased acid production and resistance to acid-induced toxicity, has a significant prolif-
erative advantage because it will consistently acidify the local environment in a way that
is toxic to its competitors but harmless to itself.

In the second section we analyse the role of acidity in tumour growth. Both vascular
and avascular tumour dynamics are investigated, and a number of different behaviours
are observed. Whilst an avascular tumour always proceeds to a benign steady state,
a vascular tumour may display either benign or invasive dynamics, depending on the
value of a critical parameter. Extensions of the model show that cellular quiescence,
or non-proliferation, may provide an explanation for experimentally observed cycles of
acidity within tumour tissue. Analysis of both models allows assessment of novel therapies
directed towards changing the level of acidity within the tumour.

Finally we undertake a comparison between experimental tumour pH images and the
models of acid dynamics set out in previous chapters. This analysis will allow us to
assess and verify the previous modelling work, giving the mathematics a firm biological
foundation. Moreover, it provides a methodology of calculating important diagnostic
parameters from pH images.
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Chapter 1

Introduction

1.1 Motivation

Cancer is a group of more than 100 distinct diseases characterised by the uncontrolled
growth of abnormal cells in the body. It is a major cause of sickness and death throughout
the world. In 1996 there were 10 million new cancer cases worldwide, and six million
deaths attributed to cancer. In 2020 there are predicted to be 20 million new cases and
12 million deaths [4]. The reason for this increase is two-fold. Firstly, infection as a major
cause of serious ill-health is in decline, giving way to noncommunicable diseases common
in an ageing population, such as cardiovascular disease and cancer. Secondly, and perhaps
more significantly, a globalisation of unhealthy lifestyles, such as smoking and poor diet,

will increase cancer incidence.

Cancer arises through changes at the genetic level that allow the cells to escape from the
cooperative behaviour associated with normal tissue. One factor that makes cancer re-
search so difficult is that, at the microscopic level, these cells are extremely heterogeneous.

No single set of genetic changes is found in every transformed cell population [21], and
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even within a single tumour varying subpopulations often coexist. Despite these micro-
scopic differences, at the macroscopic level cancers maintain the common lethal traits of
invasion (movement into adjacent normal tissue) and metastasis (formation of secondary

tumours in distant organs).

The commonality of aggressive cancer cell behaviour despite widespread genotypic diver-
sity has led researchers to believe that several of the lethal phenotypic traits of cancer may
not be the direct result of genetic changes, but rather may arise from the unique physio-
logical environments of tumours. The tumour microenvironment is significantly different
from that of normal tissue; its chaotic vasculature leads to a significant decrease in supply
of essential nutrients and a decrease in the removal of waste products. One biomarker
that has received much attention recently is tumour hypoxia (poor oxygenation). Fig.|1.1
shows that near-zero oxygen levels are observed at distances of only 150 pm from a feeding
blood vessel. As such, areas of hypoxia are commonplace within tumours. Identifying the
regions of hypoxia within tumours has been a focus of recent research, as cells residing
within such regions are known to be resistant to various radio- and chemo-therapeutic
strategies. Moreover, cells subjected to chronic hypoxia are found to be more aggressive,

displaying increased metastasis, invasion and mutation (see Table [1.1)).

Returning to Fig.[I.T]and Table[I.1] we see that acidity also plays a key role in tumour de-
velopment. Like hypoxia, regions of low pH are commonplace within tumours. Moreover,
the effects of acidosis are similar to those of hypoxia, with acidosis promoting metastasis,
invasion and mutation. However, unlike hypoxia, there has been relatively little research
into acidity as a factor for promoting tumour development. The reasons for this are un-

clear; it may be that many researchers assume that the acidity is simply a byproduct of
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Figure 1.1: Tumour extracellular pH and partial pressure of oxygen (pO2)
as a function of distance from a vessel wall, as measured in vivo
in MCF-7 breast cancer cells. Reproduced with permission from
Nature Reviews Cancer [45] © 2004 Macmillan Magazines Ltd.

Hypoxia Acidosis
Radioresistance Radioresistance
Drug resistance Resistance to anthracyclines
Metastasis and invasion Metastasis and invasion
Increased mutation rate Mutagenesis/clastogenesis
Apoptosis Apoptosis
Gene expression induced by HIF -

Table 1.1: Consequences of tumour hypoxia and acidosis [45]. As tumours
become hypoxic and acidic, their progression is accelerated and
resistance to various therapeutic strategies occurs. For definitions
the terms, see Appendix A.


http://www.nature.com/reviews
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low oxygen levels. Cells respond to periods of hypoxia by converting to anaerobic res-
piration, or glycolysis, which in turn produces lactic acid and brings about lower tissue
pH. However, the work of Warburg in the 1920s [119] showed that the increased reliance
on glycolysis to produce energy in many aggressive tumours occurs even in the presence
of sufficient oxygen. As such, tumour acidification is an intrinsic property of both poor

vasculature and altered tumour cell metabolism, and occurs independently of hypoxia.

Acidosis plays a critical role in tumour development, yet has received very little attention
by researchers. Within the thesis, we aim to address this problem. Specifically, a number
of questions need to be answered. Firstly, it is not known why tumour cells evolve to
rely on glycolysis as a means of energy production, even in the presence of sufficient
oxygen. Anaerobic respiration is more than an order of magnitude less efficient than its
aerobic counterpart, producing only 2 ATP per glucose in comparison to approximately
36 ATP. Moreover, the hydrogen ions produced as a result of glycolysis cause a consistent
acidification of the extracellular space that is potentially toxic. Intuitively, one would
expect evolutionary forces to select against this inefficient and toxic phenotype, in favour
of more optimal metabolic regimes. Secondly, it is not known how this increased acid
production will affect tumour cells, or more specifically why the resultant low pH correlates
with increased growth and invasion, as set out in Table [I.I] Through addressing these
questions, we aim to develop novel therapeutic strategies directed towards manipulating

tumour pH and slowing tumour development.

We approach the understanding of tumour acidosis from a mathematical perspective.
Mathematical models were once thought of as too simplistic to describe complex tumour

phenomena. However, it is becoming clear that intuitive approaches are insufficient to
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describe the non-linear interactions between tumour cells and their environment. The use
of mathematics will grant us a new, quantitative, perspective on the role of acidity in
tumour development, and allow us to determine critical parameters that cause the change
from benign to invasive growth. The various directions from which we attack the problem

are set out in the next section.

1.2 Thesis outline

Before moving to the main thrust of the thesis, we first introduce the field and outline
the previous research that has a bearing on our work. In Chapter 2, we introduce the
reader to the complex subject of cancer from a biological perspective. As mentioned
above, cancer cells are extremely heterogeneous at the genetic level. Nonetheless, many
cancers follow a similar well-defined ‘life-cycle’: progression from a single abnormal cell,
through precancerous growth, to invasion and metastasis. We discuss the typical genetic
changes that occur at each stage of development, and the evolutionary pressures that
lead to these changes being adopted within a cancer cell population. Also discussed
is the tumour microenvironment, specifically the changes leading to the acidification of
tumours, and the effects this acidity will have, on both the tumoural and peritumoural

normal tissue.

In Chapter 3, we move on to discuss previous mathematical models of cancer development.
Whilst theoretical models contribute to only a tiny proportion of the research articles
written on cancer, this still equates to over 50 000 papers [L03]. An array of comprehensive

review papers have been written detailing modelling approaches to specific aspects of
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Chapter 2 PS Chapter 3
Biological introduction Modelling introduction
@
v
Chapter 4 Chapter 5 Chapter 7
Why are tumours acidic? | ————p | Role of acidity in tumour growth [ ———p | Model validation and image analysis
Microscale approach Macroscale approach

v

Chapter 6
Quiescence and cyclical acidity

v

Chapter 8
Conclusions and further work

Figure 1.2: Schematic representation of thesis layout.

cancer. Rather than reproducing such a review here, the chapter subjects a small selection
of representative models to in-depth review and analysis. The major benefit of this
approach is that the advantages and shortfalls of each model may be clearly identified,

guiding our model development in later chapters.

Chapters 4-7 present the main results of the thesis, linking together as is shown diagram-
matically in Fig. In Chapter 4, we address the question of why evolutionary pressures
drive tumour cells to rely on highly inefficient anaerobic respiration as a means of energy
production. Note that during the first steps in carcinogenesis, premalignant cells remain
physically separated from their blood supply by a membrane, and hence nutrient sup-

ply and waste removal are limited. This observation is incorporated into a microscale
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cellular automaton model of the cell-cell and cell-microenvironment interactions. Cells
in the model evolve in response to the local levels of the critical nutrients, oxygen and
glucose, and hydrogen ion concentration. One major insight from the model is that, over
the length scales of early carcinogenesis, glucose supply is not a limiting factor. As such,
inefficient glucose metabolism is not important; rather, upregulation of glycolysis, coupled
with resistance to the acid produced as a result of this process, is found to give cells a

significant selective advantage, allowing proliferation in hypoxic regions.

We move on, in Chapter 5, to consider the role of acidity at the macroscopic level. As-
suming that a mass of tumour cells displays increased acid production coupled with a
resistance to low pH, we question what effect this has on its growth. Using a partial dif-
ferential equation model, we predict that the hydrogen ions produced by the tumour will
diffuse into the surrounding normal tissue, inducing cellular death. Thus we see that acid-
ity provides a simple mechanism for cancer invasion. The model also predicts an acellular
gap separating the advancing tumour and receding normal tissue fronts, a prediction ob-
served experimentally [41]. A bifurcation parameter is found that determines the change,
within our modelling framework, from a benign to invasive growth pattern. From this
parameter an unexpected therapeutic strategy emerges; we show that further increasing
the acidity within a tumour beyond a critical threshold may induce auto-toxicity and stop

tumour growth.

Towards the end of Chapter 5, we extend the model to include quiescent, non-proliferating
tumour cells. Such cells are known to produce significantly less acid than their active coun-
terparts. Inclusion of quiescent cells provides a more physiologically accurate description

of the tumour and of the acid profile extending into the normal tissue. For the case of
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an avascular tumour, the behaviour observed through consideration of quiescent tissue
is very similar to the basic model. However, in Chapter 6, we consider quiescence in a
vascularised tumour, and quite different behaviour is observed. We find that cellular qui-
escence may induce cycles of acidity to occur within the tumour tissue. Whilst metabolite
cycles within tumour tissue are a well-known phenomenon, these cycles had previously
been assumed to occur due to fluctuations in blood supply. Our modelling work suggests

that alternative mechanisms may also be responsible.

In Chapter 7, we undertake a comparison between the predicted pH profiles derived in
Chapter 5 to experimental pH images. An excellent fit is found between the experimental
and predicted profiles, which goes some way to justifying the previous modelling work
undertaken. However, this chapter aims to achieve much more than model validation.
Recent technological advances have led to the emergence of pH imaging as an alternative
to existing techniques for functional tumour imaging in a clinical setting. The technique
for comparing experimental and model pH profiles set out in the chapter leads to estimates
for the model parameter values, one of which, cellular acid production rate, is known to
correlate with tumour aggressiveness. This parameter may be used as a quantitative
diagnostic tool, and knowledge of it for specific tumours could prove invaluable to the

clinician.

Within this thesis, we answer a number of crucial questions about the role of acidity in tu-
mour development. In Chapter 8, we draw the work together, comparing and contrasting
current oncological beliefs with the results of our work. However, a number of questions
remain unanswered, and our work has revealed further gaps in the understanding of the

role of acidity in tumour development. We define those questions whose answers would
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be most fruitful in furthering our understanding and therefore our search for new and
effective therapies. We also set out the mathematical techniques that we feel could be

used to attack these new and unanswered problems.



Chapter 2

The biological basis of cancer

2.1 Introduction

Cancer has been recognised since antiquity, being first named by Hippocrates as ‘carcinos’,
meaning crab, to describe the hard central tumour with blood vessels irradiating from
it [87]. It is this borrowed observation which gives us the Latin word we now use: cancer.
However, the first major steps in cancer research were not made until the mid-nineteenth
century with increased understanding of cellular biology. Cancer was viewed as a cellular
disease, arising through inappropriate cellular proliferation. This led to the interpretation
of tumour growth as a Darwinian competition between normal and tumour cells. The
vision of cancer as cells that have escaped the control of the organism and act egoistically

is still very much present in current conceptions of cancer.

The modern view of cancer is as a molecular disease, focusing on the role of two families
of genes — oncogene (growth promoter) activation and tumour suppressor gene (TSG,
growth inhibitor) inactivation — in mediating tumour formation. Since the discovery of

these genes in the 1970s, the molecular description of cancer has become increasingly

10
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complex. For most tumours the specific genes involved in cellular transformation are not
known. Moreover, no general rules have emerged from the vast amount of data we have
to hand. This is merely molecular confirmation of previous observations that cancer cell
populations are extremely heterogeneous, displaying a wide range of characteristics due

to the stochastic nature of their development.

During the intervening period, the first half of the twentieth century, the origin and
mechanisms of cancer were sought in a variety of disciplines that were developed at that
time — microbiology, biochemistry, genetics, etc. The models that emerged from this era
have since been integrated into the current molecular descriptions. The various approaches
to cancer research seen during the past 150 years are perceptively captured by Cairns [17]:
“At each stage, the characteristics of the cancer cell have been ascribed to some defect in

whatever branch of biology happens at the time to be fashionable and exciting.”

In this chapter, the complex subject of cancer is introduced from a biological perspective,
drawing together both historical and modern observations. Particular emphasis is placed
on outlining the cancer ‘life-cycle’: progression from a single abnormal cell, through pre-
cancerous and noninvasive growth, to invasion and metastasis. We discuss the genetic
changes that occur at each stage of development, and the microevolutionary pressures
that lead to these changes being adopted within the cell population. We also discuss the
evolutionary pressures and genetic changes leading to the acidification of tumours, and

the effects this acidity will have, both on the tumoural and peritumoural normal tissue.
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2.2 Cancer as somatic evolution

The human body operates as a society whose individual members are cells, reproducing
through mitosis (normal cell division) and organised into collaborative assemblies known
as tissues. The cells communicate through elaborate cell-cell signalling mechanisms, to
ensure each cell behaves in a socially responsible manner — dividing, differentiating, qui-
escing (ceasing division) or dying as is appropriate for the good of the organism. From
an ecological perspective, there is no natural selection occurring within a healthy human

body — self-sacrifice rather than survival of the fittest is the overriding rule.

The basic ingredient of cancer involves escaping from this cooperative behaviour. Cancer
begins with a single cell mutating to give it a selective advantage over its neighbours, al-
lowing it to proliferate more quickly and become the founder member of a growing mutant
clone, known as a tumour. Successive rounds of mutation, competition and selection lead
to progressively less collaborative and more dangerous cells. Thus cancer development
can be viewed as somatic (of the body) evolution [I2]. Whilst this process occurs on a
time-scale of months or years in a population of cells within the body, it depends on those
same principles of mutation and natural selection that govern the long-term evolution of

living organisms.

Cancer cells are defined by two clear heritable properties. They are:

e hyperplastic: they reproduce in defiance of the normal restraints on cell division.

e invasive and metastatic: they invade and colonise territories usually occupied by

other cell types.
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It is the combination of these two properties that makes cancers particularly lethal. An
isolated cell that does not proliferate in excess of its counterparts can cause no significant
damage to the host, regardless of its other disagreeable characteristics. A cell that escapes
normal growth control will give rise to a tumour — an abnormal mass of tissue serving no
useful function to the host. Whilst this tumour remains as a solid mass, it is known as
benign, and surgical removal will usually be curative. A tumour is referred to as cancerous
if it is malignant — if the cells have acquired the ability to break away from the tumour
mass and invade the adjacent tissue. These cells may also enter blood vessels or lymph
channels and form secondary tumours, or metastases, at other sites in the body. The

more widely a cancer spreads, the harder it is to eradicate.

2.3 Multistage carcinogenesis

Most tumours take many years to grow and form to the point where they produce clinical
manifestations. The cells have defects in many aspects of their behaviour as a result
of multiple heritable changes, acquired through successive rounds of natural selection.
Many mutations are needed because cellular processes are controlled in complex and
interconnected ways; cells employ redundant regulatory mechanisms to help maintain
control over their behaviour. In order to act malignantly, a cell must disrupt many

regulatory systems to throw off its normal restraints.

Not all cancers require the same pattern of mutations to evade the body’s regulations:
a cancer of the colon may need mutations in six or seven specific oncogenes and TSGs,

whilst a childhood leukaemia may require only one [4]. However, many types of can-
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cers are diagnosed with an age-dependent incidence implicating between four and seven
rate-limiting, stochastic events [I0I]. The similar pattern of development observed by
most tumours has crystallised into the multistage theory of carcinogenesis, explaining the

genetic changes involved in each stage of clonal expansion. We outline this theory below.

2.3.1 Initiation and n situ growth

There is much controversy over exactly how cancer starts. It is generally accepted that
most cancers derive from genetic mutation in a single cell [3]. However, the specific factor
that triggers this mutation is difficult to identify. Carcinogens (cancer-causing agents)
may be present in food, water, air, chemicals or radiation to which people are exposed.

Moreover, cancers may be induced by viruses.

Over 90% of cancers are of epithelial origin [4], and as such we shall focus here on the
development of carcinomas (malignant epithelial tumours). Epithelial cells cover the
internal and external surfaces of the body (including skin) and line the respiratory and
alimentary tracts. Importantly, epithelial cells metabolise ingested carcinogens, which

goes some way to explain the statistic above.

Epithelium consists of cells joined by small amounts of cementing substances. It is at-
tached to a thin ‘basement membrane’ that separates the epithelial cells from the stroma
(external connective tissue). As such, epithelial tissue is typically avascular — the cells
are physically separated from the blood supply by the basement membrane. Epithelia
are classified into types on the basis of the number of cellular layers (e.g. simple, mean-

ing monolayer) and the shape of the superficial cells (e.g. squamous, meaning flattened).
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Epithelial tissue has a number of important functions, including the formation of glands

(secretory organs) through infolding of an epithelial sheet.

Many of the genetic changes required to form cancer occur early during carcinogene-
sis, before the onset of malignant growth. The specific sequence of changes required to
transform normal colonic epithelial cells through adenoma (benign epithelial growth) to
colorectal cancer were first detailed by Fearon and Vogelstein in 1990 [33] (see Fig. 2.1
As mentioned above, the heritable changes accumulated vary according to the specific
cancer type under consideration. However, analysis of the adaptations undergone dur-
ing colorectal tumorigenesis will give insight as to the typical changes needed to escape

normal regulatory mechanisms.

Two of the genetic changes — in Ras and TGFS (tumour growth factor ) — allow the
tumour cells to undergo mitosis more regularly than their normal counterparts. Normal
cells require positive mitotic growth signals before they may move from a quiescent (rest-
ing) state into an active state. These signals may come from diffusive growth factors,
extracellular matrix (ECM) components or cell-cell adhesion molecules (CAMs), and are
tightly regulated by the Ras protein. The structurally altered form of Ras within colorec-
tal cancer cells releases a constant flux of mitotic signals into the cell, without need for

stimulation from these upstream growth signals.

Multiple anti-growth signals also operate within normal tissue to maintain quiescence and
homeostasis (system stability). TGFf is one such anti-growth signal, blocking cellular
advance to mitosis. In colorectal cancer, as with many other human cancers, response to
this anti-growth signal is negated. This disruption occurs through a variety of mechanisms,

including down-regulation of TGF [ receptors, or elimination of their downstream targets.
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Normal
Epithelium

l <4—  APC mutation

Hyperproliferative
Epithelium

{

Early <4——  Demethylation
Adenoma

i +— Ras mutation

Intermediate
Adenoma

L < Loss of genes
(DCC, TGFB)

Late
Adenoma

l <4——  p53 mutation

Carcinoma

l <4—— Other alterations

Metastasis

Figure 2.1: Fearon-Vogelstein diagram (‘Vogelgram’) depicting the genetic
changes that occur in the transformation from normal colonic
epithelial cells to colorectal cancer. Adapted from [33].
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A completely different cellular change is elicited by inactivation of the p53 tumour sup-
pressor protein. Signals evoked by abnormalities such as DNA damage, hypoxia and
oncogene overexpression are funnelled via pb3, triggering a precisely choreographed series
of events, ultimately leading to cell death. This programmed, suicidal cell death, known
as apoptosis, is intrinsic to virtually all cells of the body, acting to destroy cells that
represent a threat to the organism. Cells undergoing apoptosis shrink and break into
small, membrane-wrapped fragments, before being engulfed by phagocytic cells such as
macrophages. This mechanism ensures cell contents are not released into the surrounding
tissue. In contrast, necrosis — non-programmed, progressive, degradative death — often

brings about an inflammatory response from the host.

Resistance to apoptosis through p53 inactivation, combined with growth signal autonomy
and insensitivity to anti-growth signals, leads to an uncoupling of a cancer cell’s prolifer-
ation from signals in its environment. In principle, these changes should be sufficient for
tumour growth. However, cancers in fact display genetic and epigenetic (non-genomic)
changes in a wide variety of cellular systems. For example, the Fearon-Vogelstein diagram
depicts a period of demethylation. In normal cells methyl groups attach to DNA, prevent-
ing gene transcription; methylation patterns are passed on to daughter cells at mitosis.
Widespread loss of methyl groups during colorectal tumorigenesis allows more genes to

be transcribed, thus allowing greater phenotypic diversity during somatic evolution.

The intensive research carried out over the past twenty-five years has led to an under-
standing of the proteins involved in cellular growth signalling, and how these proteins
interact. Through analysis of this signalling pathway and the ways in which it is modified

in cancer cells (Fig. [2.2]), therapeutic strategies directed towards halting cell proliferation
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Figure 2.2: The growth signalling circuitry of a mammalian cell. Arrows
denote promotion and bars denote inhibition. The genes known
to be functionally altered in cancer cells are highlighted in red.
Reprinted from [55] (© 2000 with permission from Elsevier.

may be suggested. However, much of the pathway is still poorly understood; as further
layers of complexity are added to the picture, mathematical techniques will be needed to

understand the dynamics of cellular growth.

2.3.2 Tissue invasion and metastasis

The variety of heritable changes outlined in Section occur early during carcinogenesis.
During this stage, transformed epithelial cells remain encapsulated from the surrounding
tissue by the basement membrane. The blood vessels also remain outside the basement

membrane, so the tumour has only a limited nutrient supply available. These noninvasive,
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or in situ, growths are usually asymptomatic — unfortunate as in situ tumours may be

cured through removal.

In the next stage of tumour progression, a tumour breaches the basement membrane. Once
tumours have broken through this membrane, cancerous cells may invade the adjacent
tissue. They can also enter the bloodstream; this often occurs via lymph vessels — vessels
whose function is to drain tissues of the fluid (lymph) that filters across vessel walls from
blood. However, throughout the lymphatic system there exist lymph nodes that can trap
cancer cells and bacteria travelling through the body in lymph. Should a cancer cell
successfully enter the circulatory system, either through lymph vessels or breaching of a
blood vessel’s lining, it will be transported throughout the body and may eventually lodge
in the capillaries of another distant organ. Here the cells will begin to multiply, forming

a secondary tumour known as a metastasis.

Metastases are the cause of around 90% of deaths from cancer [I10]. Whilst the primary
(original) tumour can be controlled by many available therapies, widespread metastatic

disease is very difficult to treat.

Invasion and metastasis are extremely complex multifactorial processes, whose genetic and
biochemical bases are poorly understood. From a mechanistic perspective, both processes
are closely related, utilising changes in the physical coupling of cells to the microenvi-
ronment and activation of extracellular proteases. Cells possessing invasive or metastatic
capabilities are known to have alterations in cell-cell adhesion molecules, which mediate
cell-to-cell interactions, and integrins, which link cells to extracellular matrix substrates.
Degradative proteolytic enzymes, such as urokinase-type plasminogen activator (uPA)

and matrix metalloproteinase (MMP), are used to breach the basement membrane, clear
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a path through adjacent tissue, and subsequently pass through vessel walls. Many of
these proteases (such as uPA [62]) are produced not by the epithelial cancer cells, but
rather by conscripted stromal and inflammatory cells, before being wielded by the carci-
noma cells [I125]. These layers of complexity go some way to explaining the elusiveness of

invasion and metastasis.

2.3.3 Angiogenesis

The nutrient supply and waste removal provided by blood vessels is crucial for cell survival
and proliferation. As such, avascular tumours lacking their own network of blood vessels
cannot grow beyond a size of 2 —3 mm?. Angiogenesis (the formation of new capillaries),
along with invasion and metastasis, is an important step in the transition from a small,

abnormal mass of cells to life-threatening malignant growth.

Initially, tumour cells lack the ability to stimulate capillary development. At some point
in their development, they begin to synthesise proteins capable of stimulating angiogen-
esis. One such protein of particular importance is known as vascular endothelial growth
factor (VEGF). VEGF binds to the receptors of endothelial cells (the building blocks
of capillaries), inducing them to penetrate the tumour nodule and begin the process of
constructing a network of vessels. As the endothelial cells proliferate, they secrete growth
factors that stimulate the growth and motility of tumour cells. Cancer cells also produce
proteins that inhibit the growth of blood vessels. As such, initial capillary development

relies on a balance between the levels of pro-angiogenic and anti-angiogenic molecules.

In addition to apoptotic response, p53 plays an important role in mediating angiogene-
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sis. Under hypoxic conditions, the mediator hypoxia inducible factor 1 (HIF-1) is rapidly
induced, activating transcription in many oxygen-sensitive genes including VEGF. The
role of p53 here is to counterbalance VEGF expression through upregulating expression
of the anti-angiogenic agent thrombospondin-1 (TSP-1) [27], ensuring inappropriate an-
giogenesis does not occur. In cells bearing mutant p53 (the most common genetic defect
in solid tumours), hypoxia induced VEGF is not so readily controlled by anti-angiogenic

molecules such as TSP-1, hence neovascularisation may occur.

