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Abstract

Acidic pH is a common characteristic of human tumours. It has a significant impact on

tumour progression and response to therapies. In this thesis, we utilise mathematical

modelling to examine the role of acidosis in the interaction between normal and tumour

cell populations.

In the first section we investigate the cell–microenvironmental interactions that mediate

somatic evolution of cancer cells. The model predicts that selective forces in premalignant

lesions act to favour cells whose metabolism is best suited to respond to local changes in

oxygen, glucose and pH levels. In particular the emergent cellular phenotype, displaying

increased acid production and resistance to acid-induced toxicity, has a significant prolif-

erative advantage because it will consistently acidify the local environment in a way that

is toxic to its competitors but harmless to itself.

In the second section we analyse the role of acidity in tumour growth. Both vascular

and avascular tumour dynamics are investigated, and a number of different behaviours

are observed. Whilst an avascular tumour always proceeds to a benign steady state,

a vascular tumour may display either benign or invasive dynamics, depending on the

value of a critical parameter. Extensions of the model show that cellular quiescence,

or non-proliferation, may provide an explanation for experimentally observed cycles of

acidity within tumour tissue. Analysis of both models allows assessment of novel therapies

directed towards changing the level of acidity within the tumour.

Finally we undertake a comparison between experimental tumour pH images and the

models of acid dynamics set out in previous chapters. This analysis will allow us to

assess and verify the previous modelling work, giving the mathematics a firm biological

foundation. Moreover, it provides a methodology of calculating important diagnostic

parameters from pH images.
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Chapter 1

Introduction

1.1 Motivation

Cancer is a group of more than 100 distinct diseases characterised by the uncontrolled

growth of abnormal cells in the body. It is a major cause of sickness and death throughout

the world. In 1996 there were 10 million new cancer cases worldwide, and six million

deaths attributed to cancer. In 2020 there are predicted to be 20 million new cases and

12 million deaths [4]. The reason for this increase is two-fold. Firstly, infection as a major

cause of serious ill-health is in decline, giving way to noncommunicable diseases common

in an ageing population, such as cardiovascular disease and cancer. Secondly, and perhaps

more significantly, a globalisation of unhealthy lifestyles, such as smoking and poor diet,

will increase cancer incidence.

Cancer arises through changes at the genetic level that allow the cells to escape from the

cooperative behaviour associated with normal tissue. One factor that makes cancer re-

search so difficult is that, at the microscopic level, these cells are extremely heterogeneous.

No single set of genetic changes is found in every transformed cell population [21], and

1
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even within a single tumour varying subpopulations often coexist. Despite these micro-

scopic differences, at the macroscopic level cancers maintain the common lethal traits of

invasion (movement into adjacent normal tissue) and metastasis (formation of secondary

tumours in distant organs).

The commonality of aggressive cancer cell behaviour despite widespread genotypic diver-

sity has led researchers to believe that several of the lethal phenotypic traits of cancer may

not be the direct result of genetic changes, but rather may arise from the unique physio-

logical environments of tumours. The tumour microenvironment is significantly different

from that of normal tissue; its chaotic vasculature leads to a significant decrease in supply

of essential nutrients and a decrease in the removal of waste products. One biomarker

that has received much attention recently is tumour hypoxia (poor oxygenation). Fig. 1.1

shows that near-zero oxygen levels are observed at distances of only 150 µm from a feeding

blood vessel. As such, areas of hypoxia are commonplace within tumours. Identifying the

regions of hypoxia within tumours has been a focus of recent research, as cells residing

within such regions are known to be resistant to various radio- and chemo-therapeutic

strategies. Moreover, cells subjected to chronic hypoxia are found to be more aggressive,

displaying increased metastasis, invasion and mutation (see Table 1.1).

Returning to Fig. 1.1 and Table 1.1, we see that acidity also plays a key role in tumour de-

velopment. Like hypoxia, regions of low pH are commonplace within tumours. Moreover,

the effects of acidosis are similar to those of hypoxia, with acidosis promoting metastasis,

invasion and mutation. However, unlike hypoxia, there has been relatively little research

into acidity as a factor for promoting tumour development. The reasons for this are un-

clear; it may be that many researchers assume that the acidity is simply a byproduct of
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µm

Figure 1.1: Tumour extracellular pH and partial pressure of oxygen (pO2)
as a function of distance from a vessel wall, as measured in vivo
in MCF-7 breast cancer cells. Reproduced with permission from
Nature Reviews Cancer [45] c© 2004 Macmillan Magazines Ltd.

Hypoxia Acidosis

Radioresistance Radioresistance

Drug resistance Resistance to anthracyclines

Metastasis and invasion Metastasis and invasion

Increased mutation rate Mutagenesis/clastogenesis

Apoptosis Apoptosis

Gene expression induced by HIF –

Table 1.1: Consequences of tumour hypoxia and acidosis [45]. As tumours
become hypoxic and acidic, their progression is accelerated and
resistance to various therapeutic strategies occurs. For definitions
the terms, see Appendix A.

http://www.nature.com/reviews
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low oxygen levels. Cells respond to periods of hypoxia by converting to anaerobic res-

piration, or glycolysis, which in turn produces lactic acid and brings about lower tissue

pH. However, the work of Warburg in the 1920s [119] showed that the increased reliance

on glycolysis to produce energy in many aggressive tumours occurs even in the presence

of sufficient oxygen. As such, tumour acidification is an intrinsic property of both poor

vasculature and altered tumour cell metabolism, and occurs independently of hypoxia.

Acidosis plays a critical role in tumour development, yet has received very little attention

by researchers. Within the thesis, we aim to address this problem. Specifically, a number

of questions need to be answered. Firstly, it is not known why tumour cells evolve to

rely on glycolysis as a means of energy production, even in the presence of sufficient

oxygen. Anaerobic respiration is more than an order of magnitude less efficient than its

aerobic counterpart, producing only 2 ATP per glucose in comparison to approximately

36 ATP. Moreover, the hydrogen ions produced as a result of glycolysis cause a consistent

acidification of the extracellular space that is potentially toxic. Intuitively, one would

expect evolutionary forces to select against this inefficient and toxic phenotype, in favour

of more optimal metabolic regimes. Secondly, it is not known how this increased acid

production will affect tumour cells, or more specifically why the resultant low pH correlates

with increased growth and invasion, as set out in Table 1.1. Through addressing these

questions, we aim to develop novel therapeutic strategies directed towards manipulating

tumour pH and slowing tumour development.

We approach the understanding of tumour acidosis from a mathematical perspective.

Mathematical models were once thought of as too simplistic to describe complex tumour

phenomena. However, it is becoming clear that intuitive approaches are insufficient to
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describe the non-linear interactions between tumour cells and their environment. The use

of mathematics will grant us a new, quantitative, perspective on the role of acidity in

tumour development, and allow us to determine critical parameters that cause the change

from benign to invasive growth. The various directions from which we attack the problem

are set out in the next section.