The point of development at which cancer cells acquire the ‘angiogenic phenotype’ varies
widely. The failure of tumour cells to stimulate angiogenesis may be responsible for the
long-term dormancy of many primary and metastatic tumours. However, the periods of
hypoxia experienced by carcinoma in situ may induce sustained production of angiogenic
factors. Whilst capillaries cannot pass through the intact basement membrane during
this early phase of development, the transformed cells can immediately induce capillary

growth once the membrane is breached.

Perhaps the most promising therapeutic strategies being developed now involve targeting
tumour vasculature. Within normal tissue, angiogenesis is primarily a developmental
process, used for example during organ formation, and thus anti-angiogenic therapy will
have minimal side effects. Moreover, this therapy is targeted at host endothelial cells,
rather than cancer cells, hence the emergence of drug-resistant clones is not possible.

Further research in this area will be of considerable interest.

In Fig. [2.3] the various stages of development of malignant growth are summarised.
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Figure 2.3: Malignant cells (1) invade surrounding normal tissue, (2) detach
from the primary tumour mass and (3) enter the circulatory sys-
tem. To successfully metastasise these cells must (4) attach to
suitable endothelium and exit the circulation, (5) invade local
tissue and (6) induce angiogenesis. Reproduced with permission
from [4].

2.3.4 Why cancer Kkills

Having described the process by which cancer grows and disseminates throughout the
body, we now move on to describe briefly the effects of tumours on an individual. Most
tumours take many years to form and grow to the point where they produce clinical
manifestations. Both primary and secondary metastatic tumours may affect an individual
locally, through compression, invasion and destruction of normal tissues. In addition,
these tumours may produce systemic effects known as paraneoplastic syndromes, through
release of substances into the bloodstream. The symptoms of a tumour will vary widely
depending on the location of the tumour, the tumour’s functional activity and any acute

events that occur as the tumour mass grows and evolves.

From a local perspective, the expansive growth of benign tumours and the more destruc-
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tive growth of malignant tumours may erode normal tissue surfaces. This leads to the
development of ulcers and bleeding and creates conditions that favour infection. Tumours
growing near an organ may often interfere with the organ’s function. For example, benign
tumours of the parathyroid gland over-secrete parathormone, causing systemic calcium
levels to rise, leading to muscle fatigue and nausea. However, organ systems are tremen-
dously robust; for example, an animal can survive after removal of two-thirds of its liver,
and regenerate the lost tissue within a week [32]. Unless the organs are stretched, causing
pain, tumours of solid organs will remain silent until the tumour is far-advanced. This
explains why metastases are often present at the time of diagnosis, and why people seldom

die of organ failure.

Tumours may also develop inside hollow organs such as the gastrointestinal tract or ducts
carrying secretions from one organ to another. The carcinoma developing here will in-
vade and grow circumferentially around the wall of the organ or duct, in a ‘napkin ring’
shape [84]. This ring will thicken with time, and ultimately the lumen (cavity of the
tube) will become obstructed. Whilst these blockages can cause death, they will present
themselves symptomatically, and may be relieved though surgery. As such, hollow organ

obstruction is usually not a cause of death.

By far the most common cause of death from cancer occurs at the systemic, rather than
local, level. Cachexia [I§], or body wasting, is particularly common at the advanced stages
of malignant growth. Cancer starves and debilitates the patient, leaving them unable
to mount adequate anti-inflammatory responses. Such debilitation leads to infection;
the saprophytic organisms (organisms growing on dead matter) that live in the mouth

or nose invade the patient, causing pneumonia, septicemia and death. It is likely that
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one of the molecules contributing to cachexia is tumour necrosis factor a (TNFa) — a
molecule normally synthesised by immune cells, but somehow activated by malignant

tumour cells [11].

The wasting and incapacitation is what makes cancer so terrifying, as much as the pain
associated with tumour growth and metastasis. Ultimately, via infection, it is this wasting

which leads to death.

2.4 Why are tumours acidic?

The tumour microenvironment is significantly different from that of normal tissue. Marked
fluctuations can be seen in glucose, lactate, acidic pH and oxygen tensions. These varia-
tions have their roots in poor perfusion and metabolic changes. The chaotic vasculature
of tumours creates an unbalanced blood supply and significant perfusion heterogeneities.
As a consequence, many regions within tumours are found to be transiently or chronically
hypoxic. Cells respond to periods of hypoxia by converting to anaerobic respiration, or
glycolysis, which in turn produces lactic acid and brings about lower tissue pH. However,
the pioneering work of Warburg [119, 120 124] showed that tumour acidification can
occur independently of hypoxia. The increased reliance on glycolysis to produce energy
in many aggressive tumours occurs even in the presence of sufficient oxygen [117, [119].
Thus acidification is an intrinsic property of both poor vasculature and altered tumour

cell metabolism.

The constitutive adoption of increased aerobic glycolysis is known as the glycolytic phe-

notype. The inefficiency of this anaerobic metabolism is compensated for through a
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Figure 2.4: Tumour imaging with ®fluorodeoxyglucose positron emission to-
mography (FDG-PET). The tumours (purple and green arrows)
show high levels of FDG uptake, indicative of increased glucose
uptake. The bladder (yellow arrow) also has high activity, due
to excretion of FDG. Reproduced with permission from Nature
Reviews Cancer [45] (© 2004 Macmillan Magazines Ltd.

several-fold increase in cellular glucose consumption. This phenomenon is now routinely
exploited for tumour imaging through '*fluorodeoxyglucose positron emission tomography
(FDG-PET) [26, 38] (see Fig.[2.4). PET has confirmed that the vast majority (> 90%) of
human primary and metastatic tumours demonstrate increased glucose uptake indicating
abnormal metabolism. Furthermore, PET has been used to show a direct correlation

between tumour aggressiveness and the rate of glucose consumption [30].

The presence of the glycolytic phenotype in the malignant phenotype of such a wide
range of cancers arising in multiple different sites seems inconsistent with the evolutionary
model of carcinogenesis described in Section [2.1} Due to the Darwinian dynamics at play,

it is reasonable to assume the common appearance of a specific phenotype within a large
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number of different cancer populations is evidence that it must confer a significant growth
advantage. However, the proliferative advantages gained from altered glucose metabolism
are far from clear. Firstly, anaerobic respiration is more than an order of magnitude less
efficient than its aerobic counterpart, producing only 2 ATP per glucose in comparison to
approximately 36 ATP (see Fig. . Secondly, the hydrogen ions produced as a result
of glycolysis cause a consistent acidification of the extracellular space that is potentially
toxic [I04]. In particular, an acidic microenvironment results in tissue damage due to cell
death and degradation of the extracellular matrix [102]. Intuitively, one would expect
the Darwinian forces prevailing during carcinogenesis to select against this inefficient and

environmentally toxic phenotype, in favour of more optimal metabolic regimes.

Gatenby and Gillies [45] proposed that evolution of aerobic glycolysis is the result of en-
vironmental constraints imposed by the morphology of the ducts in which premalignant
lesions evolve (see Fig. . Initially, normal epithelial cells grow along the basement
membrane, with the epithelial layer at most a few cells thick. Homeostasis mechanisms
do not normally allow growth of these cells away from the basement membrane. However,
following initial genetic events in the carcinogenesis pathways such as those depicted by
the Fearon-Vogelstein model [33], the cells become hyperplastic, leading to a thickening
of the epithelial layer, pushing cells into the lumen and away from the basement mem-
brane. Since the blood vessels remain outside the basement membrane, nutrients and
waste must diffuse over longer and longer distances. As a result, it is likely that hyper-
plastic cells beyond the Thomlinson—Gray limit of 100-150 pum [I13] from the basement
membrane will experience profound hypoxia, which will initiate a sequence of critical cel-
lular adaptations and environmental changes. Specifically, it is proposed that hypoxia

leads to constitutive upregulation of glycolysis which, in turn, results in increased H*
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Figure 2.5: Glucose metabolism in a mammalian cell. Glucose and oxygen
are delivered via the blood to tissues, reaching the cell by dif-
fusion. Glucose molecules are taken up through specific trans-
porters, before being converted to pyruvate via glycolysis, gen-
erating 2 ATP molecules per glucose molecule. In the absence
of oxygen, pyruvate is reduced to lactate and exported from the
cell. Under oxygenated conditions, this reduction is inhibited
in normal cells (the Pasteur effect [95]); pyruvate instead enters
the mitochondrion, generating approximately a further 34 ATP.
Reproduced with permission from Nature Reviews Cancer [45]
(© 2004 Macmillan Magazines Ltd.
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Figure 2.6: A late-stage ductal carcinoma in situ (DCIS). Blood vessels
(blue) are seen in the stroma (S) surrounding the tumour (T), but
are prevented from entering the tumour itself by the intact base-
ment membrane (B). The tumour centre is necrotic (N). Repro-
duced with permission from Nature Reviews Cancer [45] © 2004
Macmillan Magazines Ltd.

production and acidification of the microenvironment. This decreased extracellular pH
(pHx) is toxic to the local populations because it induces p53-dependent apoptosis due to
increased caspase activity. This selects for cells that are resistant to acid-induced toxicity
resulting in further evolution of new phenotypic properties that, for example, increase the
number and activity of Na™/H™ antiporters on the cell surface, or possess mutations in
pH3, caspase or other components of the acid-induced apoptosis pathways. Acidosis also
selects for motile cells that eventually breach the basement membrane, gaining access to

existing and newly formed blood and lymphatic routes for metastasis.

This model is supported by experimental observations of upregulation of cellular responses
to hypoxia in regions of premalignant DCIS (ductal carcinoma in situ) and PIN (intraep-

ithelial neoplasia) most distant from the basement membrane. This includes upregulation
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of HIF (hypoxia-inducible factor) and related proteins such as carbonic anhydrase IX and

GLUT-1 (glucose transporter 1) [73, 127] (see Fig. [2.7).

Gatenby and Gawlinski [41] 42] point out that the tumour phenotype that emerges from
the sequence above, constitutively increasing acid production and becoming resistant to
acid-induced toxicity, has a powerful growth advantage over its normal counterparts.
They propose that acidity may play a key role in mediating tumour invasion. The key
idea is that the transformed tumour metabolism with increased use of glycolysis and acid
secretion alters the microenvironment by substantially reducing tumour extracellular pH,
usually by more than 0.5 pH units. The H* ions produced by the tumour then diffuse along
concentration gradients into the adjacent normal tissue. This acidification leads to death
of normal cells due to activation of pb3-dependent apoptosis pathways, as well as loss of
function of critical pH-sensitive genes. Tumour cells, however, are relatively resistant to
acidic pHx, due to mutant p53 genes. Whilst normal cells die in environments with a
persistent pH below about 7, tumour cells typically exhibit a maximum proliferation rate
in a relatively acidic medium (pH 6.8) [20]. As a result, the tumour edge can be seen as
forming a travelling wave progressing into normal tissue, preceded by another travelling

wave of increased microenvironmental acidity.

Cancer cell populations are extremely heterogeneous, displaying a wide range of genotypic
and phenotypic differences [34]. For example, studies of clinical breast cancers have shown
that every cell line exhibited a novel genotype [66]. As a result, no prototypic cancer cell
can be defined. It is likely that several of the lethal phenotypic traits of cancer, such
as invasion and metastasis, are not the direct result of genetic changes, but rather arise

from the unique physiological environments of tumours. Tumour hypoxia and acidity, for
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Figure 2.7: (a) DCIS, stained for expression of the hypoxia-inducible protein
carbonic anhydrase IX. The image shows an increase in hypoxic
response with distance from the basement membrane. Reprinted
from [127] with permission from the American Society for Inves-
tigative Pathology. (b) DCIS, stained for the glucose transporter
1 protein. Again the image shows a marked increase in expression
in cells furthest from the membrane, indicating they are adapt-
ing to hypoxia by increasing glucose transport. Figure courtesy
of R. Gatenby.
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example, significantly affect the treatment and progression of cancer. These effects can
either be directly mediated by low pH or low pOs, or they can result from selective pressure
that these parameters place upon cells in hostile environments. Hypoxia and acidity are
not simply phenomena of cancer growth, but may in fact be essential intermediates in the
progression from benign to metastatic growth. Acidity, in particular, has been shown to
have three clear effects on tumour phenotype: resistance to chemotherapy [98], increased

mutation rate [88] and increased invasion [81].

2.5 Summary

In this chapter we have introduced the complex subject of cancer development from a bi-
ological perspective. Cancer may be seen as a somatic evolution process, whereby cancer
cells escape from the cooperative behaviour associated with normal tissue, allowing them
to have a selective advantage over their normal counterparts. Successive rounds of adap-
tation, competition and selection lead to progressively less collaborative and more lethal
cells. In addition to proliferating in excess of their competitors, cancer cells may invade
surrounding tissue, metastasise to form distant colonies within the body and acquire their

own vasculature.

Since the pioneering work of Fearon and Vogelstein, much effort has gone into determin-
ing the specific genetic and epigenetic changes that occur during cancer development.
Whilst a picture of the growth signalling circuitry in the cell is coming into focus, much
of the pathway is still poorly understood. Moreover, the wide range of genotypic and

phenotypic differences between each cancer cell population means it is not possible to
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define a prototypic cancer cell. The genotypic variation between cancer populations is
surprising when one considers their common phenotypic traits of invasion, metastasis and
angiogenesis. This leads us to consider the possibility that these lethal phenotypes may
not be directly caused by genetic differences, but rather may be mediated by the harsh

physiological environment associated with tumours [108].

One such environmental difference is tumour acidification, resulting in part from a consti-
tutive change in tumour glucose metabolism. At first sight, this metabolic change seems
at odds with an evolutionary model of cancer development, as it is both inefficient and
toxic. However, altered glucose metabolism and acidification is near-universally observed
in human primary and metastatic tumours, suggesting that these changes are essential
in the progression from benign to metastatic growth. Throughout this thesis, we shall
examine the evolutionary pressures that lead to tumour acidification, and the effects this
has on tumour growth. The understanding gained from this will allow assessment of novel

therapies directed towards manipulation of tumour pH.
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Modelling tumour development

3.1 Introduction

Non-linear processes dominate the way in which tumour cells interact with their microen-
vironment. It is clear that the intuitive, verbal reasoning approaches employed by many
oncologists are insufficient to describe the resulting complex system dynamics. Nor can
such approaches keep pace with the vast amounts of oncological data being published each
year in response to the rapid technological advances in molecular biology. Rather, expe-
rience from other areas of science has taught us that quantitative methods are needed to
develop comprehensive theoretical models for interpretation, organisation and integration
of this data [46, [70]. Once thought of as too simplistic to describe complex tumour phe-
nomena, we now see that mathematical models, continuously revised by new information,

can be used to guide experimental design and interpretation.

Whilst there is a clear need for a more formal approach to biology [76], there is also a
need for mathematical biologists to avoid post hoc explanations of observations, such as

data fitting. To make experimental biologists take serious note, mathematical biologists

33
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must create models that generate predictions to be tested empirically. Alternatively, these
models should address questions of a higher level, identifying all possible classes of biolog-
ical phenomena that could arise from a given modelling premise [75]. One example of the
former approach is the series of articles written by Hodgkin and Huxley in 1952, the final
paper [59] combining both experimental data analysis and mathematical modelling. The
authors derive a system of equations for describing the generation of an action potential
in a squid giant axon and numerically determine a travelling wave solution, whose shape
and speed agreed with their own experimental measurements. This work led to a Nobel
Prize in 1963, and moreover drove research that resulted in the discovery of membrane
ion channels [78]. An example of the latter approach is Turing’s 1952 article [I14], whose
development of the idea that reaction-diffusion equations could provide spatially inho-
mogeneous patterns of chemical concentrations to trigger morphogenetic events, provided

the theoretical framework for a number of biological applications.

Whilst theoretical modelling only contributes to around 5% of the research articles written
on cancer, this figure still equates to over 50000 papers [I03]. Within this chapter, we
clearly cannot describe every model of tumour development; for this, the reader is referred
to various review articles focusing on tumour modelling history [7], avascular growth [103],
colorectal cancer [I16], angiogenesis [79], interactions with the immune system [I] and
modelling drug delivery [61]. Here, instead, we subject a small selection of representative
models to in-depth analysis. These models have been chosen both because of their impact
on scientific research into cancer, and their relevance to this thesis. The benefit of this
highly selective approach is that it enables us to fully identify each model’s assumptions,
defining equations and conclusions. Moreover, through outlining the papers that led to,

and from, each of the models, the chapter will maintain the semblance of a standard
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review.

3.2 Greenspan (1972)

Many of the recent mathematical models found in the literature focus on the growth of
multicellular spheroids (MCSs): clusters of cancer cells grown in vitro to mimic the early
stages of in vivo avascular tumour growth and to test the applicability of new cancer
treatment strategies [I11]. MCSs have a well-defined structure, possessing a central core
of necrotic cells, with proliferating cells restricted to the outer rim of the tumour. Ex-
isting models of MCS and avascular tumour development, essentially extensions of the
early models of Burton [14] and Greenspan [51], describe the evolution of the tumour
outer boundary in response to vital nutrients (in particular oxygen) and growth factors.
Using the assumption of spherical or cylindrical symmetry, these models give good qual-
itative agreement with experimental results, reproducing both the growth patterns and

macroscopic heterogeneities typical of MCSs and avascular tumours.

Greenspan’s 1972 paper [51] describes a simple mathematical model of tumour growth.
The tumour is assumed to act as an incompressible fluid; as such, local changes in the cell
population, caused by the birth or death of cells, give rise to internal pressure gradients
that induce cellular motion and the expansion or contraction of the tumour colony. The
work extends previous models [14] by introducing cell-cell adhesion forces at the tumour
periphery that maintain the tumour as a compact, solid mass. Subsequent tumour growth

is determined by the interaction between these expansive and restraining forces.

The tumour is modelled as a sphere consisting of a central necrotic core (r < Rp), an
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intermediate layer of quiescent (non-proliferating) cells (Rp < r < Rg) and an outer layer
of proliferating cells (Rg < r < Rj — see Fig. 5.5). Necrotic cellular debris is assumed
to continually disintegrate into simpler chemical compounds that are freely permeable
through cell membranes. The cell volume lost in this way is replaced by cells pushed
inward through adhesion or surface tension. Assuming that the rates of cell proliferation
and necrotic disintegration are constant per unit volume (s and 3\ respectively), we find

R@d% = 2[R — max(Rb, RY)] - AR}, (3.1)
Cancer cells are assumed to die when the concentration o of a crucial nutrient falls below
a critical level o;. Thus the necrotic radius Rp is defined by the relationship o(Rp) = oy,
whilst if o > 0, everywhere, then we take Rp = 0. Note that the nutrient diffusion time-
scale (~ minutes) is much shorter than the tumour growth time-scale (~ days), and hence
as the tumour grows, the nutrient quickly redistributes and reaches equilibrium. Thus we
may assume that ¢ is in diffusive equilibrium at all times. If the nutrient has constant

diffusion rate k and is consumed by living cells at constant rate A per unit volume, then

Vi = %H(RM —7r)H(r — Rp), (3.2)

where H denotes the Heaviside (or unit step) function, subject to the condition that

0(Ry) = 0w is constant at the tumour boundary.

Noting the finding that the mitotic index of proliferating cells tends to decrease with
distance from the spheroid surface [112], Greenspan assumes that a chemical § must be
produced within the tumour that inhibits mitosis once the concentration of the chemical
reaches a critical level (; thus the quiescent radius is defined by B(Rg) = [, whilst

Rg =0if 3 < 3 everywhere.
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Two different possibilities are then considered separately. The first model assumes that
the chemical inhibitor is a result of inadequate nutrient supply, and a product of the

necrotic material. Then we find

V33 = —%H(RD —7), (3.3)

where k is the diffusion rate and P the production rate of 3 per unit volume, subject to

the boundary condition B3(Ry) = 0.

The second model assumes that the inhibitor is produced purely by the metabolic pro-

cesses of living cells, in which case Eq. (3.3) becomes

Vi3 = —%H(RM —r)H(r — Rp). (3.4)

Using the non-dimensionalisation

_RM _RQ _RD _
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Greenspan provides solutions for both models. Qualitatively, both predict some overall
similarities in the development of the spheroid, showing three distinct growth phases:
initial exponential growth, followed by a degree of retardation, culminating in a final
phase where both mitotic inhibition and cell death give rise to dormancy. However, each
of the two models predicts a distinctly different growth pattern prior to arriving at the

steady state. These results are reproduced in Figs. [3.1 and

Details are given of a prototype experiment that could determine, from examination of

the steady-state cell population, which of the two possibilities was the primary source
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Figure 3.1:
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(From Egs. (3.1)—(3.4).)  Predicted growth patterns from
Greenspan’s models when inhibition is due to (a) dead mate-

rial and (b) the metabolic wastes of live cells. Parameter values
used are £(0) = 0.1, v = 0.22, @ = 0.25 for the first model and
@ = 0.46 for the second model. The three growth phases are
separated by circles.



Chapter 3: Modelling tumour development 39

Radius

-2 0 2 4 6 8 10 12 14 16

Figure 3.2: A comparison of the predicted outer tumour radius of the two
models presented in Fig. The models show differing growth
patterns before arriving at a common steady state. Time is mea-
sured from the point of bifurcation.

of growth inhibition. This point is reiterated in a later paper [52]; regrettably, no such

experimental work appears to have been undertaken.

As mentioned at the start of this section, the model of Greenspan is an antecedent to
much of the subsequent mathematical literature relating to tumour development. McEl-
wain and co-workers investigated the effects of non-uniform oxygen consumption on the
model, and apoptosis as a cell loss mechanism [82, 83]. Greenspan himself extended his
own modelling framework to consider the stability of equilibrium-sized tumours to asym-
metric perturbations [53], work continued by Byrne and co-workers [15, [16]. Many recent
models have incorporated differing degrees of cell movement, such as considering cells to
move in a convective manner [37, 121]. The recent work of Franks et al. [37] is represen-
tative of a modern approach to the topic, drawing together many previous approaches to

model the early growth of a ductal carcinoma in situ in a cylindrically-symmetric breast
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duct. Tumour growth is again largely determined by nutrient availability. However, the
work goes much further, describing the live and dead tumour cell concentrations, the
concentration of fluid within the duct, nutrient concentration, local velocity and pressure.
This modelling framework is then used to study the effects of the tissue viscosity on the
shape of the tumour boundary, including the extent to which the cells adhere to the duct

wall.

One of the first to tackle the problem, Greenspan’s model of tumour growth has stood the
test of time. A reformulation of his approach forms the basis of our model of acid-mediated

growth described in Chapter 5.

3.3 Gatenby and Gawlinski (1996)

Population ecology methods provide a means for examining tumours, not as an isolated
collection of transformed cells, but rather as an invading species in a previously stable
multicellular population. Gatenby [39, [40] models the tumour-host interface as a network
of interacting normal and malignant cell populations, using coupled, non-linear differential
equations. The interactions are then explored to define the crucial parameters that control

tumourigenesis and to demonstrate the limitations of traditional therapeutic strategies.

Tumour cell populations, as with any invading population in biology, must directly per-
turb their environment in such a way as to facilitate their own growth while inhibiting
the growth of the original community. The commonality of altered tumour metabolism,
in particular the adoption of the glycolytic phenotype in most cancers, led Gatenby and

Gawlinski to propose the acid-mediated tumour invasion hypothesis [41} [42], as discussed
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in Section 2.4. The authors propose that tumour cells’ increased acid secretion, cou-
pled with their resistance to low extracellular pH, may provide a simple but complete

mechanism for cancer invasion.

The hypothesis is modelled as a system of three coupled partial differential equations
(PDESs), determining the spatio-temporal distribution of three fields: the normal tissue
density Ny, the tumour tissue density N, and the concentration of excess hydrogen ions
L. The model includes: (1) logistic cellular growth; (2) normal cell death due to exposure
to acid; (3) acid production by tumour cells; (4) acid reabsorption and buffering; and (5)

spatial diffusion of acid and cells. It takes the form

ON N
8_151 =N (1 — ﬁ) — di LN, (3.6)
ONy N, N

OL

o = rale—daL + DsV?L, (3.8)

where r; and 79 are the growth rates of the normal and tumour cell populations, respec-
tively, K7 and K, their carrying capacities, Dy the diffusion coefficient for tumour cells,
d; the normal cell susceptibility to acid, r3 the rate of hydrogen ion production by tu-
mour cells, d3 the combined rate of acid removal by blood vessels and buffering, and Dj
the diffusion coefficient for hydrogen ions in tissue. Notice that there is no normal cell
diffusion within the model, in recognition of the fact that healthy tissue is well-regulated
and participating normally in an organ. Notice also that the tumour diffusion coefficient
is constructed such that when normal tissue is at its carrying capacity, the diffusion co-
efficient for tumour tissue is zero and the tumour is confined. This final assumption is at

the heart of the model: tumour tissue is unable to spread without first diminishing the
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surrounding healthy tissue from its carrying capacity.

In non-dimensional form, Eqns. (3.6)—(3.8) become

0

% =m(1—m) — 01 A, (3.9)
-

e .

5 = p22(1 — n2) + AoV - [(1 —m)Venl, (3.10)

oA

The system has four spatially-homogeneous steady states:

m =0, ne = 0: the trivial solution.

m = 1, ny = 0: corresponding to normal healthy tissue with no tumour cells present.

m =1 — 01, ;o = 1: corresponding to tissue consisting of both normal and tumour
cells at an intermediate level, which may be interpreted as a benign or non-invasive

tumour.

m = 0, e = 1: corresponding to total tumour invasion.

Linear stability analysis [89] shows us that the trivial state and the state corresponding to
normal cells alone are unconditionally unstable. Both the invasive state and the coexisting
state are conditionally, but mutually exclusively, stable. The critical parameter is found
to be §; = dyr3Ks/dsr;. Depending on the value of this dimensionless parameter, either
the steady state for total destruction of normal tissue (6; > 1) or the steady state with
the tumour and normal cells coexisting (d; < 1) is stable. Thus as the value of d; passes
through the critical value of 1, the entire system will change from a benign pattern of

growth to a malignant one. For example, increased tumour vascularity will increase Ko
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and push the system to an unstable steady state. This is consistent with data [35] showing
that the acquisition of the angiogenic phenotype radically and abruptly alters the tumour

growth pattern from non-invasive, slow growth to rapidly expanding, invasive growth.

Late-time travelling wave solutions [89] to Eqs. (3.9)—(3.11) are computed in Fig. 3.3
The first point of note is that the model predicts a smooth pH gradient extending from
the tumour edge into the peritumoural tissue. The authors reanalyse data presented
by Martin and Jain [80] relating to in wvivo interstitial pH profiles for the VX2 rabbit
carcinoma and its surrounding normal tissue, demonstrating that the data are consistent
with the presence and approximate range of the pH gradient predicted by the model. Most
significantly, however, the model predicts that (when §; > 1) there exists a previously
unrecognised acellular gap separating the advancing tumour and receding host tissue
fronts. In subsequent in witro experiments, the authors found that, of 21 specimens of
human squamous cell carcinoma of the head and neck, 14 were judged to show such a gap
(see Fig. . Naked nuclei and morphologically disrupted cells were frequently observed

scattered within the gap, or at its edge, as predicted by the model.

One problem with the model, generally ignored by reviewers, regards the ‘benign’ growth
pattern observed when ¢; < 1, as presented in Fig. [3.3 (b). Whilst the tumour tissue
does not have the capacity to destroy all the host tissue here, nor is there any mechanism
to halt the tumour’s growth. As such, this growth pattern does not accurately represent

benign growth. We return to this point in Chapter 5.

Despite the apparent success of Gatenby and Gawlinski’s model in examining large, clin-
ically apparent tumours, its relevance to early tumour growth is not clear. Continuous

partial differential equation models are well suited to modelling large populations, but
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Figure 3.3:
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(From Egs. (3.9)—(3.11).) Late-time travelling wave solutions to
Gatenby and Gawlinski’s model, with respect to the moving co-

ordinate ( = £ —c7. Waves are propagating from left to right and
parameter values used are ps = 1, Ay = 4x 107" and d3 = 70. (a)
The invasive case with §; = 12.5 > 1. Notice the formation of an
acellular gap separating the advancing tumour (72) and receding
host tissue (71) fronts. (b) The benign case with §; = 0.5 < 1.
Notice the coexistence of tumour and host tissue behind the wave
front. In both cases there is a smooth pH gradient (A) extending
from the tumour edge into the surrounding normal tissue.
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Figure 3.4: Formalin-fixed micrograph of the tumour-host interface (arrows)
from human squamous cell carcinoma of the head and neck. A
hypocellular gap at the interface associated with disrupted nor-
mal cells (arrowheads) is identified. The gap size ranges from
10-100 pm. Reproduced with permission from [96].
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individual-based models such as cellular automata (CA) are more appropriate when the
activity of individual cells must be considered. Traditional CA methods lack the ability to
deal with continuously varying elements such as substrate diffusion and utilisation. Thus
Patel et al. [92] developed a hybrid CA (see also [2, B]) to evaluate the acid-mediated
invasion hypothesis. The model incorporates normal cells, tumour cells, empty space and
native microvessels as the automaton elements. Diffusion of glucose and H™ ions to and
from the microvessels, and their utilisation or production by cells are modelled through
the solution of differential equations. Individual cells are then updated according to the

local glucose and H' concentration.

The model predicts that even a small tumour nodule of 21 cells (in a 200 x 200 automaton)
is able to generate sufficient changes in the local microenvironment to degrade the normal
tissue and allow tumour growth. Early tumour growth is shown to be critically depen-
dent on H" production by transformed cells and the level of vasculature. A variety of
tumour morphologies are observed through varying these factors. This includes tumours
growing to large volumes with declining growth rates or highly necrotic growth with the
development of tumour chords. Some tumours even demonstrate initial growth followed

by a decrease in tumour volume representing spontaneous regression.

The model of Gatenby and Gawlinski is the first to consider acidity as a mechanism medi-
ating tumour growth. The prediction of a previously unobserved acellular gap separating
the normal and tumour tissue goes a long way to validating their hypothesis. However,
neither the PDE nor the CA formulation are capable of reproducing a benign growth

pattern. We return to this point in Chapter 5.
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3.4 Casciari et al. (1992)

A wide range of mathematical and computational models have been used to study the
various mechanisms underlying nutrient consumption and metabolism [60} [7T]. The com-
putational model of Banaji et al. [§] is a typical example; the authors describe a model
of the human brain circulation, one of its constituent parts being “a basic model of brain
metabolic biochemistry”. The Banaji et al. model is, in fact, anything but basic, describ-
ing in detail each of the many reactions taking place during cellular glucose metabolism.
The main drawback to this approach is that there are over 100 parameters, many of which

are unknown and difficult to estimate experimentally.

At the other end of the complexity scale is an interesting paper by Webb et al. [123],
examining the dynamics that lead to tumour cells maintaining their intracellular pH at
physiological levels, despite an acidic extracellular pH. Acknowledging the difficulties in
parameterising their model, the authors adopt a purely qualitative approach, investi-
gating how general functional shapes affect the steady-state pH levels. In a subsequent
paper [122], the authors extend this work to examine the effect of pH on the secretion
and activity of two classes of proteinases known to promote invasion through extracellular

matrix degradation.

Casciari et al. [19] is one of few experimentally validated models of cellular nutrient
dynamics. Their model considers the interaction of tumour cells with oxygen a, glucose b,
lactate ions ¢, carbon dioxide d, bicarbonate ions e, chloride ions f, hydrogen ions ¢ and
sodium ions h. The work provides a model of tumour cell glucose metabolism, which is

used to determine metabolite profiles within the tumour. It goes on to incorporate these
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profiles in a model of tumour growth; however, we shall focus on the early part of the

paper here.

The oxygen and glucose consumption rates were based on previous experimental work [20];

e ) () o
R +fﬁ)(l)(__gt_> (3.13)
AN N ANV AN

where P; denotes the net production rate of metabolite 7, C; its extracellular concentration
and p. is the number of cells per unit volume. Note that the functional forms for these

rates arise from empirical considerations, rather than biochemistry. Assuming the forms

of Egs. (3.12)) and (3.13)) to be correct, the authors measured changes in EMT6/Ro breast

carcinoma oxygen and glucose consumption with varying levels of oxygen, glucose and pH

to find the parameters therein. These parameter values may be found in Table [3.1]

A schematic representation of the simple model of glucose metabolism proposed by Cas-
ciari et al. is given in Fig. [3.5 The authors make a number of reasonable assumptions,
in particular that the intracellular and extracellular concentrations of carbon dioxide are
equal, and that lactic acid fully disassociates into lactate and hydrogen ions in the extra-
cellular space. They also appear to assume that the chloride/bicarbonate antiport plays
a negligible role, though this is not mentioned explicitly. Then, through stoichiometric

analysis (conservation of reactants) and the assumption of no net current flow, production

rates P., ..., P, are obtained for the remaining metabolites.
P.=—-(2P,— F,/3), (3.14)
P, = —k:f(]d + k’rCng, (315)

P. = k;Cy — k,C.Cy — Pa, (3.16)
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Parameter Value Units Reference

Pe 2.01 x 108 cell/cm? [19]
A, 7.16 x 10717 mol /cell - s 120]
B, 2.02 x 1072 mol - mM"92! /cell - s [20]
m 0.921 1 [20]
. 464 % 1073 mM [20]
Ay 1.93 x 10721 mol - mM??! /cell - s [20]
By 1.94 x 107%  mol - mM??! /cell - s [20]
n 1.21 1 [20]
Kt 4% 1072 mM 77
ky 5.88 x 1072 1/s 8]
k. 74.5 1/s 8]
Coo 5% 102 mM ]
Cho 2.09 mM 8]
Coo 1.90 mM 8]
Clo 1.78 mM 18]
c., 95.1 mM B
Clo 5.62 x 1075 mM 8]
Cho 1.38 x 102 mM 8]

Table 3.1: Parameter values used in Casciari et al. [I9] model.
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Lactic acid ———— Lactate + e Extracellular
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H* + HCO; &———* H,0 + CO,
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. . Na* Cl- . .
diffusion \$ /' diffusion
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Lactic acid «————— Lactate" +

oooooo
------------------------------------------------------------------------------------------------------------------------------------------------

Figure 3.5: A model of oxygen, glucose and pH regulation, waste product

transport and buffering for a tumour cell and its surroundings.
Adapted from [20].

P; =0, (3.17)

P, = k;Cy — k,C.Cy — P, + P, (3.18)

where k¢ and ky are the forward and reverse rates, respectively, of dissociation of carbon

dioxide into bicarbonate.

Normal extracellular metabolite concentrations Cj, (except for chloride, i = f) are given
in Table The chloride level is then calculated by the assumption of zero net charge at

each point. Using these concentrations as base values, typical solutions to the metabolic
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model are given in Fig. . The consumption/production rates II; are given by normalis-
ing the rates P; by their base values (P, = —1.46 x 1072 mM/s, B, = —6.35 x 1072 mM/s,
P, =0.122 mM/s). In (a) we see that as the oxygen level increases, oxygen uptake (II,)
follows typical Michaelis-Menten kinetics, increasing to a steady-state. Contrastingly, as
oxygen increases, glucose uptake (II;) and hydrogen ion production (II,) fall, due to re-
duced reliance on glycolysis as a means of energy production (the Pasteur effect [95]).
However, this effect is severely reduced compared to normal cells; in well-oxygenated
conditions, normal tissue relies only on aerobic respiration to produce energy, so by con-
servation of reactants B,/ P, ~ 1/6. For EMT6/Ro cells, however, B,/ P, ~ 4 — a 24-fold
increase in glucose uptake. In (b), we see that glucose consumption also follows Michaelis-
Menten kinetics. The figure also shows that as glucose concentration increases, oxygen
consumption decreases, a property of tumour cells known as the Crabtree effect [23]. No-
tice that, as Cj drops below 7 x 1072 mM, we see an unexpected sharp rise in hydrogen
ion production. This is due to an inconsistency in the model — for very low glucose lev-
els, P,/P, < 1/6, and there is insufficient glucose consumed to react with the amount of

oxygen consumed by the cell.

This model of cellular respiration is then used to answer quantitative questions about the
expected pH inside tumours. This aspect of the work is not reproduced here. We do note,
however, that one of the major problems with the paper is not specifying many of the

parameter values used.

Notwithstanding the problems outlined above, Casciari et al. is one of very few
experimentally-grounded models of cellular metabolism, focusing on the metabolic dy-

namics of tumour growth. Of particular interest would be construction and analysis of
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Figure 3.6:
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(From Eqgs. (3.12)—(3.18).) Changes in oxygen consumption (II,),

glucose consumption (II;) and hydrogen ion production (II;) as
predicted by the Casciari at al. [I9] model. (a) The Pasteur
effect — glucose consumption falls as oxygen levels rise. (b) The
Crabtree effect — oxygen consumption falls as glucose levels rise.
Note that the model is invalid for very low glucose levels (Cj <
7 x 1072 mM). Parameter values are as in Table
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a similar, experimentally-grounded model of normal cellular metabolism, to investigate
which parameter changes are necessary to produce the constitutive upregulation of gly-

colysis commonly seen in tumours. This point is discussed further in Section 8.2.1.

3.5 Ramanujan et al. (2000)

Mathematical modelling of angiogenesis has received much attention over the past two
decades (see [79] for a recent review). Many of these models (e.g. [6]) have focused on the
dynamics of blood vessel sprouting and branching; whilst these models produce vascular
structures that qualitatively resemble those seen in vivo, it is difficult to quantitatively

compare the results with experimental data and hence verify the models.

One of the few simple, continuous models of angiogenesis was put forward by Ramanujan
et al. [100]. Noting that solid tumours produce both stimulators and inhibitors of angio-
genesis, they propose that many of the properties of tumour vasculature, including a lack
of blood vessels in the central tumour region, may be explained by the intrinsic differences
in the physicochemical properties of these regulators. Whilst the authors stumble during
the mathematical analysis of their model, their hypothesis is still of interest. For this

reason, we reanalyse their modelling framework below.

The tumour is modelled as a sphere of radius R, residing in a medium of host tissue.
These different tissues produce multiple angiogenic regulators that work in concert to
stimulate or inhibit angiogenesis. Let ¢ denote the concentration of such an angiogenic
factor, and for simplicity suppose that its rate of production or activation is constant.

Suppose further that its rate of deactivation or degradation follows first-order kinetics.
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Then, assuming the angiogenic factor is at equilibrium, we find

D.V?*c — k.c+ g. =0, (3.19)

where D, is the diffusion rate (assumed constant), k. the degradation rate and g. the
production rate. The subscript e represents environment (tumour (¢) or host (h) tissue)
— the factor may diffuse, degrade and be produced at different rates in the tumour and

host tissue.

At this point the paper provides an incorrect solution to Eq. (3.19)), which we rectify here.

Let ¢oo = lim,_,o ¢(r) denote the concentration of the factor in tumour-free, host tissue,

which we assume to be non-zero. Then, in non-dimensional form, Eq. (3.19)) becomes
V%Q—/{?G%—sz 0<n<l,

V20— k(0 —1)=0 1<, (3.20)

where

r c ks kp, giR?
=R o T D, T D 7T D, (3.21)

Assuming that 6 and its derivative are continuous at n = 1, Eq. (3.20]) has solution

An~tsinh(kn) + v/ K? 0<n<l,

() = (3.22)
Bn~le=km 41 1<n.
where
A= (/{? — (1 + Kp) B @V»h(/;? — 'y.)(sinh K¢ — Ky cosh k) (3.23)
K (kp sinh ky + K¢ cosh k) K (kp sinh ky + Ky cosh k)

Consider now the interaction between two angiogenic factors, one pro-angiogenic #* and

one anti-angiogenic #~. The ratio 6%/6~ represents the local balance between these
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factors, and thus the local angiogenic tendency. The key point is that their limit,
(07/07) |o= 1, defines the reference condition for stable vascularisation expected in
tumour-free host tissue. Whenever 07 /6~ > 1, angiogenesis is stimulated; elsewhere,
angiogenesis is suppressed. Through this, we can circumvent the difficulty in assigning

effectiveness parameters to the factors.

It remains to define the six dimensionless parameters x;°, 7= and «;". Parameter esti-
mates are based on those given in Ramanujan et al., but it should be noted with caution
that, in that paper, the dimensionless values do not tally with the corresponding dimen-
sional estimates given. Typical concentration profiles for the angiogenesis stimulators
and inhibitors are presented in Fig. [3.7] (a). In (b), we see that central regions of the
tumour experience an anti-angiogenic effect (67 < 67). Ultimately, this area will become
under-perfused leading, in turn, to central necrosis. Towards the tumour periphery, this
behaviour reverses (7 > 67), with stimulation of angiogenesis continuing well into the
host tissue. Thus angiogenic factors produced in the tumour will directly influence the

adjacent host tissue.

The parameter values within the model are difficult to quantify and, moreover, are likely
to vary widely amongst tumour types. Hence, in Fig. [3.8] we examine how parameter
changes affect system dynamics. Angiogenesis stimulation within the tumour may be
classified as (a) full suppression of angiogenesis (corresponding to dormancy); (b) full
stimulation of angiogenesis (progression); or (c) central suppression of angiogenesis (as in
Fig.[3.7). In Fig.[3.8)(a) and (b) we see that central suppression requires a careful balance
between the parameters, or one factor will dominate within the tumour. By contrast,

Fig. [3.8] (¢) demonstrates that small changes in k; or «; are insufficient to induce full
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Figure 3.7:
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(From Eq. (3.22).) (a) Normalised concentration profiles for an-
giogenesis promoters (1) and inhibitors (#7) in tumour (n < 1)
and surrounding host (7 > 1) tissue. (b) Concentration ratio pro-
file with a crossover from net angiogenesis inhibition to stimula-
tion at n = 0.68. Parameter values used are x;” = 5.4, k; = 4.1,
T =170, v~ =110, = 5.6 and K, = 5.4.
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stimulation of angiogenesis in the system.

Whilst slightly flawed, the paper by Ramanujan et al. provides a novel approach to the-

oretical angiogenesis modelling.

3.6 Summary

Mathematical approaches to the study of tumour development have a long history, dating
back to the early work of diffusion in tissues [57, [72, 113]. The majority of mathematical
models have appeared in the literature since 1990, though many of these have extended
the basic frameworks developed by investigators such as Greenspan in previous decades.
The astonishing variety of theoretical approaches used attests to the complexity of the bi-
ological and physiological processes underlying tumour development. It has become clear
that gaps in our understanding of these processes may only be filled through continued
close collaborations between theoreticians and experimentalists. In this way, the pathway
from model hypothesis and parameterisation to testing of model predictions will become

more structured and rigorous.

In this chapter, we have reviewed a small selection of diverse models. Each of the models
presented here has been chosen for its simplistic nature; whilst such simple models can-
not hope to fully capture the diverse behaviour observed in tumour development, they
benefit from relying on a relatively small parameter space. In contrast to more detailed

approaches, most of the parameters are readily obtained from the literature.

The models presented and implemented here may also be considered as distinct ‘modules’,

each describing a different aspect of tumour growth. These well-parameterised models may
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then be brought together to produce a more detailed model, describing multiple factors.
For example, it is simple to imagine modifying Greenspan’s tumour growth framework to
include Gatenby and Gawlinski’s acid-mediated invasion. A more realistic (non-constant)
acid production rate could then be included through incorporating a model of tumour
metabolism, such as that described in Casciari et al. Finally, the model could be modified
to include vasculature for nutrient supply and waste removal. This vasculature could
adapt to the balance of pro-angiogenic and anti-angiogenic factors as in Ramanujan et al.

We shall address some of these approaches in the forthcoming chapters.



Chapter 4

Metabolic changes during

carcinogenesis

4.1 Introduction

The phenotypic traits of malignant cancers arise as a result of environmental selection
pressures during carcinogenesis [10]. Hence it is important to understand the physical
environment of early pre-malignant lesions. Carcinomas in situ are often characterised
as highly vascularised. This is misleading, however, as whilst they may have a vascular
stroma (external connective tissue), the tumour cells are actually physically separated
from their blood supply by a thin basement membrane until this membrane is breached
by an invasive cell. Therefore, carcinogenesis and the development of the malignant
phenotype actually occur in an avascular environment, whereby substrates must diffuse
across the basement membrane and through layers of tumour cells to be metabolised.
This anatomy places consistent and significant boundary conditions on the biology of

carcinogenesis.

60
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A model for the key cell-environment interactions that we propose occur during carcino-
genesis is shown in Fig. [f.1] This model, first proposed by Gatenby and Gillies [45], was
discussed in Section 2.4, but we reiterate the main points here. Initial proliferation in
premalignant lesions carries cells into the lumen, away from the basement membrane,
and, therefore, away from their blood supply. This steadily increases the distance that
substrate must diffuse between the vessels and the intraluminal tumour cells and results in
regions of hypoxia but near normal glucose concentrations. This initiates an evolutionary
sequence consisting of adaptation to hypoxia by upregulation of glycolysis, acidification of
the environment due to anaerobic respiration of glucose, and then cellular adaptation to
acid-induced cellular toxicity. The phenotype that emerges from this sequence has a pow-
erful adaptive advantage because it creates an environment (due to increased glycolysis)
that is toxic to its competitors but relatively harmless to itself. This adaptive advantage
may be sufficient to allow unconstrained proliferation and, thus, be a critical component

in the transition from a premalignant tumour to an invasive cancer.

In vivo experimental verification of the hypothesis that the final stages of carcinogenesis
are driven by cellular adaptation to hypoxia and acidosis is difficult, as measurement of
the evolutionary pressures acting on cells is not possible. To test the feasibility of the
theoretical model of Gatenby and Gillies, we frame the hypothesis using mathematical
methods that examine somatic evolution of premalignant cells within the constraints of
ductal anatomy. This allows us to test the proposed sequence of environmental changes
and cellular adaptations in silico. We use evolutionary models of carcinogenesis that
explicitly include spatial parameters to accommodate the geometry of early tumour de-
velopment, requiring the application of a hybrid cellular automaton approach [3, 92]. The

key advantage of this technique is that it allows cells to be treated as discrete individ-
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uals, enabling cellular processes such as proliferation, death, adaptation and metabolite
consumption /production to be modelled at the individual cell level. However, the automa-
ton is described as hybrid because the metabolite distributions, specifically the oxygen,

glucose and HT concentrations, are allowed to form a continuous field across the cells.

4.2 Model development

A hybrid cellular automaton model is used to simulate carcinogenesis. This two-
dimensional model is composed of an M x N array of automaton elements with a specific
rule-set governing their evolution, as well as oxygen, glucose and H™ fields, each satisfying
reaction-diffusion equations. A two-dimensional automaton is used as we focus on growth
away from the basement membrane, rather than along the duct. Each automaton ele-
ment corresponds to either a cell or a vacant space. Tumour cell diameter can be highly
variable, ranging from 10 to 100 um [85], depending on the specific tumour type under
consideration. Here we assume each automaton element, and hence each tumour cell, has

constant physical size A x A, where A = 25 um.

In the model we reflect the avascular geometry of premalignant epithelia by assuming
that one edge of the array represents the basement membrane. The array (i, j) is labelled
so that ¢+ = 0 corresponds to the basement membrane. Beyond this membrane we assume
the stroma is sufficiently well-vascularised that the metabolites remain at their normal

extracellular concentrations.

To investigate the hypothesis presented in Fig. we consider the selective pressures

placed on a number of different possible tumour phenotypes. Initially, the automaton
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consists of a layer of a normal epithelial tissue. We assume it to be a simple epithelium
i.e. the cells grow in a monolayer along the basement membrane. Then the initial array
consists of normal cells at (1, j) and is vacant elsewhere. As well as proliferation and death,
we assume that these cells may randomly undergo three possible heritable changes, either
through mutations or epigenetic changes such as alterations in the methylation patterns

of promoters. The cells may become:

e hyperplastic, allowing growth away from the basement membrane;

e glycolytic, increasing their rate of glucose uptake and utilisation;

e acid-resistant, requiring a lower extracellular pH to induce toxicity.

These three changes give rise to eight different phenotype combinations, and thus eight
competing cellular populations. The timescales for induction of the three heritable changes

during carcinogenesis will give insight as to their relative importance.

The model development is set out in three sections below. In the first section, we create a
model of cellular glucose and oxygen consumption, and ATP and hydrogen ion production.
This model of metabolism is then used in the second section to determine the extracellular
glucose, oxygen and hydrogen ion profiles for a given cellular distribution. Finally, in the
third section, we define the rules that govern automaton evolution at each generation in

response to local metabolite levels.
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4.2.1 Cellular metabolism

We first define a simple model of cellular glucose metabolism. Under normal physiological
conditions, human cells rely on aerobic respiration to produce their energy. FEach glucose
molecule reacts with six oxygen molecules to produce carbon dioxide and ATP. This

reaction may be caricatured by
glucose + 6 Oy — 6 COy + np ATP, (4.1)

where n4 denotes the number of ATP molecules produced during complete oxidation of
glucose. Here we assume n4 = 36, though this value may vary slightly depending on the

specific cell type under consideration.

During periods of hypoxia, cells revert to the less efficient anaerobic metabolism, produc-

ing two molecules of lactic acid per glucose molecule

glucose — 2lacticacid + 2 ATP. (4.2)

Suppose the cell consumes glucose and oxygen at rates & and ® respectively, and that
all of the consumed glucose and oxygen is used to generate ATP under the two processes
outlined above. This is a reasonable assumption, as the primary role of cellular glucose and
oxygen is to generate energy via ATP. Now, from Eq. (4.1]), we are assuming @ > @ /6.

If this condition is satisfied, we may calculate the rates of ATP production ®4 and lactic

acid production ®; from Eqs. (4.1)) and (4.2)

O, = ”Agbc + 2<<I>G - %) (4.3)
O, = 2(% - %). (4.4)
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The lactic acid produced by the cell partially disassociates into HT and lactate. These
H* ions lower the pH of the extracellular space, inducing cellular toxicity. The rate of
cellular H* production @ is taken to be proportional to the rate of lactic acid production,
by = kP, for some ky < 1. We return to discuss this assumption of simple, linear
dynamics at the end of Section 1.2l Note that the aerobic pathway also contributes to
cellular acid production through hydration of CO,. However, this contribution is small —
for each mole of ATP synthesised, anaerobic metabolism produces one mole of lactic acid,
whilst aerobic metabolism produces only 1/6 mole of CO,. As such we ignore this term,

considering only the acid production in excess of the normal rate.

It remains to define the rates of cellular glucose and oxygen consumption 4 and ¢
respectively. Whilst complex empirical functional forms for these rates are available [20],

here we assume that the rates follow simpler first-order dynamics

knG in a normal cell,

dq = (4.5)
krG in a glycolytic cell,

O = k(| (4.6)

where GG and C' denote the extracellular concentrations of glucose and oxygen respectively,
and k7 > ky. Note that we assume that tumour cells do not significantly alter their rate of

oxygen consumption during carcinogenesis, consistent with experimental observations [99].