1.2 Thesis outline

Before moving to the main thrust of the thesis, we first introduce the field and outline

the previous research that has a bearing on our work. In Chapter 2, we introduce the

reader to the complex subject of cancer from a biological perspective. As mentioned

above, cancer cells are extremely heterogeneous at the genetic level. Nonetheless, many

cancers follow a similar well-defined ‘life-cycle’: progression from a single abnormal cell,

through precancerous growth, to invasion and metastasis. We discuss the typical genetic

changes that occur at each stage of development, and the evolutionary pressures that

lead to these changes being adopted within a cancer cell population. Also discussed

is the tumour microenvironment, specifically the changes leading to the acidification of

tumours, and the effects this acidity will have, on both the tumoural and peritumoural

normal tissue.

In Chapter 3, we move on to discuss previous mathematical models of cancer development.

Whilst theoretical models contribute to only a tiny proportion of the research articles

written on cancer, this still equates to over 50 000 papers [103]. An array of comprehensive

review papers have been written detailing modelling approaches to specific aspects of
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Chapter 2
Biological introduction

Chapter 3
Modelling introduction

Chapter 4
Why are tumours acidic?

Microscale approach

Chapter 5
Role of acidity in tumour growth

Macroscale approach

Chapter 6
Quiescence and cyclical acidity

Chapter 7
Model validation and image analysis

Chapter 8
Conclusions and further work

Figure 1.2: Schematic representation of thesis layout.

cancer. Rather than reproducing such a review here, the chapter subjects a small selection

of representative models to in-depth review and analysis. The major benefit of this

approach is that the advantages and shortfalls of each model may be clearly identified,

guiding our model development in later chapters.

Chapters 4–7 present the main results of the thesis, linking together as is shown diagram-

matically in Fig. 1.2. In Chapter 4, we address the question of why evolutionary pressures

drive tumour cells to rely on highly inefficient anaerobic respiration as a means of energy

production. Note that during the first steps in carcinogenesis, premalignant cells remain

physically separated from their blood supply by a membrane, and hence nutrient sup-

ply and waste removal are limited. This observation is incorporated into a microscale
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cellular automaton model of the cell–cell and cell–microenvironment interactions. Cells

in the model evolve in response to the local levels of the critical nutrients, oxygen and

glucose, and hydrogen ion concentration. One major insight from the model is that, over

the length scales of early carcinogenesis, glucose supply is not a limiting factor. As such,

inefficient glucose metabolism is not important; rather, upregulation of glycolysis, coupled

with resistance to the acid produced as a result of this process, is found to give cells a

significant selective advantage, allowing proliferation in hypoxic regions.

We move on, in Chapter 5, to consider the role of acidity at the macroscopic level. As-

suming that a mass of tumour cells displays increased acid production coupled with a

resistance to low pH, we question what effect this has on its growth. Using a partial dif-

ferential equation model, we predict that the hydrogen ions produced by the tumour will

diffuse into the surrounding normal tissue, inducing cellular death. Thus we see that acid-

ity provides a simple mechanism for cancer invasion. The model also predicts an acellular

gap separating the advancing tumour and receding normal tissue fronts, a prediction ob-

served experimentally [41]. A bifurcation parameter is found that determines the change,

within our modelling framework, from a benign to invasive growth pattern. From this

parameter an unexpected therapeutic strategy emerges; we show that further increasing

the acidity within a tumour beyond a critical threshold may induce auto-toxicity and stop

tumour growth.

Towards the end of Chapter 5, we extend the model to include quiescent, non-proliferating

tumour cells. Such cells are known to produce significantly less acid than their active coun-

terparts. Inclusion of quiescent cells provides a more physiologically accurate description

of the tumour and of the acid profile extending into the normal tissue. For the case of



Chapter 1: Introduction 8

an avascular tumour, the behaviour observed through consideration of quiescent tissue

is very similar to the basic model. However, in Chapter 6, we consider quiescence in a

vascularised tumour, and quite different behaviour is observed. We find that cellular qui-

escence may induce cycles of acidity to occur within the tumour tissue. Whilst metabolite

cycles within tumour tissue are a well-known phenomenon, these cycles had previously

been assumed to occur due to fluctuations in blood supply. Our modelling work suggests

that alternative mechanisms may also be responsible.

In Chapter 7, we undertake a comparison between the predicted pH profiles derived in

Chapter 5 to experimental pH images. An excellent fit is found between the experimental

and predicted profiles, which goes some way to justifying the previous modelling work

undertaken. However, this chapter aims to achieve much more than model validation.

Recent technological advances have led to the emergence of pH imaging as an alternative

to existing techniques for functional tumour imaging in a clinical setting. The technique

for comparing experimental and model pH profiles set out in the chapter leads to estimates

for the model parameter values, one of which, cellular acid production rate, is known to

correlate with tumour aggressiveness. This parameter may be used as a quantitative

diagnostic tool, and knowledge of it for specific tumours could prove invaluable to the

clinician.

Within this thesis, we answer a number of crucial questions about the role of acidity in tu-

mour development. In Chapter 8, we draw the work together, comparing and contrasting

current oncological beliefs with the results of our work. However, a number of questions

remain unanswered, and our work has revealed further gaps in the understanding of the

role of acidity in tumour development. We define those questions whose answers would
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be most fruitful in furthering our understanding and therefore our search for new and

effective therapies. We also set out the mathematical techniques that we feel could be

used to attack these new and unanswered problems.



Chapter 2

The biological basis of cancer

2.1 Introduction

Cancer has been recognised since antiquity, being first named by Hippocrates as ‘carcinos’,

meaning crab, to describe the hard central tumour with blood vessels irradiating from

it [87]. It is this borrowed observation which gives us the Latin word we now use: cancer.

However, the first major steps in cancer research were not made until the mid-nineteenth

century with increased understanding of cellular biology. Cancer was viewed as a cellular

disease, arising through inappropriate cellular proliferation. This led to the interpretation

of tumour growth as a Darwinian competition between normal and tumour cells. The

vision of cancer as cells that have escaped the control of the organism and act egoistically

is still very much present in current conceptions of cancer.

The modern view of cancer is as a molecular disease, focusing on the role of two families

of genes – oncogene (growth promoter) activation and tumour suppressor gene (TSG,

growth inhibitor) inactivation – in mediating tumour formation. Since the discovery of

these genes in the 1970s, the molecular description of cancer has become increasingly

10
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complex. For most tumours the specific genes involved in cellular transformation are not

known. Moreover, no general rules have emerged from the vast amount of data we have

to hand. This is merely molecular confirmation of previous observations that cancer cell

populations are extremely heterogeneous, displaying a wide range of characteristics due

to the stochastic nature of their development.