We non-dimensionalise Eqs. (4.3) — (4.6) to reduce the size of the parameter space. Let
Gx and Cx denote the normal extracellular concentrations of glucose and oxygen, and

suppose that under normal conditions, normal cells rely on aerobic respiration alone to
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produce energy. Then kcCx = 6kyGx and

g in a normal cell,
¢g = (47)
kg in a glycolytic cell,
¢e =, (4.8)
¢a = c+n(dy — ), (4.9)
¢ = ¢q —c, (4.10)

subject to the condition ¢, > ¢, where

G c < b, = 2c be = Cc
70 T o T Gy T keCx
D4 Oy 2 kT
a: s :—’ :—7k:—. 411
¢ nAk:NGX ¢h Qk’Hk’NGX " na k‘N ( )

The non-dimensionalised model of cellular respiration relies on two parameters: n = 1/18
and k. Given ranges 107%s™! < ky < 5 x 107%s7! and 107°s™! < kp < 107357 [63]
for the rates of glucose consumption by normal and tumour cells respectively, we assume
1 < k < 103, i.e. that glycolytic cells may increase their glucose consumption by up to

three orders of magnitude.

During the first stage of carcinogenesis, the dominant growth constraints involve cellular
interactions with the extracellular matrix and other cells. Once these social constraints
have been overcome, the dominant growth constraint becomes limited substrate availabil-
ity, and thus increased ATP production confers a competitive advantage. From Egs.
— , we see that within our model, glycolytic cells always produce more ATP than
their normal counterparts. However, this ATP is produced very inefficiently (in terms
of glucose uptake) and the benefits of their transformed metabolism are only seen when
oxygen supply is low. As a quantitative example, consider the case k = 10. The model pre-

dicts that, under normoxic (¢ = 1) and normoglycaemic (¢ = 1) conditions, normal cells
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produce ATP at rate 1 non-dimensional unit, whilst their glycolytic counterparts produce
ATP at rate 1.5; despite the tenfold increase in glucose uptake, under normal conditions
glycolytic cells have only a small proliferative advantage. However, under anoxic (¢ = 0)
and normoglycaemic conditions normal cells produce ATP at a rate approximately equal
to 0.06, whilst glycolytic cells produce ATP at a rate approximately equal to 0.6. Thus we

see that glycolytic cells are much better suited to adapt to periods of low oxygen supply.

Differences between the two cell types are also seen in H production. Normal cells only
rely on glycolysis, thus producing acid, when oxygen supply is low. However, glycolytic
cells produce H' at a high rate, and thus acidify the extracellular space, irrespective of
the oxygen levels. Continuing with the example £ = 10 above, under normoxic conditions
normal cells produce H' at rate 0, whilst under anoxic conditions they are produced at
rate 1. In contrast, the glycolytic cells produce HT at rates 9 and 10 under normoxic and

anoxic conditions respectively.

4.2.2 Metabolite profiles

Having defined a model of cellular respiration, we are now in a position to determine the
metabolite distributions around the cells. After each automaton generation, the known
rates of metabolite consumption and production for each cell are used to calculate the
corresponding metabolite profiles. Consider first the extracellular concentration of glu-
cose, G. Note that the glucose diffusion time-scale (~minutes) is much shorter than the
cellular proliferation timescale (~days), and thus we may assume that G is in diffusive

equilibrium at all times. Then we have

DeV*G — &g =0, (4.12)
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where D¢ is the (assumed constant) glucose diffusion coefficient. We non-dimensionalise

Eq. (4.12)), taking cell diameter as our length scale. Using Eq. (4.11)),
d2Vig— ¢y =0, (4.13)

where ¢ = 2/A and d, = \/Dg/kyA2% Given Dg = 5 x 107 %cm?s™! [54] and taking
kn =5x107°s7!, we find d; = 1.3 x 10%. In a spatially homogeneous system of normal
cells, dylog2 =~ 90 represents the number of cells away from the basement membrane at
which the glucose concentration drops to half its normal level. In a system of glycolytic

cells, where glucose is consumed at a higher rate, this distance falls to d,log 2/ V.

Eq. (4.13)) is solved using a finite-difference approximation on the square grid

9i+1,; T 9i-15 T Gij+1 T Gij—1 — (4+ 5@3‘)92‘,]' =0, (4.14)

where g; ; refers to the glucose level of the i-jth automaton element and ¢; ; depends on

the element’s occupancy

(
0 in a vacant cell,

0ij =4 1/d? in a normal cell, (4.15)

|/ d; in a glycolytic cell.

As boundary conditions, we assume that the glucose level is fixed at its normal level
g = 1 at the basement membrane (as the stroma is well-vascularised), zero flux at the
edge furthest from the membrane (as there are no sources or sinks of glucose beyond
this point), and periodic boundary conditions at the other two edges. Periodic boundary
conditions are used as the cross-sectional view of a duct is approximately circular, and
hence the edges of our array will adjoin. Using the notation of Eq. , the boundary

conditions may be written as

9o =1, gm+15 = 9mj Vj=1,...,N,
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90 = 9i,N, GiN+1 = Gi1 Vi=1,...,M. (4.16)

Eq. (4.14) holds Vi = 1,..., M and Vj = 1,..., N and is thus representative of a system
of M x N linear algebraic equations in the unknowns g; ;. The equilibrium glucose field

g = (g;;) may then be found through simple matrix inversion.

The oxygen distribution around the tumour is found using the same method. In non-
dimensional form we have

d2Vic— ¢ =0, (4.17)

where d, = \/W and D¢ is the oxygen diffusion coefficient. Given ko = 9.41 X
107257 [20] and Do = 1.46 x 107° cm?s™* [90], we find d. = 5 < d,. In stark contrast
to glucose, oxygen supply is very limited due to its small diffusion to consumption ratio,
with areas of hypoxia developing within a few cells of the basement membrane. Note
that, in order for the model to be well-defined, from Eq. we require ¢, > c at each
cell, for which it is sufficient that g > ¢ everywhere. This holds if k < dz /d? ~ 700 and

as such we restrict our attention here to the parameter range 1 < k& < 500.

The equilibrium oxygen field ¢ is found from Eq. using the same technique as
for glucose. Having determined the glucose and oxygen fields, we know their rates of
consumption, ¢, and ¢., for each individual cell. Then, from (4.10]), we may calculate
the rate of cellular HT production, ¢,,. Unlike glucose and oxygen, H* ions do not follow
simple (Fickian) diffusion, as this would lead to charge separation. Rather, they diffuse
in association with mobile buffering species such as bicarbonate, phosphate, or amino
acids [104]. However, their movement may be approximated by simple diffusion, with

appropriate modification of the diffusion coefficient. Thus the H* distribution, h, is
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defined by

Vih+¢n =0, (4.18)

where h = (H — Hx)/Hy and Hy = 2kikyGxA?/Dy. Here the variable H denotes the
extracellular concentration of HY, Hy = pH 7.25 the normal level and Dy the effective
H* diffusion coefficient. This specific non-dimensionalisation is chosen to remove all pa-
rameters from ([£.18). Given parameter values Dy = 1.08 x 107° cm? s7! and a maximum
tumour acid production rate of 107* mM s™! [92], and assuming this is equivalent to our

maximum non-dimensionalised rate of ¢, = 500, we may estimate Hy = 1.1 x 1077 mM.

Eq. (4.18)) is solved as before using a finite-difference approximation, with the difference

in this case that h = 0 is the normal level at the basement membrane.

4.2.3 Cell dynamics

We now proceed to investigate how the carcinoma evolves in response to the associated
distributions of glucose, oxygen and H™ within the tissue. Initially, the automaton is
composed of normal cells forming a monolayer along the basement membrane. After each
generation, the resultant glucose, oxygen and HT fields are calculated using the methods
outlined above. Each cell in the automaton is then updated (in a random order) according
to the local metabolite levels. Cells may proliferate, adapt or die, and cells with different
phenotypic patterns respond to the microenvironmental pressures in different ways. As
such, competition is incorporated into the model: for a new population to progress and
grow, it must successfully compete for space and resources with existing populations.

Through randomly updating the automaton, and defining cellular death and division as
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stochastic processes (see Eqs. (4.19) and (4.20), we go a long way to addressing the

problems associated with synchronicity in cellular automata [126].

The rules governing the evolution of the automaton elements are as follows:

1. An element that is empty does not evolve directly. It may evolve indirectly when

cell division takes place in a neighbouring cell.

2. If the amount of ATP produced by a cell ¢, falls below a critical threshold value,
ag, it dies, and the element becomes empty. As such, ag represents the level of
ATP required for normal cellular maintenance. We do not allow hypoxia to directly
induce cellular death within our model. Rather, hypoxia indirectly causes cell death
through a reduction in ATP production. As mentioned previously, cells displaying
the glycolytic phenotype produce significantly more ATP than their normal coun-
terparts during periods of hypoxia, thus they are less susceptible to cell death via
this mechanism. We assume ay = 0.1, corresponding to normal cell death occurring

when oxygen levels drop below ¢ = 0.05 [5].

3. The local HT level may also induce cellular death, with probability pge.. We define

this probability by

;

h/hn in a normal cell, if h < hy,
Pdea = § h/hp in an acid-resistant cell, if h < hy, (4.19)
1 otherwise.

\

where hy < hp. Thus the probability of cell death increases with acidity, and
the cell will always die if the H" level is greater than hy or hy, dependent on the

cell type under consideration. These values are taken to be hy = 9.3 x 10% and
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hr = 8.6 x 103 for normal and acid-resistant cells respectively, corresponding to

threshold values of pH 6.8 and pH 6 [92].

4. If the cell is not attached to the basement membrane, and is not hyperplastic, it

dies.

5. If the cell does not die through any of the mechanisms above, it either attempts to
divide, with probability pgiy, or becomes quiescent. The probability of division is a

function of the cellular ATP production

(¢a_a0)/(1_a0) ag <¢a < 17
Pdiv = (4.20)

1 P > 1.

Hence we assume that the probability of division is proportional to the ATP gen-
erated that is not needed for maintenance, and that the cell will always attempt to
divide if the production rate is more than its normal level of 1. If the cell attempts
to divide, we determine whether cell division occurs by sampling its neighbouring
elements. If there is one empty space, then the cell divides, and the new cell occu-
pies this empty space. If there is more than one empty space, the new cell goes to

the element with the largest oxygen concentration (following [2]).

6. If a cell divides, each of the two daughter cells has probability p, of randomly
acquiring one of the three heritable characteristics (hyperplasia, glycolysis and acid-
resistance). In order to avoid bias in the model, we assume these changes are
reversible. For example, a cell displaying constitutive up-regulation of glycolysis
may revert to normal glucose metabolism; if this metabolism is most appropriate

for the current microenvironmental conditions, the cell will successfully compete for



Chapter 4: Metabolic changes during carcinogenesis 74

resources with its neighbours. We choose p, = 1073 as a base value, to reflect the

fact that heritable change is a relatively rare occurrence.

It remains to define the dimensions of the automaton M and N. We take N = 50,
corresponding to a typical ductal carcinoma of radius 200 ym. However, we leave M
undefined, allowing it to dynamically increase as the carcinoma grows. Essentially the
final value taken by M will represent the maximum distance from the basement membrane

the cells may survive, given the limited nutrient supply and acid removal.

Throughout this model derivation, we have assumed that various processes follow sim-
ple, linear dynamics (Egs. , , and ) It can be argued that these
assumptions are too unrealistic to represent complex biological phenomena such as these.
However, these processes are poorly understood and, as a first approximation, an as-
sumption of linearity is sufficient to capture qualitatively similar monotonic behaviour.
We would not expect these assumptions to have a marked effect on the model’s conclu-
sions. Moreover, the relative simplicity of the model means that the parameter space is

kept to a manageable size.

4.3 Results

We now apply the procedures outlined in the previous section. The simulations involved
systematically varying the glycolytic rate k, tumour cell acidity threshold A7 and adapta-
tion rate p, whilst keeping other parameters constant. Multiple repetitions of the evolution

of the system for each (k, hr,p,) triple were performed to obtain adequate statistics.
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Fig. shows the temporal evolution of a typical cellular automaton (k = 10, hy =
8.6 x 10°, p, = 107%), and may be compared to the model described in Fig. [£.1] Initially,
normal epithelial cells (grey) line the basement membrane (Fig. 4.2| (a)). Acquisition
of the hyperplastic phenotype (pink) allows growth away from the membrane towards
the oxygen diffusion limit (Fig. 4.2/ (b)). Beyond this point, cells cannot exist as the
oxygen levels are insufficient to meet cellular ATP demands. This drives adaptation to
a glycolytic phenotype (green), less reliant on oxygen for ATP production (Fig. [4.2] (c)).
The increased ATP levels within glycolytic cells give a competitive advantage over the
existing population, thus glycolytic cells dominate the system. Note, however, that the
total number of cells within the system has decreased; the increased reliance on glycolysis
has resulted in higher levels of acidity, in turn inducing cell death. Further adaptation
occurs to an acid-resistant phenotype (Fig. [4.2| (d)). Increased use of glycolysis allows
growth well beyond the oxygen diffusion limit, whilst the cells are more resistant to the

resulting acidosis.

Fig. [4.3] shows how metabolite levels vary across the lesion at this final stage of develop-
ment. Here we see growth approximately thirty cells deep from the basement membrane.
Oxygen levels drop to ¢ = 0.02, in comparison to their normal level of 1. In contrast,
glucose levels fall to g = 0.9; despite the tenfold increase in consumption rate, the ex-
tracellular glucose levels are only slightly reduced. This is an important point — over the
length scale of carcinogenesis, glucose supply is not a limiting factor. Rather, the cells
furthest from the basement membrane are kept at equilibrium through a modest reduc-
tion in ATP production (¢, = 0.5) accompanying cellular death through a large increase
in H* levels (h = 2 x 10%). In contrast to the theoretical model presented in Fig. 4.1} we

find that the most likely mechanism for necrosis of cells furthest from the basement mem-
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Figure 4.2: The temporal evolution of a typical cellular automaton (k = 10,
hr = 8.6 x 103, p, = 1073) after (a) t = 0, (b) t = 100, (c)
t = 250 and (d) ¢t = 300 generations. Shown are normal epithelial
(grey), hyperplastic (pink), hyperplastic—glycolytic (green) and
hyperplastic-glycolytic-acid-resistant (yellow) cells. Cells with
other phenotypic patterns are shown as black.

brane is acid-induced toxicity, rather than glucose deprivation. In turn, this enhances the
argument that acid-induced cellular toxicity is a major evolutionary force in the hypoxic
regions of premalignant tumours. The inhibitory effect conferred by acidosis increases
with distance from the basement membrane, inducing heterogeneities that may be seen

in Fig. 2] (b)-(d).

In Fig. the proportion of cells displaying each heritable change is shown for the au-
tomaton displayed in Fig. [4.2] The three stages of growth from normal cells acquiring,
in turn, hyperplastic, glycolytic and acid-resistant phenotypes can be clearly seen. The
steepness of the hyperplastic and acid-resistant curves suggests that these changes are ex-
tremely beneficial to the underlying population. The glycolytic curve is shallower as the

benefits of increased ATP production are counteracted by acidosis. The order in which



Chapter 4: Metabolic changes during carcinogenesis

I

0.8

0.7

0.6

0.5

Metabolite level

0.3

0.2

0.1

0 Il Il Il Il Il
0 5 10 15 20 25 30

Distance from basement membrane

Figure 4.3: Variation in metabolite concentrations with distance from the
basement membrane for the automaton generation displayed in
Fig. (d). Shown are the mean glucose (g), oxygen (¢) and
H* (h) concentrations. The HT profile has been scaled by its
maximum value (h ~ 2 x 103).
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changes are accumulated is random; however, for a new phenotype to successfully compete
with an existing population for resources it must be better suited to respond to existing
microenvironmental factors. It is interesting to note that throughout the simulations
performed here, the heritable changes within the dominant population are accumulated
in this same order. Within our model, the underlying environmental selection parame-
ters drive the cells to always follow this adaptive pathway — escaping in turn from the
constraints of limited proliferation (hyperplasia), substrate availability (glycolysis) and
waste removal (acid-resistance). The same order of progression occurs despite allowing
phenotypic reversibility within our model. This is an important conceptual advance as it
means mutations are not a necessary mechanism for phenotypic variation within tumour
tissue; rather the model demonstrates that reversible, epigenetic changes are sufficient to

drive global change.

In order to examine the effects of parameter changes on system dynamics, we define a
measure of the ‘fitness’ of a specific parameter set. Let ‘invasive’ be used to describe
cells displaying all three heritable changes and, for a particular automaton, let T' denote
the number of generations after which 95% of the cells in the system display the invasive
phenotype. Thus T is representative of the amount of time taken for full carcinogenesis
to occur. Now let the development rate R = T—!, where we take R = 0 if 7" > 5000
(equivalent to approximately 20 years). Automata with a higher value of R proceed more

quickly through the carcinogenesis pathway.

In Fig. we see how the development rate R varies with changes in (a) glycolytic rate
k, (b) acid-resistance hr and (c) adaptation rate p,. Using default parameters of k = 10,

hy = 8.6 x 10% and p, = 1073, the three graphs show the effects of changing one of these
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Figure 4.4: Accumulation of heritable changes over time for the automaton
displayed in Fig. Shown are the proportion of cells displaying
the hyperplastic, glycolytic and acid-resistant phenotypes.
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parameters whilst keeping the other two fixed at their default value. Each data point is
the mean value of R calculated over fifty simulations, whilst the accompanying error bars

show the standard errors of these means.

Fig. |4.5| (a) shows a sharp transition from slow development to rapid development as the
glycolytic rate k is increased through a critical threshold value of £ ~ 3. This transition
occurs when the increase in ATP production and extracellular acidity, due to upregulation
of glycolysis, is sufficient to give the invasive cell population a significant advantage over
their untransformed counterparts. A similar bifurcation has been seen in other models
looking at the role of acidity in tumour growth, whereby a transition from benign to
malignant growth is seen when the cellular acid production rate increases through a
critical point [41] 46| 02, [107]. Increasing k beyond 20 results in a slow monotonic
decrease in the development rate. For such large values of k, acid accumulates to a degree

unfavourable even to the resistant invasive cells, inducing auto-toxicity.

In Fig. 4.5/ (b) we see that initially the development rate increases sharply with increasing
acid-resistance, reaching a plateau at hr ~ 2 x 10%. For large hy, we find the benefits
of increasing acid-resistance are counteracted by clumps of acid-resistant non-glycolytic
cells developing near the basement membrane, withstanding the progression of the invasive
phenotype. In the microenvironment near the membrane, the non-glycolytic cells produce
sufficient ATP and are extremely resistant to extracellular acidity; thus their invasive,

glycolytic counterparts have only a small competitive advantage.

Finally, Fig.[4.5[(c) shows that, as with the glycolytic rate k, there is a value of adaptation
rate p, at which the development rate is optimal. Increasing the adaptation rate increases

the diversity of the system. This leads to an increased chance of acquiring the invasive
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phenotype, whilst reducing the dominance of the main population in the system. This

balance resolves itself with the maximum development rate occurring at p, ~ 1072.

4.4 Variable adaptation rates

RNA viruses are known to mutate at very high rates. The evolutionary success of RNA
viruses is due to their enormous plasticity and adaptability to changing environments.
This high mutation rate generates a highly heterogeneous population, known as molecular
quasispecies. The quasispecies structure provides an extraordinary reservoir of variants
with potentially useful phenotypes in the face of environmental change. As predicted
by Eigen and Schuster’s theory of quasispecies [31], [105], a critical mutation rate known
as the ‘error catastrophe’ exists beyond which the genomic information is lost i.e. no
Darwinian selection operates. Ribavirin, a common antiviral drug, exploits this property
therapeutically; by its mutagenic action it drives poliovirus into an error catastrophe of

replication, thereby turning a productive infection into an abortive one [25].

One hallmark of cancer cells is their underlying genetic instability — a term used to describe
the occurrence of both small genetic changes such as nucleotide deletions or insertions, or
larger changes such as alterations in the number of chromosomes (aneuploidy). Tumour
progression benefits from genetic instability by generating cellular diversity, allowing the

cells to overcome selection barriers.

Given the similarities in the quasispecies structure of cancer and RNA virus populations,
we would expect a similar error catastrophe threshold to exist beyond which cancer cells

cannot survive. Returning to Fig. (c), we see this is indeed the case; as the adaptation
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rate p, increases beyond a critical value (p, ~ 1072) the fitness of the cells quickly drops
to zero. This analysis suggests that cancers close to this threshold value will be highly

susceptible to therapies directed at further increasing their mutation rate.

To investigate how adaptation rates vary during carcinogenesis, we extend the model
presented in Sections to allow this rate p, to change dynamically. Specifically, we

add a further automaton rule as follows:

7. When a cell with adaptation rate p, divides, each of its two daughter cells has new

adaptation rate p/, where

Pa ™~ U((l — 0)pa, (1 + U)pa> (4.21)

is drawn from a uniform distribution on the interval ((1—0)pq, (14 0)p,), for some
o € [0,1]. Note that o = 0 implies p/, = p,, and the analysis reduces to that given

in the previous section.

There are two points of note about this choice of definition for p). Firstly, p/, > 0,
as adaptation rates cannot be negative. Secondly, the daughter cell’s mean adaptation
rate E(p),) = p, is the same as that of the parent. As such, we introduce no bias into
the system; rather, the underlying evolutionary pressures will drive changes in systemic

adaptation.

The results of this extended model are presented in Fig. 4.6 showing how the adaptation
rate changes during carcinogenesis over fifty simulations. Initially, each cell in the simple
epithelium has adaptation rate p,, where we choose p, = 1074, an order of magnitude

less than the base value taken in the previous section. Cellular adaptation then varies
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Figure 4.6: Variation in the mean adaptation rate p, with time during car-
cinogenesis. The graph shows the average rates over fifty sim-
ulations, with time scaled so that generation 0 corresponds to
the first appearance of the invasive phenotype. Parameter values
used are p, = 1074, 0 = 0.25, k = 10 and h = 8.6 x 103.

according to Eq. (4.21)). We choose o = 0.25, so that p, may change by up to 25% at each
cellular division. Generation numbers are shifted in the figure so that time 0 corresponds

to the first appearance of the invasive phenotype (hyperplastic—glycolytic-acid-resistant).

Following the appearance of the invasive phenotype, its clone cells quickly populate the
lesion (see Fig. . As this cell is first to display the phenotype, it is likely to have a
higher adaptation rate than its competitors. Thus, at time 0 we see a very sharp rise in
the average systemic adaptation rate. Once the majority of cells within the system are of
the invasive phenotype, evolutionary pressures will act against cells that adapt into other,

less fit, phenotypes. As such, approximately 50 generations after the appearance of the
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invasive phenotype, pressures act to reduce the adaptation rate in the system.

In summary, the model predicts that during early carcinogenesis, evolutionary pressures
act to favour cells with high adaptation rates. Later in the process, once cells have reached
the peak of the fitness landscape, the model predicts that these pressures will act to favour

cells with smaller adaptation rates.

4.5 Discussion

In this chapter we address the evolutionary dynamics in carcinogenesis that promote
aerobic glycolysis in the malignant phenotype and examine the potential role of abnormal

glucose metabolism in formation of invasive cancers.

Carcinogenesis is a complex multi-step process governed by the interactions of heritable
phenotypic variations with continuously changing environmental selection forces. The
dynamics of carcinogenesis are often summarised as somatic evolution because they appear
to be formally analogous to Darwinian selection in nature. Thus defined, the common
appearance of a specific phenotype within different cancer populations must be the result

of environmental selection and, therefore, must confer a significant growth advantage.

Since the pioneering work of Warburg [I19] nearly a century ago, experimental observa-
tions have consistently demonstrated that cancer cells, unlike their normal counterparts,
utilise anaerobic pathways to metabolise glucose even in the presence of oxygen. The
clinical importance of this phenotypic trait is suggested by FDG-PET imaging, which
demonstrates a several-fold increased glucose uptake in the vast majority of human pri-

mary and metastatic cancers. However, in the context of the evolutionary model of
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carcinogenesis, the competitive advantage of altered glucose metabolism is not immedi-
ately clear since it represents a highly inefficient means of energy production and results

in significant acidosis of the tumour microenvironment.

The work presented here uses a hybrid cellular automaton approach to examine the role
of the microenvironment in mediating the somatic evolution of cancer cells. Utilising
the fact that epithelial tumours evolve on mucosal surfaces separated from their blood
supply by the intact basement membrane, we extend previous evolutionary modelling of
carcinogenesis to explicitly include spatial parameters that accommodate these boundary
conditions. This new modelling approach allows quantification of regional variations in

the microenvironment in premalignant lesions.

We examine the hypothesis that upregulation of glycolysis represents an adaptation to
hypoxia in premalignant lesions that develops as tumour cells grow into the lumen of
the duct and away from their blood supply. This new phenotype, in turn, produces
environmental acidosis which promotes additional adaptation to prevent acid-induced
cell death. The phenotype that emerges from this sequence has a substantial proliferative
advantage because it creates an environment that is toxic to its competitor but not to
itself. The invasive phenotype permits penetration through the basement membrane and

formation of a primary carcinoma.

Our results confirm the hypothesis that hypoxia and anoxia will be common in prema-
lignant lesions such as DCIS or advanced colon polyps. In fact, we demonstrate that
even early hyperplastic lesions will contain areas of hypoxia once tumour growth carries
cells to more than a few cell layers beyond the basement membrane. Similarly, our re-

sults confirm that regional development of hypoxia will promote upregulation of anaerobic
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metabolism of glucose and subsequent development of extracellular acidosis. Finally, we
find the acidic pHx that develops from this sequence will, in some regions, result in cellular
toxicity and therefore become a significant environmental selection factor that promotes

resistant phenotypes.