During the intervening period, the first half of the twentieth century, the origin and

mechanisms of cancer were sought in a variety of disciplines that were developed at that

time – microbiology, biochemistry, genetics, etc. The models that emerged from this era

have since been integrated into the current molecular descriptions. The various approaches

to cancer research seen during the past 150 years are perceptively captured by Cairns [17]:

“At each stage, the characteristics of the cancer cell have been ascribed to some defect in

whatever branch of biology happens at the time to be fashionable and exciting.”

In this chapter, the complex subject of cancer is introduced from a biological perspective,

drawing together both historical and modern observations. Particular emphasis is placed

on outlining the cancer ‘life-cycle’: progression from a single abnormal cell, through pre-

cancerous and noninvasive growth, to invasion and metastasis. We discuss the genetic

changes that occur at each stage of development, and the microevolutionary pressures

that lead to these changes being adopted within the cell population. We also discuss the

evolutionary pressures and genetic changes leading to the acidification of tumours, and

the effects this acidity will have, both on the tumoural and peritumoural normal tissue.
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2.2 Cancer as somatic evolution

The human body operates as a society whose individual members are cells, reproducing

through mitosis (normal cell division) and organised into collaborative assemblies known

as tissues. The cells communicate through elaborate cell–cell signalling mechanisms, to

ensure each cell behaves in a socially responsible manner – dividing, differentiating, qui-

escing (ceasing division) or dying as is appropriate for the good of the organism. From

an ecological perspective, there is no natural selection occurring within a healthy human

body – self-sacrifice rather than survival of the fittest is the overriding rule.

The basic ingredient of cancer involves escaping from this cooperative behaviour. Cancer

begins with a single cell mutating to give it a selective advantage over its neighbours, al-

lowing it to proliferate more quickly and become the founder member of a growing mutant

clone, known as a tumour. Successive rounds of mutation, competition and selection lead

to progressively less collaborative and more dangerous cells. Thus cancer development

can be viewed as somatic (of the body) evolution [12]. Whilst this process occurs on a

time-scale of months or years in a population of cells within the body, it depends on those

same principles of mutation and natural selection that govern the long-term evolution of

living organisms.

Cancer cells are defined by two clear heritable properties. They are:

• hyperplastic: they reproduce in defiance of the normal restraints on cell division.

• invasive and metastatic: they invade and colonise territories usually occupied by

other cell types.
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It is the combination of these two properties that makes cancers particularly lethal. An

isolated cell that does not proliferate in excess of its counterparts can cause no significant

damage to the host, regardless of its other disagreeable characteristics. A cell that escapes

normal growth control will give rise to a tumour – an abnormal mass of tissue serving no

useful function to the host. Whilst this tumour remains as a solid mass, it is known as

benign, and surgical removal will usually be curative. A tumour is referred to as cancerous

if it is malignant – if the cells have acquired the ability to break away from the tumour

mass and invade the adjacent tissue. These cells may also enter blood vessels or lymph

channels and form secondary tumours, or metastases, at other sites in the body. The

more widely a cancer spreads, the harder it is to eradicate.

2.3 Multistage carcinogenesis

Most tumours take many years to grow and form to the point where they produce clinical

manifestations. The cells have defects in many aspects of their behaviour as a result

of multiple heritable changes, acquired through successive rounds of natural selection.

Many mutations are needed because cellular processes are controlled in complex and

interconnected ways; cells employ redundant regulatory mechanisms to help maintain

control over their behaviour. In order to act malignantly, a cell must disrupt many

regulatory systems to throw off its normal restraints.

Not all cancers require the same pattern of mutations to evade the body’s regulations:

a cancer of the colon may need mutations in six or seven specific oncogenes and TSGs,

whilst a childhood leukaemia may require only one [4]. However, many types of can-
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cers are diagnosed with an age-dependent incidence implicating between four and seven

rate-limiting, stochastic events [101]. The similar pattern of development observed by

most tumours has crystallised into the multistage theory of carcinogenesis, explaining the

genetic changes involved in each stage of clonal expansion. We outline this theory below.

2.3.1 Initiation and in situ growth

There is much controversy over exactly how cancer starts. It is generally accepted that

most cancers derive from genetic mutation in a single cell [3]. However, the specific factor

that triggers this mutation is difficult to identify. Carcinogens (cancer-causing agents)

may be present in food, water, air, chemicals or radiation to which people are exposed.

Moreover, cancers may be induced by viruses.

Over 90% of cancers are of epithelial origin [4], and as such we shall focus here on the

development of carcinomas (malignant epithelial tumours). Epithelial cells cover the

internal and external surfaces of the body (including skin) and line the respiratory and

alimentary tracts. Importantly, epithelial cells metabolise ingested carcinogens, which

goes some way to explain the statistic above.

Epithelium consists of cells joined by small amounts of cementing substances. It is at-

tached to a thin ‘basement membrane’ that separates the epithelial cells from the stroma

(external connective tissue). As such, epithelial tissue is typically avascular – the cells

are physically separated from the blood supply by the basement membrane. Epithelia

are classified into types on the basis of the number of cellular layers (e.g. simple, mean-

ing monolayer) and the shape of the superficial cells (e.g. squamous, meaning flattened).
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Epithelial tissue has a number of important functions, including the formation of glands

(secretory organs) through infolding of an epithelial sheet.

Many of the genetic changes required to form cancer occur early during carcinogene-

sis, before the onset of malignant growth. The specific sequence of changes required to

transform normal colonic epithelial cells through adenoma (benign epithelial growth) to

colorectal cancer were first detailed by Fearon and Vogelstein in 1990 [33] (see Fig. 2.1).

As mentioned above, the heritable changes accumulated vary according to the specific

cancer type under consideration. However, analysis of the adaptations undergone dur-

ing colorectal tumorigenesis will give insight as to the typical changes needed to escape

normal regulatory mechanisms.

Two of the genetic changes – in Ras and TGFβ (tumour growth factor β) – allow the

tumour cells to undergo mitosis more regularly than their normal counterparts. Normal

cells require positive mitotic growth signals before they may move from a quiescent (rest-

ing) state into an active state. These signals may come from diffusive growth factors,

extracellular matrix (ECM) components or cell-cell adhesion molecules (CAMs), and are

tightly regulated by the Ras protein. The structurally altered form of Ras within colorec-

tal cancer cells releases a constant flux of mitotic signals into the cell, without need for

stimulation from these upstream growth signals.