Clearly, confirmation of the modelling results by direct measurement of regional varia-
tions in oxygen, glucose and H™ concentrations in premalignant lesions will be difficult.
However, our results are likely to be realistic since the work is based on well established
biological application of reaction—diffusion models where the values of critical parameters
are known. In fact, the potential for development of hypoxia within tissue was demon-
strated mathematically by Krogh nearly 100 years ago [72]. The presence of hypoxia
in tumour cells more than 100 to 150 microns from a blood vessel has been demon-
strated experimentally by many investigators since the pioneering work by Thomlinson
and Gray [29, 113]. Finally, experimental measurement of perivascular oxygen and pHx
gradients that both qualitatively and quantitatively resemble our modelling results have

been reported by Helmlinger et al. [56].

The results also demonstrate possible pathways in somatic evolution that may result
as cellular populations acquire new, fitter phenotypes in response to local proliferative
constraints caused by variations in microenvironmental properties. This allows explicit
predictions regarding regional variations in phenotype in both premalignant lesions such
as DCIS and early invasive cancers. This predicted phenotypic variability should be
experimentally verifiable and we are encouraged that published studies [127] have shown
evidence of adaptation to hypoxia through increased expression of carbonic anhydrase IX

in DCIS cells that are nearest the lumen (i.e. most distant from the basement membrane
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—see Fig. 2.7 (a)).

Finally, the results suggest that tumour prevention strategies aimed at interrupting the
hypoxia—glycolysis—acidosis cycle and the resulting cellular adaptations will delay or pre-
vent transition from in situ to invasive cancer. For example, our results suggest that
drugs that block the function of the Na™/H* antiport (such as amiloride) would likely

inhibit the adoption of constitutive upregulation of aerobic glycolysis.

In summary, the model supports the hypothesis that regional variations in oxygen, glu-
cose and H' levels drive the final stages of somatic evolution during carcinogenesis. We
propose that the phenotypic adaptations to the sequence of hypoxia—glycolysis—acidosis
are necessary to form an invasive cancer. For this reason, interruption will likely delay or

prevent transition from in situ to invasive cancer.



Chapter 5

Acidity in tumour growth and invasion

5.1 Introduction

In Section 2.4 we saw that tumour cells generally display increased anaerobic respira-
tion, known as the glycolytic phenotype. This metabolic regime is more than an order of
magnitude less efficient than its aerobic counterpart. Moreover, glycolysis produces lactic
acid, causing an acidification of the extracellular space that is potentially toxic. Despite
its sub-optimality, the presence of aerobic glycolysis in such a wide range of cancer pop-
ulations is evidence that it must confer a significant growth advantage during somatic

evolution.

Recall that tumour cells are relatively resistant to extracellular acidity due to increased
Na®™/H* antiport activity and mutations in acid-induced apoptosis pathways. As dis-
cussed in Section 3.3, Gatenby and coworkers propose that tumour cells’ increased acid
secretion, coupled with their resistance to low extracellular pH, provides a simple but
complete mechanism for cancer invasion. Their models show that the HT ions produced

by tumour cells diffuse along concentration gradients into normal tissue, inducing normal

89
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cell death. The tumour edge forms a travelling wave progressing into normal tissue, pre-
ceded by another travelling wave of increased microenvironmental acidity. Significantly,
their model predicts an acellular gap separating the tumour and host tissue fronts, a

prediction observed in subsequent experiments.

One major flaw in both the partial differential equation [41), 42] and cellular automaton [92]
models of acid-mediated invasion is their inability to capture physiologically realistic be-
nign growth patterns (see Fig. 3.3 (b) and the discussion in Section 3.3). In this chapter
we overcome this problem, through reformulating the acid-mediated invasion hypothe-
sis within the framework devised by Greenspan [51]. Modelling this hypothesis on the
macroscopic scale allows us to investigate the general tissue dynamics in both vascular
and avascular tumour growth. In particular, for tumour cells displaying the glycolytic
phenotype, we determine the critical parameters that cause the change, within our mod-
elling framework, from a benign to invasive growth pattern. This in turn suggests new

therapeutic regimes for counteracting this invasive growth.

5.2 Model development

Following previous models, we assume that the tumour acts as an incompressible fluid. As
such, local changes in the cell population, caused by the birth or death of cells, give rise to
internal pressure gradients that induce cellular motion and the expansion or contraction of
the tumour colony. This expansive force is counterbalanced by cell-cell adhesion forces at
the tumour periphery that maintain the tumour as a compact mass. Subsequent tumour

growth is determined by the interaction between these expansive and restraining forces.
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We model the tumour as a sphere and assume that spherical symmetry prevails at all
times. Whilst this assumption is valid for early tumour and MCS growth, during later
development tumours often become asymmetric. Moreover, it has been suggested that
some measure of the irregularity of the tumour boundary may provide clinicians with
useful prognostic information [24]. However, under the assumption of spherical symmetry,
the model remains analytically tractable and allows us to perform analysis of the general
tissue dynamics in response to acid production. Having established the validity of our
assumptions, the basic model may then be reworked using a more physiologically accurate
description of the tissue, for example employing finite element or cellular automaton

approaches.

A schematic cross-sectional view of a tumour and its surrounding normal tissue is given
in Fig. .11 Let Ry denote the tumour (malignant tissue) radius and Rp the radius of
the necrotic core (dead tissue). We assume that Rp < R < R, is a viable region where
the proliferating tumour cells exist in a spatially homogeneous state at their carrying
capacity Kj;. We further assume R < Rp is a necrotic region, containing no viable cells,
and that the necrotic debris continually disintegrates into simpler compounds that are
freely permeable through cell membranes. The cell volume lost in this way is replaced by
cells pushed inward through adhesion or surface tension. Note that, at this point, we are

neglecting the effects of quiescent (non-proliferating) tumour tissue. We return to this in

Section [5.3] and Chapter 6.
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Figure 5.1:

Schematic cross-section of a tumour and its surrounding tissue
showing the central necrotic core, R < Rp, the layer of prolifer-
ating tumour cells Rp < R < Ry, the acellular gap separating
normal and tumour cell fronts Ry; < R < Ry, and the normal
cells Ry < R.
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5.2.1 Acid profile

We consider first the distribution of acid generated by the tumour. Let H denote the
extracellular concentration of excess hydrogen ions. Here excess means above the normal
level of 10~72°> M = pH 7.25. It is assumed that there is a sharp acid threshold concen-
tration H,; above which tumour cells cannot survive. Similarly, normal cells die when
this concentration H rises above Hy. We assume Hy < H); to represent the relative
resistance of tumour cells to extracellular acidity. As such, metabolically-produced acid
can act both as a promoter or inhibitor of tumour growth. Diffusing into the normal
tissue, the acid causes normal cell death which in turn allows the tumour to expand.
Conversely, if acid is not removed from within the tumour sufficiently quickly, tumour
cell death will occur. The interplay between these two mechanisms forms the heart of the

model described below.

We assume that the evolution of H can be described by a reaction-diffusion equation

aa—fj = Fy + DyV*H (5.1)

where Dy is the (assumed constant) acid diffusion coefficient and Fy represents the

combined rate of acid production and removal from the system.

Acid is produced by tumour cells as a result of their increased reliance on glycolysis and
we assume that this occurs at a constant rate ry per unit volume. The primary mode for
removal of acid from the system is through blood vessels and we assume that this occurs
at a rate ry proportional to the local acid concentration. Note that the acid diffusion
timescale (~ minutes) is much shorter than the tumour growth timescale (~ days). Hence,

as the tumour grows, the acid quickly redistributes and reaches equilibrium. Following
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previous work, we assume that H is in diffusive equilibrium at all times and set 0H/Jt = 0
in the acid reaction—diffusion equation. Under these assumptions, and noting spherical

symmetry, Eq. (.1]) becomes

Dy d ,_,dH
—ryM —ryVH + =2~ (R?=— 2

where M denotes the viable tumour cell density and V' the vascular density.

We consider separately the acid profiles generated by vascular and avascular tumours. In
the avascular case, we define V' = 0 for R < Ry, and V' = V) elsewhere, i.e. there is no
vasculature within the tumour and the vasculature exists homogeneously at its normal
level outside the tumour. Note we also assume that the acellular gap Ry; < R < Ry
contains no tumour or normal tissue, but does remain vascularised. This is because
endothelial tissue is extremely resistant to acid-induced toxicity [92]. Taking tumour cell
density M to be constant (K) within the viable region Rp < R < Ry, and further
taking p = \/m and Hy = rg Ky /ryVy, we may non-dimensionalise Eq.

with 7 = pR and h = H/H, to obtain

0 O<r<rmrp
r*h" +2rh =S 2 rp <71 <Typ (5:3)
r’h ry < T

\

where the primes denote the derivative with respect to r.

Previous models of tumour growth have made the assumption that the nutrients and
other factors determining tumour growth are constant outside the tumour tissue, i.e. for
any growth factor g, g(r) = g for 7 > 75, In the case of acid, however, this would
be inconsistent with the data of Martin and Jain [80]. Reporting in vivo extracellular

pH profiles for VX2 rabbit carcinoma, they demonstrate a smooth pH gradient extending
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from the tumour edge into the peritumoural normal tissue. Instead, we assume here that
lim, o h(r) = 0, i.e. that there is no excess acidity a long distance from the tumour. As-
suming further that h and its derivative are continuous at rp and rj;, and that lim,_q h(r)

is finite, Eq. (5.3) has solution

kq O<r<rp
ha(r) = 9 kg — ksl — 1?2 rp <71 <ry (5.4)
k4%e_r Ty < T

\

where the constants k; are given by

1 27“%—#37"%4—1—7“?\4 7"123
1: —_—

by 2rd 4+ 3r2, + 13,
27 6(7’]\/[ + 1)
3
r
kg - ?D
(o — 1)
ky=—— M D/ 5.5
4 3(7“]\/[ -+ 1) ( )

Returning to Eq. , we also calculate the predicted acid profile for a vascularised
tumour. In this case we define V = 0 for r < rp and V = Vy elsewhere, i.e. the
vasculature exists in a spatially homogeneous state at its normal level throughout the
tumour cell population. For simplicity, we neglect the poor efficiency (‘leakiness’) and
heterogeneities generally found in tumour vasculature, considering only the extreme case
where the tumour is fully vascularised. Moreover, we assume there is no vasculature

within the necrotic core. Non-dimensionalising as before, we find

/

0 O<r<rp
rh' +2rh’ = r’(h —1) rp <1 < TNy (5.6)

r2h ry <rT

\
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with solution
.

k1 O<r<rp
hv(,r) = 1-— ]{32%677“ — kg%eT D <r<rm (57)
l@%e‘r ry <T

\

where

erDTIM (rp + 1)

by=1-
rp+1
by — e*ro=M (rp — 1) (ryr + 1)
2 2(rp + 1)
e "™ (ry + 1)
by = M T
2
M 1 2rp—rm -1 1
fy = ) ey = Dirw +1) (5.8)
2 2(rp + 1)

An example of this predicted vascular acid profile with a comparison against the predicted
avascular profile can be seen in Fig. [5.2| with rp = 1 and ry; = 1.5. Given experimentally
determined parameter estimates of p = 0.47 mm~! and Hy = 1.0 x 107> M = pH 5.0
[41], 80], this corresponds to a tumour of radius Ry, ~ 3 mm, with necrotic core radius
Rp ~ 2 mm. Notice that the model predicts acidity for an avascular tumour to be higher
than that for a vascular tumour, when both tumours produce acid at the same rate. This
is to be expected given that there is no acid removal within the tumour in the avascular
case. Note, however, that due to an increased reliance on glycolysis, vascular tumours
are often found to be more acidic than their avascular counterparts. In the model, this is

represented by a higher value of Hy.
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5.2: Predicted avascular and vascular acid profiles from Egs. (5.4) and
(5.7), with rp = 1 and rj; = 1.5.
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5.2.2 Necrotic core development

Previous models of tumour growth have assumed tumour necrosis occurs as a result of
insufficient nutrient supply. In this chapter we focus on the effect of acid-mediated tumour
necrosis on the system. Assuming that high acidity is the sole cause of necrosis in the
tumour allows us to calculate the radius of the necrotic core rp in terms of the tumour

outer radius ry.

In the avascular case and in the absence of a necrotic core (i.e. when rp = 0), from

Eq. (5.4) we have

r2(rar + 3
ha(0) = % — 00 as ry — 00. (5.9)

Thus at some critical value of rys, hye(0) > hyr and the cells at the centre of the tumour

will become necrotic. The critical radius 7); at which the necrotic core develops can be

found by solving h,(0) = hys, with rp =0

ca(Par) = 73, + 372, — 6hyyiag — Ghay = 0 . (5.10)

As an aside, given a cubic equation

f(z) = 2 + ag2® + a1z + ag = 0, (5.11)
define
p_ 3a; — a3
9 )
Q= Jmaz - iiaﬂ — 205 (5.12)

Then, if the polynomial discriminant D = P3? + Q% < 0, all solutions to Eq. (5.11)) are

real and unequal, and are given by

0+2
T, = 2V —P cos (%) — %, (5.13)
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where
= arccos ( ¢ ) (5.14)
V—P3
for n =0, 1,2, where we choose arccos : [—1,1] — [0, 7].

Returning to Eq. , this cubic has exactly one positive real root 7, given by ap-
plication of Eq. (5.13) with n = 0. The correct value of n required here is found simply
through trial and error across the three possibilities. Taking the threshold for tumour
death due to acidity to be hy; = 0.1, corresponding to Hy; = pH 6 [92], we find that

necrosis due to acidity first occurs at 7y, = 0.51 (}%2 ~ 1 mm).

If rpr > 77, then a necrotic core exists, and its radius rp can be found by noting that the

acid concentration at the boundary of the necrotic core will be hy(rp) = hyy
2ry — 3(ras + 1)rh + ca(rar) =0 . (5.15)

In this case, the root of the cubic satisfying 0 < rp < 7y is found from Eq. (5.13)), with

n = 2.

From equation (}5.15))

lim (T‘M—TD>I\/2hM+1—1 (516)

TN —00
and hence
D 47 3 3
— — 1, Vol(rp,ru) = ?(TM — 1) — 00 as ry — 0. (5.17)
M

This means that a large tumour will be mostly comprised of the necrotic core, with
the layer of viable cells limited to a thin region at the tumour edge, consistent with
experimental results. Nonetheless, the total number of viable cells will continue to increase

as the tumour grows.
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Turning now to the vascular case, in the absence of a necrotic core we have, from Eq. (5.7))
hpy(0) =1—e™(ryy+1) — 1 as ry — 00 (5.18)

and hence we see two distinct patterns of growth, depending on the sign of hy, — 1. If
hyr > 1, hy(0) < hyy for any value of ry;; the tumour vasculature removes the excess
acid sufficiently quickly to avoid tumour cell death and no necrotic core will develop. If,
however, hy; < 1, at some value of 5, h,(0) > hys and a necrotic core will develop.
This critical radius 7y, can be found by solving h,(0) = hy;, with rp = 0, leading to the
equation

co(Par) =€ ™ (Fp + 1)+ (hyr — 1) =0, (5.19)
with solutions

har — 1
€

i =—1—W( ). (5.20)

Here W denotes the multivalued Lambert W (or product log) function — the inverse
function of f(W) = We". Note that for —1/e < z < 0, there are two possible real values

of W(x), Wy(z) > —1 and W_,(x) < —1 [22]. As 7ps > 0, for hpy < 1 we can define

). (5.21)

Further, for hy; < 1 and rjy; greater than this critical radius, we find rp by solving
hv(rD) - hM

€M (ryr 4+1) + (hy — 1) (rp 4+1) = 0 (5.22)

with solution

e_(TA{+1) (TM + ]_)
hy — 1

rp=—1—W_y( ). (5.23)

From Eq. (5.22)), we find

lim (rp —rp) = —log(1 — hay) (5.24)

AL —00
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and hence as in the avascular case, Eq. (5.17)) holds.

5.2.3 Tumour growth

We consider now the growth dynamics of the tumour, whilst neglecting for now the role
of normal tissue on the system. As such, we analyse the inhibitory effects of acidity on
tumour growth, whilst neglecting the invasive dynamics arising through the destruction
of normal tissue. The rate at which a tumour grows may be dependent on a large number
of factors, such as nutrient supply, cellular density or internal pressure gradients. Here
we make the simplifying assumption that the rate of change of tumour volume is entirely

dependent on the tumour radius and the radius of the necrotic core

d
—(Vol) = F(Rp, Rar) (5.25)

for some mitosis function F'. It should be noted, however, that the necrotic radius Rp
is defined by the acid profile around the tumour (H(Rp) = H)s), and hence the growth

function is implicitly dependent on a range of factors, such as vascular density.

Greenspan [51] makes the assumption that the necrotic cellular debris continually dis-
integrates into simpler chemical compounds at a rate proportional to the core volume.
These compounds flow into the surrounding tissue and the cell volume lost in this way is
replaced by cells pushed inward through surface tension forces. Moreover, the assumption

is made that the rate of cellular proliferation is constant per unit volume in the viable

region. Under these assumptions, Eq. (5.25) becomes

dR3,

e S(R}, — RY) — LR}, . (5.26)
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Taking 7 = St/3 and r = ¢R, we may non-dimensionalise the system to obtain

d
7"]2\/[% = 7’]3\4 — 737"% (5.27)

where v = ¢/L/S + 1.

Note that while there is no necrotic core (when rp = 0), the tumour radius will grow
exponentially with

ra(T) = rp(0)e” . (5.28)

This corresponds to well-known experimental evidence that the early stages of solid tu-
mour development follow a simple exponential growth pattern [74]. In particular, in the
case of a vascular tumour with hy; > 1, the model predicts that a necrotic core will never
develop and thus the tumour will continue to grow exponentially into the surrounding
tissue. For an avascular tumour or a vascular tumour with h,; < 1, however, a different
growth pattern is observed. From Eq. , we know that rp/ry — 1 as ry — oo.
Assuming that, at time 0, the tumour is small enough that there is no necrotic core (i.e.
rar(0) < 7ar), at some value of 7y we will find rp = ra /v < rar. Then from Eq. ,
drys/dT = 0, and a benign steady state is reached. In other words, we find that an avas-
cular tumour will always have a benign growth pattern. A vascular tumour will either

have a benign or invasive growth pattern dependent on the value of the critical parameter

hoa.

The system is completely defined by Eq. (5.27) and Eq. (5.15)) or (5.23)), and relies only on

the parameters 7, hy and the initial condition rj;(0). Examples of the growth patterns
observed are given in Fig. 5.3 In the avascular case, a two-phase growth pattern is
observed (Fig.|[5.3|(a)). Initially, the tumour grows exponentially, without a necrotic core.

At the critical time 7, a necrotic core begins to develop and the second phase of tumour
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growth begins. During this phase, we see very little change in tumour size. However,
the necrotic core grows rapidly towards its equilibrium value. Note that v represents
the equilibrium r,; : rp ratio. The corresponding vascular growth is very similar when
hayr < 1 (Fig. 5.3| (b)) and may be contrasted to the invasive growth seen when hy, > 1
(Fig. [5.3] (¢)). In this final case, as rp becomes large, other limiting factors such as

nutrient supply and immune response will have greater impact on the tumour growth.

The time 7 at which we see the onset of necrosis can be found from Eq. (5.28]), taking
v = T‘AM

7 =log 7y — logra(0) . (5.29)
Using parameters hys = 0.1 and 73,(0) = 0.1 (Rp(0) ~ 0.2 mm), we find necrosis occurs

at 7 = 1.63 and 7 = 1.67 in the avascular and vascular cases respectively. The equilibrium

size 7p; may be found by noting that 7y; = 47p. In the avascular case, using Eq. (5.15])

we find
_ Y 1 (&)
= — 1)+ 2 - —— 5.30
Tr CENCED [ (y+1) 4+ 2¢; cos [3 arccos( C?)H (5.30)
where
a =V (y+ 12+ 2 (v +2)
co=(y+ 1)+ 6ha(y+2) . (5.31)

For the parameter set used in Fig.[5.3], we find 7); = 0.75, corresponding to a final radius of
Ry ~ 1.6 mm. For the vascular case, we use Eq. , again setting 7y, = yrp. Solving
this numerically, we find 7#); = 0.80 corresponding to Rjp; ~ 1.7 cm. These numbers
demonstrate further the similarity between avascular and vascular growth when hj; is

small.
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5.2.4 Normal tissue invasion

We now move on to consider the effects of normal tissue on the system. Let ry denote the
non-dimensionalised distance from the tumour centre to the normal tissue. Assume that
initially the system has rp = 0 and ry = rj; i.e. the tumour is small enough that there
is no necrotic core. Normal cells die if h increases above a critical value hy = Hy/Hy,

where hy < hyy.

In the vascular case, from Eq. (5.7))

e_T]\/[

hy(rar) = (rag coshry, — sinhryy) (as rp = 0). (5.32)

(B
We assume that the only mechanism by which the tumour may invade the normal tissue
is to acidify the peritumoural space and induce normal tissue death. Hence normal tissue
will recede and the tumour will advance if and only if the acid levels at the tumour
periphery are higher than the threshold for normal cell death i.e. A(ry;) > hy. Note that
h is an increasing function of s, and hence if h(rp(0)) > hy, the tumour will grow

unimpeded as was seen when normal tissue was neglected in the system.

In the avascular case, from Eq. (5.4)

ha(rar) = ﬁ (as rp = 0). (5.33)

Again the normal tissue will recede if and only if h(ry) > hy. Taking hy = 0.01,
corresponding to Hy = pH 6.8 [92], we find that in both the vascular and avascular

cases invasion will occur only if r3; > 0.19, equivalent to Ry, ~ 0.4 mm.

If h(rar) > hy, then we can calculate ry through solution of the equation h(ry) = hy,
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Radius r

Time t

Figure 5.4: Results from Eq. (5.34). Recession of normal tissue accom-
panying vascular tumour growth. Parameter values used are
hy =0.01, v =3/2, hpy = 0.1 and r,(0) = 0.2.

i.e. /{Z4€_TN/TN = hy

" — W[)(:—]“V) (5.34)

where here we choose the principal value of the Lambert W-function as k4 > 0 and h > 0.

Fig. shows normal tissue receding as the tumour grows. Notice the development of an
acellular gap between the advancing tumour front and receding normal tissue, consistent

with experimental observations [41].

5.3 Acid-induced quiescence

In the previous section, we developed a simple model of three-dimensional tumour growth
to examine the role of acidosis in the interaction between normal and tumour cell popula-
tions. Both vascular and avascular tumour dynamics were investigated, and a number of
different behaviours observed. Whilst an avascular tumour always proceeds to a benign

steady state, a vascular tumour may display either benign or invasive dynamics, depend-
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ing on the value of the critical parameter hjy;. The model also predicts the development of
an experimentally-observed acellular gap separating the advancing tumour and receding
host tissue fronts. One criticism that may be levelled at the model is the size of the
acellular gap as predicted in Fig. |5.4] — the interfacial gap is predicted to be of a similar
size to the tumour, and larger than the experimentally-determined estimates of 10-100

pm [41] (see Fig. 3.4).

In this section, we extend the previous model through the inclusion of quiescent (non-
proliferating) tumour cells. Within avascular tumours, in particular, the vast majority of
viable cells are quiescent, with active cells restricted to the nutrient-rich outer rim. These
quiescent cells are essentially metabolically-inactive, producing significantly less acid than
their proliferating counterparts. By considering both active and quiescent cells, we give a

more physiologically-accurate description of the acidity in and around the tumour tissue.

The tumour is again modelled as a sphere; however, we assume here that within the
viable region Rp < R < Rj;, the active proliferating tumour cells are restricted to the
outer rim Ry < R < Ry, whilst the region Rp < R < R contains quiescent cells (see
Fig.|5.8). Returning to Eq. , we define the acid production rate ry = ¢¢ within the
quiescent region and 7y = ¢4 within the active region, where ¢g < ¢4, as quiescent cells

are relatively metabolically inactive.

We focus here on avascular tumour growth (i.e. V' = 0 within the tumour), as this case is

more amenable to analysis. As before, taking p = \/rvVy/Dy and Hy = ¢a Ky /rv Vi,



Chapter 5: Acidity in tumour growth and invasion

108

renAal
" ~
7SS
s ,
v N
- Tumour N\
/ S S S S s / \
/ / S S
Y /L LL / \
I [ \
[ /|
e /
/ /
/ /
/
\ <V
\ / A
v NS
\ /S / /
S S S /
Y/, /
A4 /////,///
/S /RM YV ////?/ /
N 7 7 Ve
o 2
e
\\ T
Figure 5.5: Cross-section of a tumour and its surrounding tissue showing the

central necrotic core, R < Rp, a layer of quiescent tumour cells
Rp < R < Rg, a layer of proliferating tumour cells Rgp < R <
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we may non-dimensionalise Eq. (5.2)) with » = pR and h = H/H, to obtain

(

0 0<r<rp,
—er? rp <r<rg,
r?’h" 4 2rh' = (5.35)
—r? ro < T <Tu,
2h
r ra <7,
\

where € = ¢g/pa < 1, and the primes denote the derivative with respect to r.

Assuming as before that lim, ., A(r) = 0 i.e. that there is no excess acidity a long distance

from the tumour, and further that h and its derivative are continuous at rp, rg and 7y,

Eq. (5.35)) has solution

ko — kst —egr? rp <71 <71Q,

h(r) = (5.36)
kg — kst — 302 ro < T < T,
kﬁ%e_’" ra < T,

\

where the constants k; are given by

C 2erp 2( =gy A ri(ra +3)  erh+ (1 —e)rg

b 6(ra + 1) a 2 ’
i
]{?2 = kl + 63,
3
,
1{73 :5?,
erd + (1 —¢e)r?
ha=h o+ =P,
_ erd + (1 — e)rd
5 3 9
P —erd, — (1 — 5)7“% +7r3, (5.37)
6 3(7”M+ 1) '

An example of this predicted acid profile can be seen in Fig. [5.6, Following Patel et

al. [92], we take ¢ = 0.01 — that is, quiescent tumour cells’ rate of acid production is two
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Figure 5.6: Results from Eq. (5.36)). Predicted avascular acid profile for the
extended model including quiescent cells. Parameter values used
are rp =1, rg = 1.4, r)yy = 1.5 and € = 0.01.

orders of magnitude less than their proliferating counterparts. Because of this, the levels
of acidity within the tumour are found to be significantly lower than those predicted by

the basic model (compare Fig. |5.2]).

It is known that high levels of acidity can induce quiescence in tumour tissue [20]. As-
suming that acidity is the sole cause of necrosis and quiescence within the tumour allows
us to calculate the radii of the necrotic core, rp, and the quiescent region, rg, as functions
of the tumour outer radius, r);. As before, we assume there exist sharp acid threshold
concentrations Hg and Hp above which tumour cells cannot proliferate and survive re-
spectively. Taking h; = H;/Hy, the case hg = hp does not allow for any quiescent tumour

cells within the system, and the analysis reduces to that found in the previous section.
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We consider instead here the case hg < hp.

Continuing as before, while the tumour consists of only active proliferating cells (i.e.
rp =1rg = 0), from Eq. (5.36) we have

B r2(rar +3)

h(0) = 60 + 1) — 00 as 1y — 0. (5.38)

Thus at some critical value ry; = 737, h(0) = hg, and the cells at the centre of the tumour

will become quiescent. This critical radius is found by solving
cs(Far) = 73y + 375, — 6hgiar — 6hg = 0. (5.39)
The positive solution 7y, is given by Eq. (5.13]), taking n = 0.

If rpr > 7ar, then a quiescent region exists, and its radius 7o may be found by noting that

the acid concentration at its boundary will be h(rg) = hg
ca(rg,ma) = 2(1 — 5)7"% —(3—=2¢)(ry + l)ré + c3(ry) = 0. (5.40)
The solution in rg is given by Eq. (5.13)), choosing n = 2.

If ¢ > 0, then we find that acidity will increase at the tumour boundary as it grows.
Eventually all tumour cells will become quiescent, and the radius 7 at which this occurs

may be found through solution of Eq. (5.40)), with rg = 7y

3hg + /903 + 12hge
. (5.41)

fQ - 2e

Consider now the formation of necrosis within the tumour. While rp = 0 and r¢ > 0,

from Eq. (5.36) we have

2 2

"Q "Q
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Thus setting

75 ho(Pq+3
hy = hg + EFQ = %, (5.43)

we see two distinct patterns of growth, dependent on the sign of hp — h,. If hp > h,,
then no necrotic core will develop, and the tumour will grow to a state containing only
quiescent cells. If hp < h,, however, at some critical value ry; = 7p, h(0) = hp and the
cells at the centre of the tumour will become necrotic. From Eq. , we find that this
occurs when

6(hp — hg)

=, =y NPT RQ) 5.44
rQ =" 8 (5.44)

7p may then be found by solving c4(r., rps) = 0 for r3,. This is achieved using Eq. (5.13)),

taking n = 0.

If rpr > 7p, then a necrotic core exists and its radius is given by noting that h(rp) = hp

cs(rp,rg) = 27"% = 37“@% + (ré = rf)rQ =0. (5.45)

The solution in rp is found using Eq. (5.13), taking n = 2.
Furthermore, we know that h(rq) = hqg

ce(rp,rg,rm) = roca(rg,ra) — 2e(1 4+ 1y — rQ)T% = 0. (5.46)

Given 77, we may numerically calculate rg € (rp,ry) from Eq. (5.46)), using the expres-

sion for rp in Eq. (5.45)).

The set of equations above allows calculation of the non-dimensional quiescent tissue
radius, rg, and the necrotic core radius, rp, for any value of outer radius r5;. These radii
may then be used to determine tumour growth. As an analogue to Eq. (5.26)), we have

dR?,
dt

= S(R}; — R})) — LR}, (5.47)
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that is, the tumour grows at a rate proportional to the volume of active proliferating cells,
whilst growth is inhibited through constant degradation of the necrotic material. Taking

T =5t/3 and r = pR, we may non-dimensionalise to obtain

d
7“]2\/[—2;4 =7y, — 7"22 — 33 (5.48)

where v = {¢/L/S. Assuming that, at time 0, the tumour is small enough that there is
no necrotic core or quiescent region (i.e. rp = rg = 0), then the system is completely

defined by Egs. (5.45), (5.46) and (5.48), relying on parameters ¢, v, hp, hg and the

initial condition rp(0).

Examples of the growth patterns observed are given in Fig.[5.7] Using parameter estimates
of hp = 0.1, corresponding to pH 6, and hg = 0.04, corresponding to pH 6.4 [92], hp < h,
and so we see a three-phase growth. Initially, the tumour grows exponentially, whilst
all cells are proliferative. At the critical radius r); = 7,7, the central tissue becomes
quiescent, restricting the active cells to a thin outer rim (Fig. [5.7) (a)). At a later stage,
when 7, = 7p, we see the development of a necrotic core, followed by convergence of the
tumour to its equilibrium size (Fig. (b)). In Fig. (c), we increase the tumour’s
susceptibility to acid-induced quiescence, taking hg = 0.01, equivalent to pH 6.8. In this
case, hp > h,, and no necrotic core will develop. Rather, it slowly grows to its equilibrium

size rjr = 7o where all the tumour cells are quiescent.

We move on now to the acid-mediated invasion of normal tissue, and the corresponding
development of an acellular gap separating the advancing tumour and receding host tissue
fronts. Assume as before that there exists a sharp acid threshold concentration Hy above
which normal cells die, and let hy = Hy/Hp. Then the normal tissue front rx is defined

by the relationship h(ry) = hy. In Fig. (b), we see that in necrotic growth, the
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Figure 5.7: Results from Egs. (5.45)), (5.46) and (5.48)). (a) Early-stage and

(b) late-stage tumour growth with quiescence and necrosis, with
parameters ¢ = 0.01, vy =1/2, hp = 0.1, hg = 0.04 and r,(0) =
0.1. (c¢) Non-necrotic growth with parameters ¢ = 0.01, hp = 0.1,
hg = 0.01 and rp(0) = 0.1.
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layer of proliferating cells forms a very thin layer at the edge of the tumour, hence we
may approximate ry; & rg at equilibrium. In non-necrotic growth (c), there are no
proliferating cells at equilibrium, hence 73, = 7¢. In both cases, we may assume that
h(ry) = h(rg) = hq. Assuming further that > 0, then, from Eq. (5.36]), the interfacial

width w at equilibrium may be approximated by the simple relationship

h
w=ry—ry =log h_Q (5.49)
N

In Fig. 5.8 we compare the interfacial width at equilibrium w with changes in tumour
quiescence threshold hqg. Eq. represents a reasonable approximation to w, but we
see the assumptions h(ry) = hg and 7 > 0 cause a slight overestimation of this gap size.
Most importantly, through comparison of Figs. and 5.8 we see that the equilibrium
tumour width is predicted to be approximately ten times as large as the interfacial width.
This is a significantly more physiologically accurate than the basic model (see Fig. [5.4)),

where the gap was predicted to be of a similar size to the tumour.

5.4 Discussion

In this chapter we have presented a mathematical study of both vascular and avascular
tumour growth, where the invasion mechanism is the acidification of the microenviron-
ment surrounding the tumour due to increased reliance on glycolysis. Utilising the vast
difference between the timescales of tumour growth and acid movement allows us to treat
the tumour radius as a parameter in terms of which other variables are expressed. In par-
ticular, we determine the equilibrium acid profile and necrotic core radius as a function

of the tumour radius.
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Variation in size of acellular gap separating tumour and normal
tissue fronts at equilibrium, with changes in the tumour quies-
cence threshold hg. The gap width is compared with the simple
approximation in Eq. . Parameter values used are € = 0.01,
v =1/2, hp = 0.1 and hy = 0.01. The dotted line represents
the crossover from non-necrotic to necrotic growth.
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The analysis of the basic model in Section predicts three regimes of tumour growth.
If the rate of acid removal from the tumour is insufficient, we see exponential growth
followed by auto-toxicity, resulting in a benign tumour. This is found always to occur in
an avascular tumour, and it may also occur in a vascular tumour if the critical parameter
hy < 1. Conversely, if hyy > 1, a vascular tumour displays sustained growth, and
invades the whole of the normal tissue space. In both of these cases, the advancing
tumour front is separated from the receding normal tissue by an acellular gap. Finally,
if the tumour is sufficiently small, we see no growth as the microenvironmental acid
perturbations are insufficient to induce normal cell death. Note, however, that for tumours
of this size, inhomogeneities have more effect on the system and thus stochastic or cellular
automaton [5, [92] approaches may be more applicable than the mean-field type approach

used here.

Within the model, three dominant factors determine tumour growth: acid production,
acid removal due to tumoural and peritumoural vascularity, and cellular sensitivity to
acid. In general, tumour growth is enhanced through increasing acid production to induce
toxicity in the adjacent normal tissue. However, in order to display sustained growth, the
tumour must limit excess acid accumulation to avoid auto-toxicity. This balance may
resolve itself in several ways. Tumour growth could be limited by cellular sensitivity:
that is, the dominant populations within the tumour may retain significant sensitivity
to acid-induced apoptosis. As such, tumour expansion is halted when the intratumoural
pHx is only modestly reduced. Tumour growth could also be limited if the vascularity is
limited: the intratumoural hydrogen ions will accumulate sufficiently to create an acidic
pHx that halts proliferation. In these settings, tumour growth could be rapidly increased

through adoption of the angiogenic phenotype or emergence of new populations with
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additional mutations that render them more resistant to acid-induced apoptosis. Finally,
tumour growth could be limited by acid production: the tumour does not produce enough
acid to create a peritumoural hydrogen ion gradient sufficient to kill the normal cells.
In this case, emergence of phenotypes with higher glycolytic metabolism will result in
invasive growth, consistent with findings that rate of glucose uptake correlates with more

malignant behaviour [73].

The converse of each of the above scenarios suggests possible cancer treatment strate-
gies. In general, the results favour tumour anti-angiogenesis strategies, because decreased
vascular density will reduce acid removal as well as nutrient supply. If the resulting
decrease in pHx exceeds the tolerance of tumour cells to local acidosis, the resulting
apoptosis would halt tumour growth. Mathematically, this is achieved through reducing
har = Hyry Vi /1 Ky below the critical value of 1. This parameter may also be reduced
through the novel strategy of manipulating systemic pH. A recent study demonstrated
that patients with metastatic renal cancer benefit from cytoreductive nephrectomy [44].
The authors propose that removal of functioning nephrons produces mild renal failure
that is associated with systemic acidosis. This decrease in the serum pH reduces acid
removal, since diffusion of hydrogen ions from the tumour interstitium into blood vessels
is dependent on the concentration gradient across the vessel wall. The resulting decrease
in intratumoural pHx may again induce tumour auto-toxicity. However, both approaches
above come with a cautionary note. Reduced acid removal will result in an increased
peritumoural pH gradient, thus increasing degradation of normal tissue and thus poten-
tially promoting tumour growth. As such, perhaps the most effective treatment suggested
by the model is to poison the membrane pumps that transport hydrogen ions from the

intracellular to extracellular space within the tumour (through drugs such as amiloride,
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for example). This would increase the tumour cell sensitivity to pHx and furthermore

decrease the peritumoural acid gradient.

The model’s predictions may be compared to experimental results and clinical observa-
tions. The prediction of the presence and range of a pH gradient extending into the
peritumoural normal tissue is consistent with the data of Martin and Jain [80]. We also
demonstrate that whilst acidity correlates with increased tumour invasion [81], brief sys-
temic acidosis may induce widespread tumour apoptosis and regression [65]. The most
verifiable prediction is the development of an appreciable acellular gap separating the ad-
vancing tumour and receding normal tissue edges. Our analysis shows that the existence
of such a gap is dependent only on tumour size and acid production rates and thus should
be apparent in a wide range of cancer types. In a study performed on human head and
neck carcinoma, this acellular gap was observed in 67% of cases [41]. It should be noted,
however, that tumours use a variety of mechanisms to invade normal tissue. As such,
they may create insufficient acid perturbations to induce an acellular gap, but nonethe-
less continue to grow. In these cases, mechanisms additional to tissue acidification must

be considered.

One criticism of the basic model described in Section [5.2lis that the width of the interfacial
acellular gap is predicted to be of a similar size to the tumour, larger than has been
observed experimentally. Within the basic model, we considered two types of tumour
cell — active proliferating cells and necrotic cells. Within avascular tumours in particular,
the vast majority of the viable cells are quiescent, producing significantly less acid than
their proliferating counterparts. In Section we extended our modelling framework

to account for these quiescent tumour cells within avascular tumours. Analysis of this
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extended model gives a more physiologically accurate description of the interfacial gap,
predicting that the gap width is an order of magnitude smaller than the tumour radius

at equilibrium.

It is clear that tumour growth is dependent on the complex interactive dynamics of many
different factors, including the supply of nutrients and growth factors and the specific
mutations displayed by the tumour population. This growth is further complicated by
any inhomogeneities found within the tumour. Using simplifying assumptions, we have
shown here that increased tumour acid production alone, almost universally observed in
clinical cancers, is sufficient to explain both benign and invasive growth. As such, acidity
may play a dominant role in tumour progression. Critical parameters in the transition
from premalignant to malignant morphology include acquisition of angiogenesis, increased
glucose utilisation and loss of critical pH-sensitive genes, all observed in human tumours.
Various therapeutic strategies are suggested to inhibit tumour growth. In particular, the
model suggests the counter-intuitive approach of further increasing tumour acidity, in
order to induce auto-toxicity. Experimental results verifying this observation would be of

considerable interest.



Chapter 6

Quiescence as a mechanism for cyclical

acidosis

6.1 Introduction

A key factor in the adoption of aerobic glycolysis by tumour cell populations is their
exposure to an unstable microenvironment, experiencing fluctuations in substrate supply.
For example, normoxic—hypoxic cycles in tumours have been measured to occur with
periodicities of minutes [6§], hours [58] and days [47]. From a bioenergetic perspective,
those cells in which aerobic glycolysis is constitutively upregulated will be better placed to
respond to these periods of hypoxia, and thus positively selected by somatic evolutionary

pressures.

Using a magnetic resonance imaging (MRI) technique that is sensitive to oxygen levels,
fluctuations in signal intensity (oxygenation) have been shown to occur with periodic-
ities of both one and twenty cycles per hour [9]. Contrastingly, using microelectrodes,

oxygenation cycles have been measured with periodicities of 1-2 per minute [13]. These

121
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discrepancies may be explained because MRI is relatively insensitive to rapid fluctua-
tions, whilst instabilities in microelectrodes mean this modality is insensitive to slower

changes [45].

Each of the studies mentioned above shows that tumour cells experience considerable
inconsistencies in oxygen delivery. The primary explanation put forward for transient
hypoxia and reoxygenation is fluctuations in the haemodynamics, or blood delivery, of
nearby and distant vessels [45], [67]. Rapid normoxic-hypoxic cycles are thought to occur
due to fluctuations in haematocrit, the concentration of red cells in the blood [2§], or
through vasomotion, rhythmic oscillations in vessel diameter [I09]. Longer cycles, occur-
ring over days, are likely to be due to vascular remodelling, the active process of altering
the structure and arrangement of blood vessels [67, [91]. Vascular remodelling is driven
by cycles of angiogenesis promoted by hypoxia-induced expression of vascular endothelial

growth factor (VEGF), an induction and survival factor for new blood vessels [47].

In this chapter, we examine an alternative mechanism for the observed substrate fluctu-
ations in tumour tissue, namely cellular quiescence. In Section 5.3, we noted that high
levels of acidity can induce cells to cease proliferation, i.e. become quiescent [20]. Quies-
cent cells are essentially metabolically inactive, producing significantly less acid than their
proliferating counterparts. Thus the level of acidity will decrease, in time allowing cells to
resume proliferation. We demonstrate that this simple negative feedback mechanism may
produce the observed cycles in tumour substrate levels. Whilst our focus is on growth
inhibitors produced by tumour tissue, such as lactic acid, the analysis is equally valid for

growth promoters consumed by tumour tissue, such as oxygen.
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6.2 Model development

Following Chapter 5, we model the tumour as a sphere of radius R); and assume that
spherical symmetry prevails at all times. We consider first the dynamics of acidity in and
around the tumour, though later we shall show that the analysis holds for the dynamics

of other substrates, such as oxygen.

Reiterating the notation of Eq. (4.2), let H denote the extracellular concentration of excess
hydrogen ions, where excess means above its normal level. We assume that there exists a
sharp acidity threshold Hg above which tumour cells cease proliferation [20]. Define the
acid production rate rg = ¢ per unit volume for quiescent cells and rg = ¢4 for active
cells, where ¢g < ¢4 as quiescent cells are relatively metabolically inactive. The vascular
density is taken to be homogeneously V' = V), within the tumour, and V' = V}y elsewhere.
Extending the work of Chapter 5, we allow for a lag time ¢y, between extracellular acid
levels changing, and cells mounting the appropriate response of quiescence or proliferation.

Under these assumptions, we have
o1 Dn 0 (p0f)
ot R? OR OR

[(m — $0)0(Hg — H(t —to)) + do| Kar —rvVarH 0 < R < Ry
—ryVvH Ry < R,
where K, denotes the tumour cell density, r the acid removal rate, Dy the acid diffusion

coefficient and 6 the Heaviside (or unit step) function defined by

(z) = (6.2)
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The bracketed term in the second line of Eq. (6.1)) simply represents cells producing acid

at rate ¢ if H(t —ty) < Hg, and ¢¢ otherwise.

Taking p = +/rvVn/Dg, Hy = ¢aKy/ryVn and T = (ry/Vy)~!, we may non-

dimensionalise Eq. (6.1) with r = pR, h = H/Hy and 7 = t/T to obtain

b (hoy + 2 ) = (1 —-¢)8(hg — h(t — 1)) +c—¢°h O<r<ry (63)

—h Ty < Ty

where € = ¢g/pa < 1, 19 = to/T, hg = Hy/Hy, ¥ = \/Vi/Vn and ryr = pRy, subject

to continuity of h and h, at r = ry; and lim, .., h(r) = 0.

Whilst within this thesis we focus on describing the dynamics of acid in and around tumour
tissue, Eq. can be applied to describe a number of different growth factors. Consider,
for example, the dynamics of oxygen — from this perspective a positive growth factor
consumed by both normal and tumour tissue. Let C' denote the extracellular concentration
of oxygen, and suppose that tumour cells cease proliferation when oxygen drops below a
threshold concentration Cg. Let ba, Q_SQ and ¢y denote the rates of oxygen consumption
by active tumour, quiescent tumour and normal cells respectively. We assume that oxygen
is supplied through blood vessels at a rate 7y, proportional to the difference between the

extracellular oxygen and serum oxygen concentration Cs. Then we find

oC D¢ 0 <R286’> (6.4)

ot  R2OR\" OR

- (((EA - &Q)G(C(t - tO) - CQ) + (EQ)KM + vaM<Cs — C) 0< R< Ry
—CENKN+vaN(CS—C) Ry < R,

where D¢ is the oxygen diffusion coefficient, and Ky the normal tissue density. Now
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using the transformations h = (Cx — C)/Cy, r = pR and 7 = t/T where

ON Ky (04— d0)Kn vV
X S fVVN ’ 0 fVVN y P DC’ )
- 1 $qg — do - Ky to
T = y E = -, = _ s Tn = =,
vV si—dy TR,V T
Cx — Co Var i
Q Co , P V' v = phiy, (6.5)

we may recover Eq. . Note that this model only makes sense if ¢4 > ¢, or equiv-
alently QBAK v/ Var > gz_ﬁNK ~/Vn. If this effective rate of active tumour cell oxygen con-
sumption is smaller than the corresponding normal rate, the tumour will receive sufficient
oxygen supply, and no regions of hypoxia will occur. One minor difference between the two
models is that for acid-induced quiescence we require £ > 0, whilst for hypoxia-induced

quiescence no such restriction is in place.

Through the remainder of this chapter, we shall investigate the delay partial differential
equation ((6.3). This analysis will allow us to understand the effects of cellular quiescence

on cyclical acidosis within tumour tissue.

6.2.1 Spatial homogeneity

We first consider the dynamics of Eq. (6.3)) in the absence of diffusion. Assuming spatial

homogeneity, within the tumour (r < 7)) we have

h, = (1 —¢)0(hg — h(T — 1)) + ¢ — »?h. (6.6)

To reduce the size of the parameter space, when the vascular density within the tumour

is non-zero (i.e. 1» > 0), we may rescale the variables in Eq. to obtain

h: =(1—¢)0(hg — h(T — 7)) +€ — R, (6.7)
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where

h=1’h, hg = ’hg, T =V, 7o = ¥*n. (6.8)
If there is no lag time, i.e. 75 = 0, then this equation reduces to
h: = (1 —¢)8(hg — h) +¢ — h. (6.9)

Looking for steady state solutions to Eq. , we see differing behaviours dependent on
the value of hg. If hg > 1, then the unique steady state is given by kA = 1, whilst if hg < ¢
this steady state is given by h = e. However, if hg € (¢,1), Eq. has no steady state
solution. Interestingly in this case, hz > 0 for A < hg and hz < 0 for h > hg, and thus A

globally converges to hg, even though it is not strictly a steady state solution.

We move on to consider Eq. with a non-zero lag time 7. In determining typical
parameter values, we assume as a base value ¥? = 1 i.e. waste removal occurs at the same
rate in both normal and tumour tissue. Given experimentally-determined parameter
values of p = 4.7 em™!, Hy = 1072 mM and Dy = 1.08 x 1075 cm? s~! [41], R0, 92], we
may calculate T = 4.2 x 10% s, meaning that each time unit is equivalent to approximately
one hour. Following Chapter 5, we take ¢ = 0.01 < 1, as quiescent cells are essentially
metabolically-inactive, and fig = 0.04 = pH 6.4 [92]. A change in cellular metabolism in
response to a change in extracellular acidity is likely to be mediated by gene transcription
and expression. Thus the lag time is likely to be on a similar timescale to that of gene
transcription; as such we take 75 = 0.5, equivalent to a lag of ¢, ~ 30 minutes. Notice
that with this parameter set we find hg € (¢,1), and thus from the analysis above there

is no steady state and we would expect cyclical acidosis to occur.
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For hg € (g,1), Eq. has analytical solution

1—(1—hg)e T h increasing
h = (6.10)
e+ (hg—e)e ™ h decreasing.
where 7 is shifted such that 7 = 0 corresponds to 7 = hAg. The maximum and minimum

acid levels are given, respectively, by substituting 7 = 7, above. The cycle time is given

by

= log [( Loe (e - 1>] | (6.11)

In Fig. we present results for the spatially homogeneous model of tumour acidity,
using the typical parameter values above. Cycles of acidosis are indeed observed; the acid
levels vary between their maximum level of A ~ 0.42 = pH 5.4 to their minimum level of

h~ 0.028 = pH 6.5. The cycle time is 7 &~ 3.6, equivalent to four hours.

6.2.2 Temporal homogeneity

Typically, the first step we take when investigating the role of a specific metabolite in
tumour development is to look for temporally-homogeneous solutions to the metabolite
evolution equation. The justification for this is that the timescale of metabolite diffusion
is much less than the timescale of, for example, tumour growth, and hence the metabo-
lite can be assumed to be in diffusive equilibrium. This removes the need for both the
metabolite evolution term 0h/O7 and the lag term 7, and is the same assumption we used
in the previous chapter. However, the astute reader will have noticed that we considered
only avascular (¢» = 0) growth in Section 5.3; the reasons for this will become clear be-

low. Essentially, the previous chapter relied on the fact that acid levels increase towards



Chapter 6: Quiescence as a mechanism for cyclical acidosis 128

0.5

0.45- T

0.4

0.35

0.3

0.25

0.2

Acid concentration h

0.15

0.1

0.05

0 1 2 3 4 5 6 7 8 9 10

Figure 6.1: Results from Eq. . Predicted cyclical acidosis for the
spatially-homogeneous model, using typical parameter values
hg = 0.04, e = 0.01 and 7y = 0.5 and initial conditions A(t) = hq
for 7 € [—70,0]. The acid level cycles around hg, between its
maximum value of 7 &= 0.42 and minimum value of i ~ 0.028.
The cycle time is approximately 3.6 non-dimensional units.
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the centre of the tumour. When considering a vascularised tumour (¢» > 0) containing

quiescent cells, this property does not necessarily hold.

Assuming temporal homogeneity, Eq. (6.3]) reduces to

?r2h — ((1 —€)f(hg — h) +€)r? 0<r<ry
r*h" +2rh = ( ¢ ) (6.12)
r?h Ty < T,

where the primes denote the derivative with respect to r. To simplify the analysis, when

1) > 0 we may rescale the variables
h=*h, hg = *hg, p=1r, py = Yry. (6.13)
We may solve Eq. for 7y < r; applying continuity of h and its derivative at r,; we
find that within the tumour
P’ R+ 2ph = p*h— (1 —¢€)0(hg — h) +€)p>  0<p<pu, (6.14)

subject to the boundary conditions

py + Y
You

HO)=0,  H(pa) = hlpa) (6.15)

where the primes now denote derivative with respect to p.