Multiple anti-growth signals also operate within normal tissue to maintain quiescence and

homeostasis (system stability). TGFβ is one such anti-growth signal, blocking cellular

advance to mitosis. In colorectal cancer, as with many other human cancers, response to

this anti-growth signal is negated. This disruption occurs through a variety of mechanisms,

including down-regulation of TGFβ receptors, or elimination of their downstream targets.
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Normal
Epithelium

APC mutation

Hyperproliferative
Epithelium

Early
Adenoma

Demethylation

Ras mutation

Intermediate
Adenoma

Loss of genes
(DCC, TGFβ)

Late
Adenoma

p53 mutation

Carcinoma

Other alterations

Metastasis

Figure 2.1: Fearon-Vogelstein diagram (‘Vogelgram’) depicting the genetic
changes that occur in the transformation from normal colonic
epithelial cells to colorectal cancer. Adapted from [33].
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A completely different cellular change is elicited by inactivation of the p53 tumour sup-

pressor protein. Signals evoked by abnormalities such as DNA damage, hypoxia and

oncogene overexpression are funnelled via p53, triggering a precisely choreographed series

of events, ultimately leading to cell death. This programmed, suicidal cell death, known

as apoptosis, is intrinsic to virtually all cells of the body, acting to destroy cells that

represent a threat to the organism. Cells undergoing apoptosis shrink and break into

small, membrane-wrapped fragments, before being engulfed by phagocytic cells such as

macrophages. This mechanism ensures cell contents are not released into the surrounding

tissue. In contrast, necrosis – non-programmed, progressive, degradative death – often

brings about an inflammatory response from the host.

Resistance to apoptosis through p53 inactivation, combined with growth signal autonomy

and insensitivity to anti-growth signals, leads to an uncoupling of a cancer cell’s prolifer-

ation from signals in its environment. In principle, these changes should be sufficient for

tumour growth. However, cancers in fact display genetic and epigenetic (non-genomic)

changes in a wide variety of cellular systems. For example, the Fearon-Vogelstein diagram

depicts a period of demethylation. In normal cells methyl groups attach to DNA, prevent-

ing gene transcription; methylation patterns are passed on to daughter cells at mitosis.

Widespread loss of methyl groups during colorectal tumorigenesis allows more genes to

be transcribed, thus allowing greater phenotypic diversity during somatic evolution.

The intensive research carried out over the past twenty-five years has led to an under-

standing of the proteins involved in cellular growth signalling, and how these proteins

interact. Through analysis of this signalling pathway and the ways in which it is modified

in cancer cells (Fig. 2.2), therapeutic strategies directed towards halting cell proliferation
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Figure 2. The Emergent Integrated Circuit of the Cell

Progress in dissecting signaling pathways has begun to lay out a circuitry that will likely mimic electronic integrated circuits in complexity
and finesse, where transistors are replaced by proteins (e.g., kinases and phosphatases) and the electrons by phosphates and lipids, among
others. In addition to the prototypical growth signaling circuit centered around Ras and coupled to a spectrum of extracellular cues, other
component circuits transmit antigrowth and differentiation signals or mediate commands to live or die by apoptosis. As for the genetic
reprogramming of this integrated circuit in cancer cells, some of the genes known to be functionally altered are highlighted in red.

tumors, Ras proteins are present in structurally altered multiple cell biological effects. For example, the direct
interaction of the Ras protein with the survival-promot-forms that enable them to release a flux of mitogenic

signals into cells, without ongoing stimulation by their ing PI3 kinase enables growth signals to concurrently
evoke survival signals within the cell (Downward, 1998).normal upstream regulators (Medema and Bos, 1993).

We suspect that growth signaling pathways suffer While acquisition of growth signaling autonomy by
cancer cells is conceptually satisfying, it is also tooderegulation in all human tumors. Although this point

is hard to prove rigorously at present, the clues are simplistic. We have traditionally explored tumor growth
by focusing our experimental attentions on the geneti-abundant (Hunter, 1997). For example, in the best stud-

ied of tumors—human colon carcinomas—about half cally deranged cancer cells (Figure 3, left panel). It is,
however, increasingly apparent that the growth deregu-of the tumors bear mutant ras oncogenes (Kinzler and

Vogelstein, 1996). We suggest that the remaining colonic lation within a tumor can only be explained once we
understand the contributions of the ancillary cells pres-tumors carry defects in other components of the growth

signaling pathways that phenocopy ras oncogene acti- ent in a tumor—the apparently normal bystanders such
as fibroblasts and endothelial cells—which must playvation. The nature of these alternative, growth-stimulat-

ing mechanisms remains elusive. key roles in driving tumor cell proliferation (Figure 3,
right panel). Within normal tissue, cells are largely in-Under intensive study for two decades, the wiring

diagram of the growth signaling circuitry of the mamma- structed to grow by their neighbors (paracrine signals)
or via systemic (endocrine) signals. Cell-to-cell growthlian cell is coming into focus (Figure 2). New downstream

effector pathways that radiate from the central SOS- signaling is likely to operate in the vast majority of human
tumors as well; virtually all are composed of severalRas-Raf-MAP kinase mitogenic cascade are being dis-

covered with some regularity (Hunter, 1997; Rommel distinct cell types that appear to communicate via het-
erotypic signaling.and Hafen, 1998). This cascade is also linked via a variety

of cross-talking connections with other pathways; these Heterotypic signaling between the diverse cell types
within a tumor may ultimately prove to be as importantcross connections enable extracellular signals to elicit

Figure 2.2: The growth signalling circuitry of a mammalian cell. Arrows
denote promotion and bars denote inhibition. The genes known
to be functionally altered in cancer cells are highlighted in red.
Reprinted from [55] c© 2000 with permission from Elsevier.

may be suggested. However, much of the pathway is still poorly understood; as further

layers of complexity are added to the picture, mathematical techniques will be needed to

understand the dynamics of cellular growth.

2.3.2 Tissue invasion and metastasis

The variety of heritable changes outlined in Section 2.3.1 occur early during carcinogenesis.

During this stage, transformed epithelial cells remain encapsulated from the surrounding

tissue by the basement membrane. The blood vessels also remain outside the basement

membrane, so the tumour has only a limited nutrient supply available. These noninvasive,
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or in situ, growths are usually asymptomatic – unfortunate as in situ tumours may be

cured through removal.

In the next stage of tumour progression, a tumour breaches the basement membrane. Once

tumours have broken through this membrane, cancerous cells may invade the adjacent

tissue. They can also enter the bloodstream; this often occurs via lymph vessels – vessels

whose function is to drain tissues of the fluid (lymph) that filters across vessel walls from

blood. However, throughout the lymphatic system there exist lymph nodes that can trap

cancer cells and bacteria travelling through the body in lymph. Should a cancer cell

successfully enter the circulatory system, either through lymph vessels or breaching of a

blood vessel’s lining, it will be transported throughout the body and may eventually lodge

in the capillaries of another distant organ. Here the cells will begin to multiply, forming

a secondary tumour known as a metastasis.

Metastases are the cause of around 90% of deaths from cancer [110]. Whilst the primary

(original) tumour can be controlled by many available therapies, widespread metastatic

disease is very difficult to treat.

Invasion and metastasis are extremely complex multifactorial processes, whose genetic and

biochemical bases are poorly understood. From a mechanistic perspective, both processes

are closely related, utilising changes in the physical coupling of cells to the microenvi-

ronment and activation of extracellular proteases. Cells possessing invasive or metastatic

capabilities are known to have alterations in cell-cell adhesion molecules, which mediate

cell-to-cell interactions, and integrins, which link cells to extracellular matrix substrates.

Degradative proteolytic enzymes, such as urokinase-type plasminogen activator (uPA)

and matrix metalloproteinase (MMP), are used to breach the basement membrane, clear
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a path through adjacent tissue, and subsequently pass through vessel walls. Many of

these proteases (such as uPA [62]) are produced not by the epithelial cancer cells, but

rather by conscripted stromal and inflammatory cells, before being wielded by the carci-

noma cells [125]. These layers of complexity go some way to explaining the elusiveness of

invasion and metastasis.

2.3.3 Angiogenesis

The nutrient supply and waste removal provided by blood vessels is crucial for cell survival

and proliferation. As such, avascular tumours lacking their own network of blood vessels

cannot grow beyond a size of 2− 3 mm3. Angiogenesis (the formation of new capillaries),

along with invasion and metastasis, is an important step in the transition from a small,

abnormal mass of cells to life-threatening malignant growth.

Initially, tumour cells lack the ability to stimulate capillary development. At some point

in their development, they begin to synthesise proteins capable of stimulating angiogen-

esis. One such protein of particular importance is known as vascular endothelial growth

factor (VEGF). VEGF binds to the receptors of endothelial cells (the building blocks

of capillaries), inducing them to penetrate the tumour nodule and begin the process of

constructing a network of vessels. As the endothelial cells proliferate, they secrete growth

factors that stimulate the growth and motility of tumour cells. Cancer cells also produce

proteins that inhibit the growth of blood vessels. As such, initial capillary development

relies on a balance between the levels of pro-angiogenic and anti-angiogenic molecules.

In addition to apoptotic response, p53 plays an important role in mediating angiogene-
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sis. Under hypoxic conditions, the mediator hypoxia inducible factor 1 (HIF-1) is rapidly

induced, activating transcription in many oxygen-sensitive genes including VEGF. The

role of p53 here is to counterbalance VEGF expression through upregulating expression

of the anti-angiogenic agent thrombospondin-1 (TSP-1) [27], ensuring inappropriate an-

giogenesis does not occur. In cells bearing mutant p53 (the most common genetic defect

in solid tumours), hypoxia induced VEGF is not so readily controlled by anti-angiogenic

molecules such as TSP-1, hence neovascularisation may occur.

The point of development at which cancer cells acquire the ‘angiogenic phenotype’ varies

widely. The failure of tumour cells to stimulate angiogenesis may be responsible for the

long-term dormancy of many primary and metastatic tumours. However, the periods of

hypoxia experienced by carcinoma in situ may induce sustained production of angiogenic

factors. Whilst capillaries cannot pass through the intact basement membrane during

this early phase of development, the transformed cells can immediately induce capillary

growth once the membrane is breached.

Perhaps the most promising therapeutic strategies being developed now involve targeting

tumour vasculature. Within normal tissue, angiogenesis is primarily a developmental

process, used for example during organ formation, and thus anti-angiogenic therapy will

have minimal side effects. Moreover, this therapy is targeted at host endothelial cells,

rather than cancer cells, hence the emergence of drug-resistant clones is not possible.

Further research in this area will be of considerable interest.

In Fig. 2.3, the various stages of development of malignant growth are summarised.
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Figure 2.3: Malignant cells (1) invade surrounding normal tissue, (2) detach
from the primary tumour mass and (3) enter the circulatory sys-
tem. To successfully metastasise these cells must (4) attach to
suitable endothelium and exit the circulation, (5) invade local
tissue and (6) induce angiogenesis. Reproduced with permission
from [4].

2.3.4 Why cancer kills

Having described the process by which cancer grows and disseminates throughout the

body, we now move on to describe briefly the effects of tumours on an individual. Most

tumours take many years to form and grow to the point where they produce clinical

manifestations. Both primary and secondary metastatic tumours may affect an individual

locally, through compression, invasion and destruction of normal tissues. In addition,

these tumours may produce systemic effects known as paraneoplastic syndromes, through

release of substances into the bloodstream. The symptoms of a tumour will vary widely

depending on the location of the tumour, the tumour’s functional activity and any acute

events that occur as the tumour mass grows and evolves.

From a local perspective, the expansive growth of benign tumours and the more destruc-
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tive growth of malignant tumours may erode normal tissue surfaces. This leads to the

development of ulcers and bleeding and creates conditions that favour infection. Tumours

growing near an organ may often interfere with the organ’s function. For example, benign

tumours of the parathyroid gland over-secrete parathormone, causing systemic calcium

levels to rise, leading to muscle fatigue and nausea. However, organ systems are tremen-

dously robust; for example, an animal can survive after removal of two-thirds of its liver,

and regenerate the lost tissue within a week [32]. Unless the organs are stretched, causing

pain, tumours of solid organs will remain silent until the tumour is far-advanced. This

explains why metastases are often present at the time of diagnosis, and why people seldom

die of organ failure.

Tumours may also develop inside hollow organs such as the gastrointestinal tract or ducts

carrying secretions from one organ to another. The carcinoma developing here will in-

vade and grow circumferentially around the wall of the organ or duct, in a ‘napkin ring’

shape [84]. This ring will thicken with time, and ultimately the lumen (cavity of the

tube) will become obstructed. Whilst these blockages can cause death, they will present

themselves symptomatically, and may be relieved though surgery. As such, hollow organ

obstruction is usually not a cause of death.

By far the most common cause of death from cancer occurs at the systemic, rather than

local, level. Cachexia [18], or body wasting, is particularly common at the advanced stages

of malignant growth. Cancer starves and debilitates the patient, leaving them unable

to mount adequate anti-inflammatory responses. Such debilitation leads to infection;

the saprophytic organisms (organisms growing on dead matter) that live in the mouth

or nose invade the patient, causing pneumonia, septicemia and death. It is likely that
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one of the molecules contributing to cachexia is tumour necrosis factor α (TNFα) – a

molecule normally synthesised by immune cells, but somehow activated by malignant

tumour cells [11].

The wasting and incapacitation is what makes cancer so terrifying, as much as the pain

associated with tumour growth and metastasis. Ultimately, via infection, it is this wasting

which leads to death.

2.4 Why are tumours acidic?

The tumour microenvironment is significantly different from that of normal tissue. Marked

fluctuations can be seen in glucose, lactate, acidic pH and oxygen tensions. These varia-

tions have their roots in poor perfusion and metabolic changes. The chaotic vasculature

of tumours creates an unbalanced blood supply and significant perfusion heterogeneities.

As a consequence, many regions within tumours are found to be transiently or chronically

hypoxic. Cells respond to periods of hypoxia by converting to anaerobic respiration, or

glycolysis, which in turn produces lactic acid and brings about lower tissue pH. However,

the pioneering work of Warburg [119, 120, 124] showed that tumour acidification can

occur independently of hypoxia. The increased reliance on glycolysis to produce energy

in many aggressive tumours occurs even in the presence of sufficient oxygen [117, 119].