We will now move on to show that, if hg € (¢,1) and pyy is sufficiently large, Eq. (6.14)
has no solution. As such, the standard assumption that the substrate of interest is in
diffusive equilibrium will be invalid, and cycles of limited substrate availability must be

observed.
Consider first a tumour in which all cells are active. Then, from Eq. (6.14))

PR+ 2p0 — p*h 4 p* =0, (6.16)
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which, subject to the boundary conditions in Eq. (6.15]) has solution

sinh p

h(p)=1—k , (6.17)
p
where
Lo (0 coshf;j\;—:-finh oM (6.18)
In particular
RO)=1—k — 1, aspy— 0. (6.19)

Thus, if hg < 1, at some radius py; = p*, h(0) = hg and the cells at the tumour centre will
become quiescent. This radius p* may be found numerically from the expression above

for h(0), i.e. through solution of
p* = (1 — hg) (¢ cosh p* 4 sinh p*) — 1. (6.20)

For typical parameter values hg = 0.04 and ¢ = 1, we find p* = 0.31, equivalent to the

first quiescent cells appearing when the tumour has radius R ~ 0.7 mm.

Assuming that p > p*, some of the tumour cells must be quiescent. Suppose hqg € (g, 1)
and consider a region (p1, p2) containing only quiescent cells, i.e. a region where i > fig

everywhere. Then, from Eq. ((6.14])) within this region
p*R" 4 2pk — p*h +ep® = 0. (6.21)

The edges of the region p; and ps must either be a tumour boundary (0 or pys) and satisfy
the appropriate boundary condition in Eq. (6.15)) or they must satisfy i(p;) = hg. We

consider each case separately below.

e Case 1, p1 =0, p2 = pur-
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Consider the case where all the cells in the tumour are quiescent. Then, applying the

boundary conditions in Eq. (6.15)),

), (6.22)

where, in particular

h(0) = e(1 — k1) < max(e,0) < hg. (6.23)
This contradicts the fact that the whole tumour is quiescent.
e Case 2, p1 =0, h(p2) = hg.

Consider now the case where the quiescent cells are limited to the tumour centre. Then

n (07 /02)
p2  1sinhp
li(p) = ho — ] 6.24
(1) =+ [(ho =) H] == (6.24)
where, in particular
P2
_ _ 2
h(0) = ¢ + (hg E)sinhpg < hg, (6.25)

as py/sinhpy € (0,1), again contradicting the fact that cells at the tumour centre are

quiescent.

e Case 3, h(p1) = hg.

Suppose finally that the cells in the tumour centre (0, p;) are active (h < hg) and sur-

rounded by quiescent cells. Then h(p;) = hg and, in (0, p1),

p1 1sinhp
B :1—[1—h ] 6.26
() =1= [0 = hg) gh—] ™ (6.26)
where, in particular
1
h(0)=1—(1—nh h, 2
(0) ( Q)Smhp > hq, (6.27)
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contradicting the fact that the cells at the tumour centre are active.

The analysis presented above has shown that, when ¥r = p > p* and ?*h = h € (¢,1),
Eq. has no solution. As such, the standard assumption of temporal homogeneity is
not valid; instead we must consider the temporal dynamics of the system. In the previous
section we showed that when A € (g,1), the assumption of spatial homogeneity leads to
cyclical solutions. Given this evidence, for the full model defined in Eq. , we expect
cyclical behaviour to occur whenever p > p* and A € (g,1). This behaviour is analysed

in the next section.

6.2.3 Full model analysis

We move on to analyse the full model, including both temporal and spatial dynamics.

The model is defined by Eq. (6.3), which we reiterate here

(1 —¢)0(hg — h(T — 1)) + € — Y*h O<r<r
Iy — (hy + 2y fr) = © ’ " 6.28)
—h v < T,

subject to the boundary conditions h,.(0,7) = 0, continuity of h and h, at r = rj; and

lim, o A(r,7) = 0, and initial conditions h(r,7) = 0 for 7 € [—7, 0]

The method of lines [86] is a technique that may be applied to numerically solve parabolic
equations, involving discretising in all but one dimension, and then integrating the semi-
discrete problem as a system of ordinary differential equations (ODEs). The method
allows us to take advantage of the sophisticated tools available for numerical solution of

ODEs and, in this case, delay (ordinary) differential equations (DDEs).
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We discretise Eq. (6.28)) with respect to the variable r using finite differences, in particular

using the approximations

h(r+ A7) —h(r — A, 1)
2A
h(r+ A, 1)+ h(r —A,7) — 2h(r,7)

o (r, 7) = N , (6.29)

hy(r,T) ~

for small A.

To use the discretisation above, we first approximate the infinite domain [0, c0) as a finite
domain [0,7y], where 7o, = kry, for some integer & > 1. The boundary condition at
r = oo is then replaced by the condition A(rs,7) = 0. We then choose a uniform grid r;,
j=1,...,kN with spacing A = ro/kN = rj/N such that r; = jA. This allows us to

define h;(7) = h(r;, 7) to be the value of h at each of these grid points.

The Dirichlet boundary condition h(r.,7) = 0 is handled easily by defining hyn(7) =
0. The Neumann boundary condition h,.(0,7) = 0 requires more care. We first apply

I’Hopital’s rule to obtain

lim M — lim % = h (0, 7). (6.30)

To handle this second order difference, imagine the problem is instead being solved on the
domain [—r., 7], with the tumour tissue confined to [—ry, 7)) and the same boundary
conditions at r = +r,,. The Neumann boundary condition then implies that the solution

will be symmetric with respect to r for all time. Thus h(—A,7) = h(A,7), so h_1(1) =

hl(T).
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The system of (kN + 1) DDEs in the variable 7 is then given by

6[h1 ho}AMfo j=0
" [ (145 Yhyer + (1 — j Dhy_y — th]A—2+fj j=1,.... N
J [1+31 H1+(1—j-l)hjfl—2hj]A—2—hj j=N+1,....,kN -1
| 0 Jj=kN,
(6.31)
where
fi(t) =1 —¢)0(hg — hj(T —1)) + ¢ — thj(T). (6.32)

The system of DDEs in (6.31]) is solved using the MATLAB® integrator dde23 [106]. Pre-
liminary tests showed that k = 5 was a suitable choice — integrating over domains larger

than [0,57),] had a negligible effect on the system solution.

Typical model solutions are shown in Figs. and [6.3] Given typical parameter values
of hg = 0.04 and ¢ = 1, we may calculate from Eq. (6.20) r* = p*/1) = 0.31, the tumour
radius at which quiescence first occurs. Choosing ry; = 1 > r* and € = 0.01, we have

?hg € (g,1), and thus, from previous analyses, cyclical acidosis will occur.

Fig. shows cyclical acidity at the tumour centre (red) and tumour edge (blue) using
these parameter values. The cells at the tumour centre cycle between their maximum level
of h = 0.23 = pH 5.6 and their minimum level A ~ 0.016 = pH 6.7. The cells at the
tumour edge also experience cyclical acidity about the quiescence threshold, though their
maximum acidity A ~ 0.11 = pH 5.9 is less than the cells at the centre. The cycle time is
T =~ 1.4, equivalent to 100 minutes. This may be compared to the spatially homogeneous

model presented in Fig. [6.1] Addition of diffusion to the model acts to smooth system
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Figure 6.2: Results from Eq. (6.31)). Predicted cycles of acidity observed
at the tumour centre (red) and tumour edge (blue) for the full
model, using typical parameter values hg = 0.04, ¢ = 0.01,
Y =1, 79 = 0.5 and rp;y = 1. The domain of integration used
is [0,57y], divided into 251 grid points. The acidity levels cycle
around the quiescence threshold hg, with cycle time of approxi-
mately 1.4 units.

dynamics, reducing the maximum acidity levels seen and in turn decreasing the acid cycle

time.

In Fig. [6.3] we investigate how acidity levels vary through the tumour during each cycle.
Initially (blue), all the cells within the tumour are below the quiescence threshold. Cycles
of acidity are out of phase for different sections of the tumour and an increase in acidity
is first seen at the tumour edge (r = 1, red). Acidity then increases at the tumour centre
(r = 0, black), before reaching its maximum level (green). This figure demonstrates that,

whilst acid levels are on average higher in the tumour centre than the tumour edge, this
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Figure 6.3: Changing acid profiles in and around the tumour during the aci-
dosis cycle as depicted in Fig. 6.2l Times shown are 7 = 1.3
(blue), 7 = 1.5 (red), 7 = 1.6 (black) and 7 = 2.0 (green). Notice
that for some of this cycle, acidity is higher at the tumour edge
than centre. Parameter values used are as in Fig. The dot-
ted lines represent the tumour radius (rp; = 1) and quiescence
threshold (hg = 0.04).

property does not hold throughout the acid cycle. The point is reinforced in Fig. [6.4]
which shows how the metabolic characteristics of tumour cells vary during each cycle.
The first cells to become quiescent due to high extracellular acidity are not at the tumour

centre, rather this occurs at r ~ 0.81 near the edge of the tumour.
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Figure 6.4: Changing metabolic characteristics during the acidosis cycle as

depicted in Figs.[6.2] and The first cells to become quiescent
are located at r ~ 0.81, whilst the first cells to resume prolifera-
tion are at the tumour edge, » = 1. For the majority of the cycle,
the whole of the tumour is in the same metabolic state, with all
cells either active or quiescent. Parameter values used are as in

Fig.
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6.3 Discussion

Fluctuations in metabolite levels are known to occur within tumours with discrete pe-
riodicities of hours, minutes and days. Cells that are best suited to respond to these
periods of cellular stress, such as through constitutive upregulation of aerobic glycolysis,
will be positively selected by somatic evolutionary forces. These cycles are assumed to
occur due to haemodynamic variations such as changes in the local concentration of red
blood cells or structural rearrangement of blood vessels. In this chapter we have inves-
tigated a further hypothesis, namely that quiescence in response to cellular stress, and
the corresponding drop in metabolism, provides a negative feedback mechanism capable

of reproducing such metabolite cycles.

A simple reaction-diffusion system is used to describe the evolution of the metabolite of
interest. Whilst we focus on the dynamics of acidity within the tumour, the model is
equally valid for any growth inhibitor produced by tumour cells or any growth promoter
consumed by tumour cells. The model is similar to that used in Chapter 5, with the
addition of temporal dynamics and a lag term corresponding to gene transcription and

expression.

We show, for a biologically realistic range of parameter values (ry; > r* and ¢?*hg € (g, 1)),
that the standard assumption of the metabolite reaching diffusive equilibrium is not valid.
Rather, when investigating the distribution of acid around a vascularised tumour in which

cellular quiescence occurs, temporal dynamics must be considered.

We first investigate a spatially homogeneous model, and find that cycles of acidity due

to cellular quiescence occur with a periodicity of around four hours. Inclusion of spatial
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aspects and diffusion reduces this cycle time to between one and two hours, consistent with
experimental evidence [58]. Within the parameter regime used here we find the acid levels
at the tumour centre will fluctuate between pH 6.7 and pH 5.6. Given the importance
of acidic and hypoxic cycles in mediating the evolution of cancer cell metabolism and
resistance to acidity, further experimental verification of the role of quiescence in inducing

metabolic cycles will be of considerable interest.



Chapter 7

pH imaging

7.1 Introduction

The relatively young field of molecular imaging is focused on the in vivo characterisation
and measurement of biological processes at the cellular and molecular level. In contrast
to ‘classical” diagnostic imaging, it probes the molecular abnormalities that are the basis
of disease, rather than imaging the end effects of these molecular alterations. Specific
imaging of such targets allows earlier detection and characterisation of disease, earlier and
direct molecular assessment of treatment effects, and a more fundamental understanding

of the disease process.

The measurement of extracellular pH of tumours in vivo has historically been performed
using microelectrodes [I18]. This approach has the disadvantage of being both invasive
and destructive. Over the past two decades, noninvasive magnetic resonance (MR) tech-
niques have been developed to measure both intracellular pH (pHj) and extracellular pH
(pHx) of human and animal tissues [48, [49]. Virtually all tumour pH data to date show

an acidic pHx and alkaline pH; relative to normal tissue. Moreover, it is found that the

140
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Tumour Species  Type pHx pH;
Normal Rat Liver 7.344+0.03 7.26 4+ 0.02
Normal Rat Muscle 7.39 7.39 +£0.10
MCEF-7 Human Breast 6.99+0.11 7.15£0.08
MDA-mb-435 Human Breast 6.80+0.11 7.37+0.07

MDA-mb-435/nm23-H1 Human Breast 7.17+£0.10 7.16+0.05

HT-29 Human Colon 6.79+0.05 7.0240.05

Table 7.1: Extracellular and intracellular human and animal tumour pH,
measured with 3P magnetic resonance spectroscopy [49].

pHx becomes more acidic as the tumour grows, consistent with reduced perfusion [49].
In Table [7.1] we present a sample of the data as measured using 3'P MR spectroscopy.
Significant differences in tumour pHx have been found that correlate with the aggressive-
ness of the tumour cell phenotype. For example, breast cancer tumours expressing nm23,
a metastasis-inhibiting protein, had significantly higher pHx and lower pH; compared
to their metastatic counterparts. Similarly, tumours of highly metastatic cells, such as

MDA-mb-435, have a lower pHyx than non-metastatic MCF-7 tumours of comparable size.

Most recently we have witnessed the development of pH-sensitive gadolinium complexes,
offering the possibility of imaging pH with a spatial resolution comparable to that of
standard MR imaging. Through sequentially administering two contrast agents with
similar tissue pharmacokinetics, one insensitive to tissue pH and the other pH-sensitive,
it has been possible to compute pH images of kidneys and nearby tissues following renal

acidosis [97].

In the long term, clinical applications of this emergent high-resolution tumour pH imaging
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technology can be envisioned, including the characterisation of tumours and the assess-
ment of chemotherapy. The extraction of key biological parameters from such images
could prove invaluable to the clinician as a diagnostic tool, for example in determining

whether a given tumour is benign or cancerous.

In this chapter we undertake a comparison between tumour pH images obtained through
optical imaging techniques to the reaction-diffusion model of acid dynamics set out in
previous chapters. The motivations behind this are two-fold. Firstly, the analysis will
allow us to assess and verify the previous modelling work, giving the mathematics a firm
biological foundation. Secondly, we aim provide a methodology for calculating cellular
acid production rates from pH images — an important parameter known to correlate with

tumour aggressiveness [S1].

7.2 Fluorescence data

The data used in this chapter have been provided by collaborators at the University
of Arizona. The data are extracted from eight tumours implanted in severe combined-
immuno-deficient (SCID) mice. These SCID mice have no immune system, allowing the
foreign tumour cells to invade. Each of the eight data sets consists of three pH images,
taken approximately one, two and three weeks after tumour implantation, making a total
of 24 images. The tumour cell line used, PC3N /eGFP, is a rapidly growing human prostate
cancer, modified to express green fluorescent protein (GFP). Each tumour pH image has
a corresponding GFP image, allowing detection of the tumour cells. Each image contains

512 x 512 pixels, with a spatial resolution of 25 ym. An example of a typical pH-GFP
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image pair is given in Fig. [7.]]

The pH profile is created using a technique known as fluorescence ratio imaging. Flu-
orescence occurs when a molecule absorbs a photon, then emits a photon of slightly
longer wavelength. This simple concept has been used in a wide variety of applications
in biology and medicine. The tumour was injected with the pH-sensitive fluorescent dye
seminaphthorhodofluor-1 (SNARF-1) prior to image acquisition. Two sets of emission
data were then collected in different spectral regions (red and blue). Using a suitable
transformation, the ratio of the two intensities at each point was used to calculate the pH
as in Fig.[7.1] (a). This method was shown to yield a pH resolution of 0.042 pH units [64].
Examination of a third spectral region (green), allows us to view the emission of the GFP
used to locate the tumour, as shown in Fig. (b). Note that the GFP image has been
scaled here so that 1 corresponds to the intensity threshold used by the experimentalists

to identify the tumour edge [64].

It should be noted that, in order to perform the optical imaging technique described
above, a dorsal skin fold chamber must be attached to the mouse (see Fig. [7.2). The
dorsal skin is a flap of tissue on the back of the mouse. This tissue is clamped inside a
thin window chamber, and the skin is then removed, exposing the smooth muscle tissue
and allowing the implanted tumour to be viewed. The circular window of the chamber

can also be clearly seen at the edge of both the pH and GFP profiles in Fig. [7.1]

Because of these experimental methods, this fluorescence imaging technique is suitable
only for animal models, rather than in a clinical setting. Nonetheless, the methods of
analysis presented below will apply to any imaging modality capable of producing pH

profiles around a tumour, such as the MR imaging discussed in the Introduction.
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Figure 7.1: (a) Typical pH profile of tumour and surrounding tissue obtained
through SNARF-1 fluorescence ratio imaging. (b) Corresponding
GFP profile of tumour. The field of view is (12.74mm)?.
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Figure 7.2: Dorsal skin fold chamber. Figure courtesy of R. Gatenby.

7.3 Image analysis

7.3.1 Preprocessing
Determining the ROI

Before undertaking a comparison between the models and experimental data, the images
must be preprocessed. Returning to Fig. (a), we see some artefacts of the experimental
approach that must be removed before analysis can be performed. The region of interest
(ROI) of the image is the tumour and its surrounding smooth muscle tissue, which has a
pH of approximately 7 (green). Other than this region, the image shows points outside
the circular window, which are the metal casing of the window chamber. These points

have a speckled appearance, with some pixels having very high or very low apparent pH.
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The image also shows an area of low apparent pH (orange) just inside the window; this

is skin that has regrown or slipped into view.

In order to remove the artefacts and show only the ROI — the tumour and surrounding
smooth muscle tissue — we use the method presented pictorially in Fig. [7.3] The method is
based essentially on removing regions of the image that have a low pH. Since the tumour
itself has a low pH and we do not wish to remove it from the processed image, the first
step is to set all pixels with a non-zero GFP level to have a high pH (Fig. [7.3| (b)). This
has the effect of removing the cells within the tumour, as well as a ring of cells at the edge
of the image. The next step is to apply an erosion-dilation filter (Fig. [7.3| (¢)). Erosion
works by replacing each pixel’s pH by the minimum pH in a specified neighbourhood of
that pixel, where we choose the neighbourhood to be a disc of radius R pixels. This is
followed by a dilation, which works in the same way except that the maximum pH in the
neighbourhood is taken. The erosion—dilation filter modifies the intensity values in the

image, but does not affect the overall geometry.

There is now a clear delineation between the different regions within the image. Thus we
may threshold the image to extract all pixels where pH < pH. (Fig.[7.3|(d)), and then the
region of interest is given by the central ‘hole’ (Fig. [7.3] (e)). The final panel (Fig. (7.3 (f))
shows the ROI plotted on the original pH image. Also highlighted is the tumour edge as

found from the GFP image.

Scaling

Let P denote the experimental pH profile, G the GFP profile and let H = 107 denote

the hydrogen ion concentration. Because we are dealing with micromolar concentrations
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e) f)

Figure 7.3: Method for determining the ROI of the pH image. (a) Initial
tumour pH image. (b) Removal of tumour. (c) Erosion-dilation
filter with R = 5. (d) Thresholding the image with pH. = 6.9.
(e) Extracting the critical region. (f) The ROI (solid line) plot-
ted on the original pH image, with the tumour boundary also
highlighted (dashed line).
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of hydrogen ions over micrometre distances, it is important to scale the variables to avoid

computational problems associated with very small numbers.

We non-dimensionalise:

h= " = %, g = max(G — 1,0), (7.1)

i
Hy
where we choose Hy = 1077?*M = pH 7.25 and A = 25 um is the pixel width. Under
these scalings, the hydrogen ion concentration and distance variables A and £ are non-
dimensional and of order unity. As mentioned earlier, the tumour tissue is defined as all
points where G > 1. By performing the shift above, the tumour tissue is redefined as all

points where g is non-zero.

7.3.2 Parameter estimation

Having performed the necessary preprocessing, we are now in a position to compare the

experimental data to the modelling work discussed in previous chapters.

Let h denote the experimental hydrogen ion profiles, g the GFP profile and €2z the region
of interest as calculated above. The viable tumour tissue €2, is defined to be all points
x € Qg such that g(z) > 0, and all points surrounded by tumour tissue. In this way,

debris within the tumour not expressing GFP will still be considered part of the tumour.

Returning now to Eq. (5.1), we assumed that the evolution of the model hydrogen ion

profile H may be described by a reaction-diffusion equation:

aa—]j = THM — Tvv<H — Hx) + DHVZH (72)
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where 7y is the rate of tumour cell acid (hydrogen ion) production, M the tumour cell
density, ry the rate of acid removal through blood vessels in normal tissue, V' the vas-
cular density, Hy the normal extracellular hydrogen ion concentration, and Dy the acid
diffusion coefficient. The boundary condition is that H — Hx a long distance from the
tumour. This equation was analysed in Section 5.2, for the case of a spherically-symmetric

tumour.

In order to compare the model of hydrogen ion evolution given in Eq. to the ex-
perimental pH images, a number of simplifying assumptions must be made. Whilst we
do not know the tumour cell density M, it may sensibly approximated as proportional
to the level of GFP expression, M = k,g. The vascular density V is also not known.
In reality tumour tissue is initially avascular, with tumour vessel density increasing with
growth through angiogenesis mechanisms. However, in the absence of precise informa-
tion, we assume that there exists a region {2y, where the vessels exist homogeneously at
their carrying capacity (V' = Ky), and that the remaining tissue is avascular (V' = 0).
Finally, we assume that the acid reaches equilibrium over the timescale of tumour growth,
i.e. 0H /0t = 0. However, as was shown in Chapter 6, this assumption may not be valid for
a particular parameter range. With these reservations in mind and under the assumptions

stated above, in non-dimensional form Eq. (7.2)) becomes

019+ (02 — 1) |, +05VEh =0, (7.3)
where
H THk' HX DH
Hy " ryKyHy > Hy °  ryKyA? (7.4)

The notation f (g)J o Is used to represent taking the value f(z) if z € , and 0 otherwise.

As boundary conditions, we take the hydrogen ion concentration at the edge of the region
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of interest to be fixed at the background level, H(0Q2g) = 05.

It remains to define the unknown region of vascularity €2y, for which we investigate
three possibilities. We first consider the tumour to be avascular, Qy = Qr — Q). We
also take the tumour to be fully vascularised 2y, = Qg. In Chapter 5, we considered a
third possibility, a partially vascularised tumour — the vasculature exists homogeneously
throughout the tumour, except for in the necrotic core. Thus Qy = Qr — Qp, where
Qp C Qy denotes the necrotic region. Whilst we do not have precise information about
the areas of necrosis within the tumour, this region may be estimated from the data
available. Noting that necrotic debris will be expressing significantly less GFP than the
surrounding, viable tissue, we empirically define QF, = {z € Q) : g(x) > max(g)/4}. We

then take €1p to be all pixels surrounded by, but not in €27,.

For a given parameter set © = (61, 65, 03), the solution h = hg to Eq. ([7.3) may be found

through first making a finite difference approximation.
Vgh(as, y) = h(z+1,y)+h(z—1,y) + h(z,y + 1) + h(z,y — 1) — 4h(x,y). (7.5)

Then Eq. (7.4) reduces to a system of N linear equations, using the same methods as

Chapter 4, where N ~ 10° denotes the number of pixels within the region of interest Q.

The full parameter estimation problem to compare an experimental image h with our

model Eq. (7.3)) may be described as:

Find © = (61,6,,03) to minimise ||d||, where d = hg — h, h is
the experimental image, he is the solution to Eq. (7.3) and ||.|

denotes RMS norm.
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This inverse problem is computationally expensive as it requires multiple solutions of
Eq. for different parameter estimates ©. Moreover, three-dimensional minimisation
routines suffer from a number of problems, including convergence to local, rather than
global, minima. However, through a suitable transformation, it may be reduced to a

one-dimensional minimisation problem.

Suppose first that we fix 3. We may calculate the solution h* to the equation
g—N]g, +0:Vh =0, (7.6)

subject to the boundary condition h*(d€2g) = 0, using the finite difference approximation
outlined above. Then the solution to Eq. (7.3) is given by h = 6; 'h* +6,. Thus, for fixed
63, the problem reduces to finding #; and 65 to minimise ||9f Yhe 46, — h|| R This is now

a simple linear least squares problem. Writing

o=y (W) —hy)

EENR

Oyy = Z (h(g) - hu)27
£eQp

0wy = ) (&) —hy) (R(E) = hy) (7.7)
£eQr

where 17, and A, are the means of h* and A, respectively, the best fit solution is given by

o7 = ? I (7.8)

Trx

and the RMS fit by

2
OzaOyy — Oy

— Y
e = | e (7.9)

Thus we reduce the parameter fitting routine to the one-dimensional problem of finding

05 to minimise the RMS difference defined in Eq. ((7.9)).
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Unlike multi-dimensional problems, minimisation in one dimension is well understood and
does not suffer to such an extent from convergence to local minima. The Golden Section
search is one method for minimising functions on a bounded interval [36]. Note from
Eq. that #3 must be strictly positive, as if 63 = 0, h is not defined outside of the
vascular region €2y,. Note also from Eq. that d = In2+/05 represents the number of
pixels away from the tumour edge at which the excess hydrogen ion concentration falls
to half its level. We choose the bounded interval d € [0.1,40] as, for d < 0.1 pixels, the
spatial resolution of the images will not be able to detect the acid gradient; d > 40 = 1 mm
is beyond the expected diffusion distance for the acid gradient. Converting these bounds
for d to 03, we perform the Golden Section search on the interval 63 € [0.02,3000]. The

results of the parameter estimation process are given in the next section.