Thus acidification is an intrinsic property of both poor vasculature and altered tumour

cell metabolism.

The constitutive adoption of increased aerobic glycolysis is known as the glycolytic phe-

notype. The inefficiency of this anaerobic metabolism is compensated for through a
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the extracellular space, which might result in cellular
toxicity24–26 (FIG. 4a,b). Intuitively, it would seem that the
Darwinian forces prevailing during the somatic evolu-
tion of invasive cancers would select against a metabolic
phenotype that is more than an order of magnitude less
efficient than its competitors and that is environmen-
tally poisonous. In other words, the accepted tenet of
‘survival of the fittest’ would seem to generally favour
populations with more efficient and sophisticated sub-
strate metabolism. So, why do tumour populations con-
sistently evolve to the inefficient and potentially toxic
glycolytic phenotype?

We propose that the remarkable prevalence of
upregulated glycolysis in clinical cancers is neither ran-
dom nor accidental. Rather, it represents an evolved
solution to common environmental growth constraints
during carcinogenesis, and its persistence in primary
and metastatic malignancy indicates that it continues to
confer a proliferative advantage even to fully trans-
formed cells. So, we suggest that increased glycolysis is
an essential component of the malignant phenotype
and, therefore, a hallmark of invasive cancers. Herein we
explore its causes and consequences.

The microenvironment in pre-malignant lesions
Although pre-malignant lesions are often characterized
as highly vascularized, this is true only in a macroscopic
sense. That is, although a pre-malignant lesion such as a
polyp or carcinoma in situ might have a vascular stroma,
the hyperplastic epithelia are physically separated from
their blood supply by a basement membrane. This is
illustrated in FIG. 5, as the hyperplastic epithelium of a
carcinoma in situ is clearly delimited from the stroma by
a thin basement membrane. Blood vessels are confined
to the stromal compartment and, therefore, early car-
cinogenesis and development of the malignant pheno-
type actually occur in an avascular environment. As a
result, substrates, such as oxygen and glucose, must dif-
fuse from the vessels across the basement membrane and
through layers of tumour cells, where they are metabo-
lized. This process of diffusion and consumption was
modelled by Krogh as early as 1919 through
reaction–diffusion equations that showed that oxygen
concentrations decreased with distance from a capillary
such that oxygenated cells were limited to a distance of
less than 150 µm from a blood vessel27. In the 1950s,
empirical studies by Thomlinson and Gray showed that
viable tumour cells were not observed at distances
greater than 160 µm from blood vessels, consistent with
Krogh’s calculations28. Subsequent experimental studies
in WINDOW CHAMBERS in animal models have demonstrated
that near-zero partial pressures of oxygen (pO

2
) are

observed at distances of only 100 µm from a vessel29,30.
Therefore, pre-malignant lesions, provided their

basement membranes remain intact, will inevitably
develop hypoxic regions near the oxygen diffusion limit,
as persistent proliferation leads to a thickening of the
epithelial layer, pushing cells ever more distant from
their blood supply, which remains on the other side of
the basement membrane. At this penumbral layer,
microenvironmental selection forces will favour

WINDOW CHAMBER

A metal chamber with a glass
window that is placed on the
dorsal skin of an animal. This
allows in vivo tumour growth to
be continuously observed
microscopically.

Figure 2 | Positron-emission tomography imaging with
18fluorodeoxyglucose of a patient with lymphoma. The
mediastinal nodes (purple arrow) and supraclavicular nodes
(green arrows) show high uptake of 18fluorodeoxyglucose
(FdG), showing that tumours in these nodes have high levels
of FdG uptake. The bladder (yellow arrow) also has high
activity, because of excretion of the radionuclide.
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Figure 3 | Pasteur and Warburg effects in non-invasive
and metastatic breast cancer cell lines. In both cell lines,
glucose consumption is reduced in the presence of oxygen
— the Pasteur effect (P). However, the more aggressive cell
line, MDA-MB-231, has much higher glucose consumption 
in the presence of oxygen than the MCF-7 cells with a 
non-invasive phenotype — the Warburg effect (W). This is
consistent with positron-emission tomography scans with
18fluorodeoxyglucose, which show that higher glucose
uptake correlates with more aggressive phenotypes and
poorer clinical outcomes. 

Figure 2.4: Tumour imaging with 18fluorodeoxyglucose positron emission to-
mography (FDG-PET). The tumours (purple and green arrows)
show high levels of FDG uptake, indicative of increased glucose
uptake. The bladder (yellow arrow) also has high activity, due
to excretion of FDG. Reproduced with permission from Nature
Reviews Cancer [45] c© 2004 Macmillan Magazines Ltd.

several-fold increase in cellular glucose consumption. This phenomenon is now routinely

exploited for tumour imaging through 18fluorodeoxyglucose positron emission tomography

(FDG-PET) [26, 38] (see Fig. 2.4). PET has confirmed that the vast majority (> 90%) of

human primary and metastatic tumours demonstrate increased glucose uptake indicating

abnormal metabolism. Furthermore, PET has been used to show a direct correlation

between tumour aggressiveness and the rate of glucose consumption [30].

The presence of the glycolytic phenotype in the malignant phenotype of such a wide

range of cancers arising in multiple different sites seems inconsistent with the evolutionary

model of carcinogenesis described in Section 2.1. Due to the Darwinian dynamics at play,

it is reasonable to assume the common appearance of a specific phenotype within a large

http://www.nature.com/reviews
http://www.nature.com/reviews
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number of different cancer populations is evidence that it must confer a significant growth

advantage. However, the proliferative advantages gained from altered glucose metabolism

are far from clear. Firstly, anaerobic respiration is more than an order of magnitude less

efficient than its aerobic counterpart, producing only 2 ATP per glucose in comparison to

approximately 36 ATP (see Fig. 2.5). Secondly, the hydrogen ions produced as a result

of glycolysis cause a consistent acidification of the extracellular space that is potentially

toxic [104]. In particular, an acidic microenvironment results in tissue damage due to cell

death and degradation of the extracellular matrix [102]. Intuitively, one would expect

the Darwinian forces prevailing during carcinogenesis to select against this inefficient and

environmentally toxic phenotype, in favour of more optimal metabolic regimes.

Gatenby and Gillies [45] proposed that evolution of aerobic glycolysis is the result of en-

vironmental constraints imposed by the morphology of the ducts in which premalignant

lesions evolve (see Fig. 2.6). Initially, normal epithelial cells grow along the basement

membrane, with the epithelial layer at most a few cells thick. Homeostasis mechanisms

do not normally allow growth of these cells away from the basement membrane. However,

following initial genetic events in the carcinogenesis pathways such as those depicted by

the Fearon-Vogelstein model [33], the cells become hyperplastic, leading to a thickening

of the epithelial layer, pushing cells into the lumen and away from the basement mem-

brane. Since the blood vessels remain outside the basement membrane, nutrients and

waste must diffuse over longer and longer distances. As a result, it is likely that hyper-

plastic cells beyond the Thomlinson–Gray limit of 100–150 µm [113] from the basement

membrane will experience profound hypoxia, which will initiate a sequence of critical cel-

lular adaptations and environmental changes. Specifically, it is proposed that hypoxia

leads to constitutive upregulation of glycolysis which, in turn, results in increased H+
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HEXOKINASES

Enzymes that catalyse the
transfer of phosphate from ATP
to glucose to form glucose-6-
phosphate. This is the first
reaction in the metabolism of
glucose and prevents efflux of
glucose from the cell.

HYPOXIA

Refers to a low oxygen level. This
means different levels to
different investigators, but for
radiation biologists hypoxia
occurs at levels less than 0.1%
oxygen in the gas phase.
Normoxia refers to normal levels
of oxygen (>10%) and anoxia
refers to no oxygen.
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resides at the transport and phosphorylation steps14–16.
FdG PET imaging also allows quantitation of glu-

cose uptake. These studies have consistently correlated
poor prognosis and increased tumour aggressiveness
with increased glucose uptake17,18. In addition,
hypoxic tumours, which require increased glycolysis
to survive, are often19–22, but not always23, more inva-
sive and metastatic than those with normal oxygen
levels. These results demonstrate the clinical impor-
tance of glucose metabolism and have moved the gly-
colytic phenotype from a laboratory oddity to the
mainstream of clinical oncology.

Cells derived from tumours typically maintain their
metabolic phenotypes in culture under normoxic condi-
tions, indicating that aerobic glycolysis is constitutively
upregulated through stable genetic or epigenetic
changes. Consistent with the FdG PET results, the gly-
colytic rate in cultured cell lines seems to correlate with
tumour aggressiveness. For example, non-invasive 
MCF-7 breast cancer cells have much lower aerobic 
glucose consumption rates compared with the highly
invasive MDA-mb-231 breast cancer cell line (FIG. 3).

These observations indicate that altered metabo-
lism of glucose by tumours is more than a simple
adaptation to HYPOXIA. We suggest that the near-
universal observation of aerobic glycolysis in invasive
human cancers, its persistence even under normoxic
conditions and its correlation with tumour aggres-
siveness indicate that the glycolytic phenotype confers
a significant proliferative advantage during somatic
evolution of cancer and must, therefore, be a crucial
component of the malignant phenotype.

At first glance, this hypothesis seems at odds with
an evolutionary model of carcinogenesis, because the
proliferative advantage of the glycolytic phenotype is
not immediately apparent. First, anaerobic metabo-
lism of glucose is inefficient — it produces only 2 ATP
per glucose, whereas complete oxidation produces 38
ATP per glucose (FIG. 1). Second, the metabolic prod-
ucts of glycolysis, such as hydrogen ions (H+), cause a
spatially heterogeneous but consistent acidification of

than 0.8 cm3, and specificity is lowered because other
tissues, notably immune cells, also avidly trap FdG.
When these limitations are accounted for, it can be rea-
sonably surmised that virtually all invasive cancers
avidly trap FdG.

The increased glucose uptake imaged with FdG PET
is largely dependent on the rate of glycolysis. FdG
uptake and trapping occurs because of upregulation of
glucose transporters (notably GLUT1 and GLUT3) and
HEXOKINASES I and II10,11 Although metabolic control over
glycolytic rate can be applied at many steps in the gly-
colytic pathway12,13, most studies in cancer support the
hypothesis that control over glycolytic flux primarily

Summary

• Widespread clinical use of 18fluorodeoxyglucose positron-emission tomography has demonstrated that the glycolytic
phenotype is observed in most human cancers.

• The concept of carcinogenesis as a process that occurs by somatic evolution clearly implies that common traits of the
malignant phenotype, such as upregulation of glycolysis, are the result of active selection processes and must confer a
significant, identifiable growth advantage.

• Constitutive upregulation of glycolysis is likely to be an adaptation to hypoxia that develops as pre-malignant lesions
grow progressively further from their blood supply. At this stage, the blood supply remains physically separated from
the growing cells by an intact basement membrane.

• Increased acid production from upregulation of glycolysis results in microenvironmental acidosis and requires further
adaptation through somatic evolution to phenotypes resistant to acid-induced toxicity.

• Cell populations that emerge from this evolutionary sequence have a powerful growth advantage, as they alter their
environment through increased glycolysis in a way that is toxic to other phenotypes, but harmless to themselves. The
environmental acidosis also facilitates invasion through destruction of adjacent normal populations, degradation of
the extracellular matrix and promotion of angiogenesis.

• We propose that the glycolytic phenotype, by conferring a powerful growth advantage, is necessary for evolution of
invasive human cancers.
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Figure 1 | Glucose metabolism in mammalian cells. Afferent blood delivers glucose and oxygen
(on haemoglobin) to tissues, where it reaches cells by diffusion. Glucose is taken up by specific
transporters, where it is converted first to glucose-6-phosphate by hexokinase and then to
pyruvate, generating 2 ATP per glucose. In the presence of oxygen, pyruvate is oxidized to HCO3,
generating 36 additional ATP per glucose. In the absence of oxygen, pyruvate is reduced to lactate,
which is exported from the cell. Note that both processes produce hydrogen ions (H+), which
cause acidification of the extracellular space. HbO2, oxygenated haemoglobin.

Figure 2.5: Glucose metabolism in a mammalian cell. Glucose and oxygen
are delivered via the blood to tissues, reaching the cell by dif-
fusion. Glucose molecules are taken up through specific trans-
porters, before being converted to pyruvate via glycolysis, gen-
erating 2 ATP molecules per glucose molecule. In the absence
of oxygen, pyruvate is reduced to lactate and exported from the
cell. Under oxygenated conditions, this reduction is inhibited
in normal cells (the Pasteur effect [95]); pyruvate instead enters
the mitochondrion, generating approximately a further 34 ATP.
Reproduced with permission from Nature Reviews Cancer [45]
c© 2004 Macmillan Magazines Ltd.
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oxygen. This constitutive upregulation might occur
through mutations or epigenetic changes such as alter-
ation in the methylation patterns of promoters. The
consequences of increased glycolysis require further
adaptation to environments with high acid and low
glucose concentrations.

We propose that this is a crucial evolutionary
sequence in the development of invasive cancer. First, it
results in a phenotype with a powerful proliferative
advantage, in that, through persistent aerobic glycolysis,
it is able to alter the local microenvironment in a way
that is harmless to itself, but fatal to competing popula-
tions. Second, acidification of the microenvironment
facilitates tumour invasion both through destruction of
adjacent normal populations and through acid-induced
degradation of the ECM and promotion of angiogenesis.
The underlying molecular, cellular and environmental
dynamics are discussed next.