7.4 Results

The parameter estimation algorithm was run for each of the 24 pH images. In Fig.
we present the predicted pH profiles for the tumour shown in Fig. [7.I] for each of the
three levels of tumour vascularity: avascular (Qy = Qgr — Qy), partially vascularised
(Qy = Qg — Qp) and fully vascularised (2 = Qg). Fig. (a) shows the experimental
pH image within the region of interest. Figs. 7.3 (b), (c¢) and (d) show the predicted pH
profiles under the assumptions of an avascular (RMS = 7.11 x 1072 pH units), partially
vascular (RMS = 7.06 x 1072 pH) and fully vascular tumour (RMS = 8.56 x 1072 pH),

respectively.

Comparing the experimental and predicted pH profiles, we see that the model is unable to
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c) d)

Figure 7.4: A comparison between (a) an experimental pH profile within the
region of interest, and the model profiles under assumptions of (b)
an avascular tumour, (c) a partially vascularised tumour and (d)
a fully vascularised tumour. The best fit is given by the partially
vascularised model, with an RMS difference of 7.06 x 10~2 pH
units.
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reproduce the spatial inhomogeneities both within and surrounding the tumour. Whilst
the model assumes spatially homogeneous vasculature within the normal tissue, in reality
the normal tissue contains both well perfused (blue) and poorly perfused (yellow) regions.
Moreover, the model predicts acidity to be much higher in the top region of the tumour
than is actually the case. Nomnetheless, the best-fit RMS of 7.06 x 1072 pH units in
Fig. (c) is excellent, when we consider that the pH resolution of the experimental
image is 4.2 x 1072 units [64]. This goodness-of-fit goes some way to validating the use

of Eq. (7.3) as a model for the hydrogen ion distribution around a tumour.

In Tables 7.2 and 7.3 we present the results of the parameter estimation process for both
the avascular and partially vascular cases. Over the 24 images, the fully vascular model
(Qy = Qpr) was never found to give the best fit, and thus cannot be considered the most
appropriate model for tumour vasculature. The partially vascular model provided the
best description of acidity around most of the tumours, though the avascular model was

best in some cases.

From the tables we see that, for the avascular model, in 15 of the 24 images there was a
RMS fit of less than 0.1 pH units. For the partially vascular model, this fit was observed in
13 of the 24 images. Given that five of the experimental images (marked with asterisks)
were corrupted, displaying regions of physiologically unrealistic pH (less than pH 5 or
greater than pH 8), we may conclude that the models are concurrent with the data in the

vast majority of cases.

We calculate the means and standard deviations of #; from the estimates that produce a
good fit (RMS < 0.1 pH units). At this point one problem with the parameter estimation

process becomes clear. For parameter #; in the avascular model, and parameter 63 in
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both models, we see a very large standard deviation relative to the mean. FEven for
individual tumours we see a large change in these predicted parameters over the course
of the tumour’s growth. This is because the landscape over which we are minimising is
fairly shallow. In other words, large changes in 3 are compensated for by large changes
in 6y, as defined by Eq. , leading to only a small change in the RMS difference. The

shallowness of the RMS landscape in response to changes in 63 is highlighted in Fig. [7.5]

Notwithstanding these problems with the fitting process, we look for a relationship be-
tween the cellular acid production rate #; and the tumour growth rate. Assuming the

tumour follows an exponential growth process, the growth rate between times ¢y and ¢; is

defined as
. In A(t1> —In A(to)

A :
t1 — to

(7.10)

where A(t) denotes the area of the tumour (in mm?) at time ¢. The vascular model in
Table 7.3 is used to investigate the relationship, as 6; is reasonably ‘well behaved’. The
results are presented in Fig. [7.6] We see that there may indeed be a relationship here
between tumour acid production rates and growth rates, as has been shown previously [81].
The correlation coefficient between 6; and A is » = 0.587; the probability of observing a
correlation this large when the true correlation is zero is p = 0.0576. This is not quite
sufficient evidence to reject the null hypothesis that there is no correlation between the
two variables at the standard 0.05 level of significance. Nonetheless, given the small size

of the available data set, it goes some way to confirming this relationship.
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Mouse Time (days) 01 02 (pH) 03 RMS (pH) Size (mm?)
0208-r1 0 5.22 x 10* 7.05 2.00 x 102 | 6.86 x 10~2 4.17
10 6.15 x 102 7.03 4.45 6.86 x 1072 5.70
15* 1.12 x 10% 7.01 2.00 x 1072 | 5.77 x 10~1 7.27
0208-r2 0 1.08 x 10° 7.12 2.00 x 1072 | 9.29 x 10~2 19.6
9 7.80 x 10* 6.91 3.03 x 101 | 1.19 x 1071 24.8
12* 1.31 x 102 6.92 1.88 x 10 | 1.95 x 101 26.6
0209-00 0 3.74 x 10! 7.00 4.64 x 101 | 8.68 x 1072 9.85
8 3.43 x 10! 7.02 1.30 x 102 | 9.59 x 102 8.84
13 2.72 7.03 3.00 x 103 | 9.78 x 10~2 9.14
0209-r1 0 4.56 x 102 6.99 4.22 7.11 x 1072 14.0
8 1.83 x 10! 7.03 8.08 x 101 | 9.99 x 10~2 17.9
11 7.37 x 10! 7.12 7.48 x 101 | 9.34 x 1072 22.1
0406-00 0* 2.01 x 10~1 6.96 2.01 x 10% | 2.09 x 10! 5.18
6 0 6.22 - 7.67 x 1071 11.5
13 2.06 x 102 7.02 4.55 x 101 | 1.24 x 10™1 20.6
0407-00 0 3.44 x 10! 7.01 5.28 x 101 | 5.99 x 1072 2.73
6 3.46 x 10! 6.94 8.11 x 101 | 6.74 x 10~2 3.72
13 6.59 x 102 7.06 3.54 5.95 x 102 5.22
0407-r1 0 4.23 x 103 6.98 3.09 x 1071 | 7.94 x 10~2 7.36
6* 1.89 x 10* 7.07 5.44 x 101 | 1.29 x 10~1 10.7
13* 8.03 x 10~1 7.12 4.52 x 101 | 5.53 x 10~! 21.9
0407-r2 0 7.86 x 10! 7.00 4.44 7.77 x 1072 10.4
6 1.64 x 102 6.96 7.43 9.70 x 10~2 10.3
13 1.36 x 103 6.98 2.29 x 101 | 1.12 x 10! 10.6

Mean 1.11 x 10* 7.02 2.33 x 102
Standard deviation 2.98 x 10* | 5.10 x 1072 | 7.67 x 102

Table 7.2: Results of the avascular (Q2y = Qr — Q) parameter estimation.

Means and standard deviations are taken from all runs where the

RMS fit < 0.1 pH units.
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Table 7.3: Results of the partially vascular bed (y = Qr — Qp) parameter
Means and standard deviations are taken from all

estimation.

runs where the RMS fit < 0.1 pH units.

Mouse Time (days) 61 02 (pH) 03 RMS (pH) Size (mm?)
0208-r1 0 4.00 7.05 9.87 x 10 | 7.22 x 1072 4.17
10 5.74 7.03 8.05 x 10 | 6.94 x 1072 5.70
15* 4.34 x 1071 7.04 8.03 x 10 | 5.85 x 10! 7.27
0208-r2 0 1.03 7.20 3.00 x 103 | 1.46 x 10! 19.6
9 6.70 x 10~1 6.99 2.33 x 103 | 1.43 x 107! 24.8
12* 1.10 6.98 1.04 x 10" | 2.04 x 10~1 26.6
0209-00 0 2.29 7.01 1.20 x 102 | 8.81 x 10~2 9.85
8 5.75 7.01 7.95 9.49 x 102 8.84
13 1.81 7.03 3.00 x 103 | 9.78 x 1072 9.14
0209-r1 0 3.55 7.01 1.24 x 102 | 7.06 x 1072 14.0
8 1.31 7.04 8.66 x 10 | 1.02 x 10~! 17.9
11 3.97 7.13 9.05 x 10* | 9.14 x 102 22.1
0406-00 0* 1.39 x 101 6.96 2.41 x 10% | 2.10 x 101 5.18
6 0 6.88 - 1.57 x 1071 11.5
13 4.75 7.04 4.74 1.15 x 101 20.6
0407-00 0 5.59 7.01 6.38 x 10* | 5.97 x 102 2.73
6 7.23 6.94 1.23 x 10! | 6.61 x 1072 3.72
13 7.70 7.06 9.13 5.88 x 10~2 5.22
0407-r1 0 3.93 6.98 1.28 x 10! | 7.94 x 1072 7.36
6* 1.39 7.07 3.30 x 10" | 1.28 x 10! 10.7
13* 0 5.34 - 1.23 21.9
0407-r2 0 8.74 x 10~1 7.01 6.84 x 10 | 8.87 x 10~2 10.4
6 2.47 6.96 3.78 x 10' | 9.89 x 102 10.3
13 3.42 x 10! 6.99 3.73 x 10" | 1.11 x 101 10.6
Mean 4.22 7.02 2.87 x 102
Standard deviation 2.08 4.75 x 1072 | 8.16 x 102
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Figure 7.5:
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Variation in RMS fit with 03 for the partially vascular bed model
(mouse 0209-rl, time 0 — see Table 7.3). @3 is varied by two
orders of magnitude around its best-fit value of 1.24 x 10%2. Shown
is linear least squares (LLS) best-fit (blue), whereby 6; and 6
respond to changes in 03 as per Eq. . Shown also is the fit
obtained with 6; and 605 fixed (red) at the levels given in Table
7.3. The shallowness of the RMS landscape occurs because large
changes in 03 are compensated by changes in 6; and 65, leading
to a small change in RMS fit. However, even when 61 and 65 are
fixed we see little change in fit as 03 is increased from its base
value, demonstrating that the model is relatively insensitive to
changes in 03.
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Figure 7.6: Relationship between the tumour acid production rate 6; and
growth rate A. Data points are taken from the model presented
in Table 7.3. Also shown is the line of best fit. The correlation
coefficient for the two variables is r = 0.587, with p = 0.0576.

7.5 Discussion

In this chapter, we have analysed a number of pH images obtained through fluorescence
spectroscopy of tumours implanted in mice. The aims behind this chapter were twofold.
Firstly, throughout this thesis, we have assumed that the hydrogen ion profile in and
around a tumour evolves according to a simple reaction-diffusion equation. Comparing our
model profile with the experimental image allows validation of the work we have carried
out so far. Secondly, in recent years we have seen a move towards functional, rather than
physical, imaging of tumours. Imaging pH with a spatial resolution comparable to that
of standard MR imaging has emerged as a promising alternative to monitoring glucose
uptake through FDG-PET. As imaging technology continues to advance, we see increased

need for extracting key diagnostic parameters from such images.
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The model equation (Eq. ) relies on three parameters. Through a suitable transfor-
mation, the parameter estimation process was reduced to minimising a function over one
variable. The results from this process were very promising — in the majority of cases,
the RMS distance between the experimental and model pH image was less than 0.1 pH
units, which can be considered an excellent fit, given the pH resolution of the experimental

images of around 0.04 pH units.

The background extracellular pH, 6, was found to be close to pH 7 for all of the images
analysed here. This is somewhat less than the normal range of pH 7.2-7.4, but coincides
with the experimentalists’ belief that the installation of window chambers can cause slight
tissue injury and acidification [64]. The other parameter estimates, #; and 03, were found
to have a very high standard deviation. This is an artefact of the shallowness of the RMS
landscape — large changes in these parameters only lead to small changes in the RMS
error. Unfortunately, this means that, as set out above, the method is unsuitable for use
in a diagnostic setting, as the parameter estimates can not be considered very reliable.
Nonetheless, as shown in Fig. [7.0], the estimation process goes some way to validating the

relationship between tumour acid production rate and growth rate.

The primary aim of this chapter has been to provide a preliminary investigation into pH
image analysis — acting as a proof-of-concept that critical biological parameters may be
extracted from pH images through solution of an inverse problem. Clearly, pH images
obtained in a clinical setting will not involve window chambers, and the precise methodol-
ogy for parameter extraction will depend on the imaging modality used. Nonetheless, the
initial results have been promising, and there is much scope for further work. The first

step would be to create a sharper error landscape in order to more confidently estimate
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the parameters. Applying this to a larger data set than we have available here would
allow verification of the correlation in Fig. [7.6] and thus could have immediate impact
as a diagnostic tool. Returning to Fig. [7.4] (a), the model could be extended to incor-
porate a more realistic description of the vasculature surrounding the tumour, through
extracting those areas of high pH. Finally, in the longer term, a greater understanding of
the relationship between pH and cellular division could allow the image analysis to have
predictive power — given a pH image, an experimentally-validated model could describe
the state of the tumour at some point in the future, a tool that would be invaluable to

the clinician.
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Summary and further work

8.1 Summary

Cancer is a major cause of sickness and death throughout the world. During the 1990s
in the UK and Ireland, there were on average 270 000 new cases of cancer diagnosed and
165000 deaths from cancer each year [94]. In England and Wales, cancer became the most

common cause of death in females in the late 1960s, and in males in the mid-1990s [93].

In this post-genomic era, much of cancer research continues to focus on searching for the
genetic abnormalities underlying cancer development. Each year a vast array of papers
are published announcing the discovery of a new oncogene or tumour suppressor gene.
However, we may question the validity of such an approach; at the genetic level, cancers
are extremely heterogeneous, with no single set of genetic changes found in every cancer
population [21]. It is likely that the common lethal phenotypic traits of cancer, such as
invasion and metastasis, are not the direct result of genetic changes but rather may be

mediated by other mechanisms.
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One characteristic common to most tumours is an altered microenvironment. Due in
part to poor vasculature, marked fluctuations may be seen in tumour metabolite con-
centrations, in particular displaying low oxygen and high acid levels. In this thesis, we
investigate the effects this harsh microenvironment has during cancer development. In
particular, we focus on understanding the evolutionary pressures leading to upregulation
of aerobic glycolysis and the role this metabolic change will play during subsequent growth.
Approaching this from a mathematical modelling perspective allows integration of exist-
ing experimental data and quantitative insights into the underlying processes. In this
chapter, we draw together the important points of the thesis, comparing and contrasting
current oncological belief with the results of our work. We also set out the key ques-
tions that remain unanswered and suggest experimental and mathematical approaches to

tackling these problems.

The phenotypic traits of cancer arise early during carcinogenesis [10]. Thus, in Chap-
ter 4, we investigate the evolutionary pressures acting during avascular, pre-malignant
growth. A model for the key cell-environment interactions occurring during this phase of
development was proposed by Gatenby and Gillies [45]. Their model is difficult to test
experimentally, as measurement of the evolutionary pressures acting on cells is not pos-
sible. Instead, we employ a hybrid cellular automaton approach to test their hypotheses
mathematically. We find, consistent with their hypotheses, that upregulation of glycol-
ysis represents an adaptation to hypoxia that develops as tumour cells grow away from
their blood supply. This new phenotype, in turn, causes environmental acidosis which
promotes subsequent adaptation to prevent acid-induced cell death. The phenotype that
emerges from this sequence has a substantial proliferative advantage because it creates

an environment that is toxic to its competitors but not to itself.
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The mathematical framework also provides some predictions beyond the previous theo-
retical model. We find that the key limiting factor in lesion expansion away from the
surrounding basement membrane is not glucose levels. Over the length scale under con-
sideration, a negligible drop in glucose concentration is observed; rather, necrosis of cells
furthest from the basement membrane is due to acid-induced toxicity. Any therapeutic
approach that blocks the function of the Na™/H™ antiport (such as amiloride) will inhibit

the adoption of the invasive phenotype through increasing susceptibility to acid.

In Chapters 5 and 6 we move on to consider a different length scale. Using partial
differential equations, we examine the role played by acidity in the growth of a mass of
tumour cells displaying increased aerobic glycolysis and acid resistance. We amalgamate a
previous model of tumour growth (Greenspan [51]) with a model of acid-mediated invasion
(Gatenby and Gawlinski [41]). The work identifies a critical bifurcation parameter that
determines the change from a benign to an invasive growth pattern. We predict that
an acellular gap will separate the advancing tumour and receding normal tissue fronts,
and that reducing the level of systemic acidity will reduce tumour invasiveness and slow
growth. Each of these observations had been made previously in the model of Gatenby and
Gawlinski. Unlike the previous model, our approach leads to a physiologically-accurate
description of benign growth — exponential growth, followed by slow growth towards a
equilibrium size. Moreover, we predict an unexpected and counter-intuitive therapeutic
approach; we show that further increasing the acidity within a tumour beyond a critical

threshold may induce auto-toxicity and cause widespread tumour regression.

Recent technological advances have led to the emergence of pH imaging as an alternative

to existing techniques for functional tumour imaging. In Chapter 7 we develop a new
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technique for extracting key biological parameters from pH images. The work demon-
strates an excellent agreement between the experimental pH profiles and the theoretical
profiles derived in Chapter 5, which goes some way to justifying our previous modelling
work. More importantly, we show a correlation between the estimated acid production
rate and tumour growth rate, consistent with previous observations [81]. As such, this
key parameter — tumour acid production rate — may be used as a quantitative diagnostic
tool in a clinical setting. Validation of the technique on a larger data set, particularly one

drawn from high-resolution magnetic resonance imaging, would be of considerable value.

8.2 Further work

8.2.1 Cellular metabolism

One major criticism that may be levelled at our work is that we have assumed that
many processes follow simple zeroth or first order dynamics; in reality, these processes
are likely governed by much more complex functional forms. In Chapters 5 and 6 we
assume that acidity is the primary factor governing tumour growth; in reality growth will
also be governed by oxygen and glucose concentrations, as well as levels of other critical
metabolites. The advantage of our simplistic approach is two-fold. Firstly, the models
remain tractable — determination of the bifurcation parameter in Chapter 5 would not
have been possible with a more complex model. Secondly, the interdependence between
the consumption and production of various metabolites is not known, hence use of more

complex forms is not currently possible.
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In the post-genomic era, we have a greatly increased understanding of the protein—protein
and protein—metabolite interactions that regulate cellular glucose metabolism [69]. The
metabolic pathway by which cells produce ATP from glucose involves a large number of
intermediate reactions, transport processes and feedback mechanisms. Recent authors
have produced a large-scale model of this pathway based on dynamic mass balances and
mechanistic kinetics [8], capturing in detail each of these intermediate processes. The
major problem with such an approach is that almost all of the parameter values are

unknown and difficult to estimate accurately.

One technique for gaining insight into the dynamics of these complex networks involves
breaking down the pathway into its constituent motifs [I15]. Application to glucose
metabolism will allow the key behaviours associated with each set of reactions to then
be captured. Moreover, through recombination of these motifs, we will produce a full
model of cellular metabolism reliant on significantly fewer parameters, verifiable through

comparison with extant data (e.g. [20]).

This work would allow formulation of more accurate analogues of the models presented
in this thesis. For example, normal tissue undergoes apoptosis in response to a drop in
extracellular pH. Contrastingly, tumour tissue undergoes necrosis in response to a drop
in intracellular pH, occurring when cells can no longer maintain the gradient across the
cell membrane. A model for both intracellular and extracellular pH would be a natu-
ral byproduct of this work on metabolism. The work would have further implications,
providing a framework for understanding the regulation of glucose, oxygen, lactate and
ATP flux through the interaction of physical and biochemical processes at the cellular,

tissue/organ subsystem and whole body level. It would have a broad spectrum of appli-
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cations, increasing our understanding of diseases where altered metabolism plays a key

role, such as diabetes.

8.2.2 Early carcinogenesis

The cellular automaton model presented in Chapter 4 provides a novel framework for
understanding the cell-cell and cell-microenvironment interactions driving evolutionary
changes during early carcinogenesis. However, the model may benefit from certain adap-
tations. In addition to the accurate model of cellular respiration outlined above, it is
possible to include necrotic debris within the model. Looking to the late stage ductal
carcinoma in situ in Fig. 2.6, we see that the lumen (centre of the duct) is filled with cell
debris. There are no macrophages within the duct, but the debris is naturally washed
away with time. Within our current framework, the debris is removed from the system
immediately. A lag time could be introduced through defining a stochastic removal of de-
bris at each generation. The differing sizes of cells and necrotic debris could be accounted
for by letting live cells occupy 3 x 3 automaton elements, say, whilst the debris would

occupy a single element.

Within our model, we investigated the effects of three specific phenotypic changes: hy-
perplasia, glycolysis and acid-resistance. However, the same model framework could be
used to investigate any phenotypic change that affects a cell’s interactions with other cells
or its microenvironment. The model could also be extended to incorporate any specific

epithelial geometry, such as the crypts that develop into colorectal cancer.

One practical problem associated with this modelling approach can be seen in Fig. 4.5.
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The stochastic nature of the system means that, in order to obtain a quantitative under-
standing of the role of a specific parameter in the system, a large number of simulations
must be performed, and the average dynamics examined. Each of the panels in Fig. 4.5 is
the result of 850 simulations, and hence requires a large amount of computational time.
One method for overcoming this problem is to recast the model as a system of partial
differential equations (PDEs). Returning to the Gatenby and Gawlinski model defined
in Egs.(3.6)—(3.8), we see that the system is defined as two competing populations that
produce acid, respond to acid, proliferate and diffuse at different rates. Our recast model
would simply be an extension of this to include eight competing populations, each re-
sponding to oxygen, glucose and hydrogen ions according to their specific phenotype. For
example, only cells displaying the hyperplastic phenotype would be allowed to diffuse

away from the basement membrane.

It is not clear how valid PDEs are at describing early carcinogenesis. Given the size of the
system, it is important to consider the effects of individual cells. Moreover, adaptation
between phenotypes happens at the individual cell level, not continuously throughout the
whole population. Nonetheless, from a mathematical perspective, it would be interesting
to compare the two approaches. Moreover, use of PDEs would allow insight into the roles
of individual parameters on system dynamics without the necessity of running multiple

simulations outlined above.

8.2.3 Experimental work

The modelling work within this thesis provides answers for some key questions — why tu-

mours display aerobic glycolysis and what effect aerobic glycolysis has on tumour growth.
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Experimental verification of some of the modelling predictions would be of interest:

e During early carcinogenesis, glucose supply is not limited (Chapter 4)

e During early carcinogenesis, cellular adaptation rates increase until cells reach the

peak of the fitness landscape (Chapter 4)

e Cellular quiescence induces cycles of hypoxia and acidity (Chapter 6)

However, I feel the most important results of this thesis are the predicted therapeutic
strategies, directed towards increasing tumour cells’ susceptibility to acidity. Of consider-
able interest would be testing these predictions in vitro in multicellular spheroid models.
Initial experimental work suggests that brief systemic acidosis may induce widespread
tumour apoptosis and regression [65]. Subjecting spheroids to acidosis, combined with
use of amiloride, could prove to be an even more effective therapeutic regime. Taking
advantage of altered cellular metabolism may prove to be a new weapon in the ongoing

battle against cancer.



Appendix A

Glossary

adenoma Benign epithelial tumour in which the cells form recognisable glandular struc-

tures.
angiogenesis The formation of new capillary blood vessels.

anthracycline Type of chemotherapy that acts to prevent cell division by disrupting

the structure of the DNA.

apoptosis Programmed cell death, as signalled by the nuclei in normally functioning

cells.

basement membrane Extracellular matrix characteristically found under epithelial
cells. There are two distinct layers: the basal lamina, immediately adjacent to

the cells, and the reticular lamina.

benign Not malignant. Benign tumours do not invade or metastasise, having lost growth
control but not positional control. They are usually surrounded by a fibrous capsule

of compressed tissue, and treatment or removal is curative.

carcinogen Chemical, virus or radiation that can induce cancer.
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carcinoma Malignant epithelial tumour.

clastogenic Altering the structure of chromosomes.

differentiation Process undergone by cells as they mature into normal cells. Differen-
tiated cells have distinctive characteristics, perform specific functions and are less

likely to divide.

epigenetic Differentiation due to selective gene activation and expression. Not due to

changes in the genome.

epithelium Covering of internal and external surfaces of the body, including the lining
of vessels and other small cavities. It consists of cells joined by small amounts of
‘cementing’ substances. Epithelium is classified into types on the basis of its depth

(in terms of cell number) and the shape of the superficial cells.

extracellular matrix (ECM) Any material produced by cells and secreted into the
surrounding medium, usually applied to the noncellular portion of tissues. Although
produced by cells, the ECM can influence the behaviour of cells quite markedly, an

important factor to consider when growing cells n vitro.

heritable Capable of being transmitted from parent to child.

hyperplasia Abnormal increase in the number of normal cells in a tissue.

hypoxia Diminished oxygen supply.

in situ  Localised. A carcinoma that has not breached the basement membrane.

invasion Movement of cells into adjacent tissue normally occupied by a different cell

type.
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in vitro Cell manipulation outside the body.

in vivo In the living body. An experimental procedure using an intact live animal.

malignant Tending to become progressively worse and to result in death. Malignant

tumours are invasive and have the capacity to metastasise. Compare benign

metastasis Transfer of cells from one organ or part to another, not directly connected

with it. This usually occurs through the blood vessels, lymph channels or spinal

fluid.

oncogene Overexpressed version of a normal gene (the proto-oncogene) that promotes

excessive growth. Compare tumour suppressor gene.

necrosis Cell death.

quiescence The state of not dividing.

somatic Characteristic of the body.

stroma (syn: interstitium) Connective tissue framework of an organ, gland or other

structure, in contrast to the functional cells. Rich in extracellular matrix.

tumour (syn: neoplasm) Abnormal mass of tissue serving no useful function to the
host, resulting from excessive cell division that is uncontrolled and progressive. May

be either benign or malignant.

tumour suppressor gene (TSG) (syn: anti-oncogene) A gene negatively regulating
cell division that, when inactivated (through mutation for example), allows escape

from normal growth constraints. Compare oncogene.
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