Molecular mechanisms
The molecular mechanisms leading to constitutive
upregulation of aerobic glycolysis are not well defined.
As mentioned above, it is commonly assumed that glu-
cose transporters and hexokinases are the key molecules
regulating glycolytic flux. It must be noted that a corol-
lary of the current hypothesis is that the selective advan-
tage conferred by the glycolytic phenotype is insensitive
to the exact mechanism of glycolytic induction.

A key regulator of the glycolytic response is the tran-
scription factor hypoxia-inducible factor-1α (HIF1α)58.
This factor mediates a pleiotropic response to hypoxic
stress by inducing survival genes, including glucose
transporters; angiogenic growth factors (for example,
VEGF); hexokinase II59; and haematopoeitic factors (for
example, transferrin and erythropoietin)60. In some sys-
tems, constitutively increased HIF1α levels are associated
with constitutively high glucose consumption rates. This
is the case in the renal-cell carcinoma cell line RCC4,
which has constitutively high HIF1α because of a muta-
tion in the von Hippel–Lindau (VHL) ubiquitin ligase.
(The wild-type enzyme targets HIF1α for degradation.)
Re-inserting VHL as a transgene in these cells restores
normal HIF1α levels and greatly reduces aerobic glucose
consumption rates61.Although HIF1α strongly links aer-
obic glycolysis to carcinogenesis62, it would be premature
to conclude that the glycolytic phenotype in cancer is
invariably due to dysregulation of the HIF system.
Although it is termed the hypoxia-inducible factor,
HIF1α levels can in fact be stabilized by a range of fac-
tors, including cyclooxygenase-2 activity, insulin-like
growth factor 2, ERBB2, epidermal growth factor recep-
tor, phosphatidylinositol 3-kinase, heat-shock protein 90,
microtubule status, thioredoxin and histone deacetylase,
to name a few63–65. Additionally, stabilization of HIF1α
in tumours can result from hypoxia-reoxygenation
injury66, which indicates that its constitutive upregula-
tion might result from the periodic oxic–hypoxic cycles
that occur in pre-malignant tumours. Consistent with
our somatic-evolution model, lack of HIF1α decreases
survival in response to hypoxia67, leading to selection of
cells with upregulated HIF1α.

the anoxic episodes. The mechanisms underlying this
upregulation are discussed in the next section.

Although the upregulation of glycolysis is a success-
ful adaptation to hypoxia/anoxia, it also has significant
negative consequences because of increased acid pro-
duction, which causes significant decreases in local
extracellular pH. Prolonged exposure of normal cells to
an acidic microenvironment typically results in necrosis
or apoptosis through p53- and caspase-3-dependent
mechanisms47,48. The physiological trigger for apoptosis
might be collapse of the transmembrane H+ gradient
that occurs with intracellular acidosis, but other factors
might have a role49. So, constitutive upregulation of gly-
colysis requires additional adaptation to the negative
effects of extracellular acidosis through resistance to
apoptosis or upregulation of membrane transporters
to maintain normal intracellular pH. Intracellular pH
is maintained by multiple families of H+ transporters,
which are co-expressed and redundant50,51. Na+–H+

exchange51,52 and vacuolar H+-ATPases53 have both been
observed to be upregulated in cancers, and vacuolar
H+-ATPase might confer resistance to apoptosis54.

Additional adaptations might also be required as
the increased glucose consumption rates further
decrease glucose concentrations. Cellular competition
for this increasingly limited resource will therefore
increase and favour phenotypes with greater numbers
of either high V

MAX
(for example, GLUT1) or low K

M
(for

example, GLUT3) glucose transporters. Such upregu-
lation of glucose transporters has been observed dur-
ing carcinogenesis in oesophageal, gastric, breast and
colon cancers55–57.

In summary, we suggest that the glycolytic pheno-
type initially arises as an adaptation to local hypoxia
(FIG. 6). Persistent or cyclical hypoxia subsequently
exerts selection pressures that lead to constitutive
upregulation of glycolysis, even in the presence of

V
MAX

and K
M

Terms from the
Michaelis–Menten model.
Applied to transport,V

max
is the

maximum possible rate of
uptake of a specific substrate. K

m

is the substrate concentration at
which the substrate uptake is
half of V

max
. Cell populations

with low K
m

are better adapted
to maintaining substrate uptake
in conditions in which substrate
concentrations are low.
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Figure 5 | Late-stage ductal carcinoma in situ. A 5µm-thick biopsy sample was stained with
haematoxylin and eosin, and digitized with the DMetrix camera system (see online links box) with
a resolution of 0.45 µm/pixel. Blood vessels (blue) are seen in the stroma (S) surrounding the
tumour (T), but the tumour itself — within the ducts and surrounded by the basement membrane
(B) — is avascular. The centre of the tumour is necrotic (N).

Figure 2.6: A late-stage ductal carcinoma in situ (DCIS). Blood vessels
(blue) are seen in the stroma (S) surrounding the tumour (T), but
are prevented from entering the tumour itself by the intact base-
ment membrane (B). The tumour centre is necrotic (N). Repro-
duced with permission from Nature Reviews Cancer [45] c© 2004
Macmillan Magazines Ltd.

production and acidification of the microenvironment. This decreased extracellular pH

(pHX) is toxic to the local populations because it induces p53-dependent apoptosis due to

increased caspase activity. This selects for cells that are resistant to acid-induced toxicity

resulting in further evolution of new phenotypic properties that, for example, increase the

number and activity of Na+/H+ antiporters on the cell surface, or possess mutations in

p53, caspase or other components of the acid-induced apoptosis pathways. Acidosis also

selects for motile cells that eventually breach the basement membrane, gaining access to

existing and newly formed blood and lymphatic routes for metastasis.

This model is supported by experimental observations of upregulation of cellular responses

to hypoxia in regions of premalignant DCIS (ductal carcinoma in situ) and PIN (intraep-

ithelial neoplasia) most distant from the basement membrane. This includes upregulation

http://www.nature.com/reviews


Chapter 2: The biological basis of cancer 29

of HIF (hypoxia-inducible factor) and related proteins such as carbonic anhydrase IX and

GLUT-1 (glucose transporter 1) [73, 127] (see Fig. 2.7).

Gatenby and Gawlinski [41, 42] point out that the tumour phenotype that emerges from

the sequence above, constitutively increasing acid production and becoming resistant to

acid-induced toxicity, has a powerful growth advantage over its normal counterparts.

They propose that acidity may play a key role in mediating tumour invasion. The key

idea is that the transformed tumour metabolism with increased use of glycolysis and acid

secretion alters the microenvironment by substantially reducing tumour extracellular pH,

usually by more than 0.5 pH units. The H+ ions produced by the tumour then diffuse along

concentration gradients into the adjacent normal tissue. This acidification leads to death

of normal cells due to activation of p53-dependent apoptosis pathways, as well as loss of

function of critical pH-sensitive genes. Tumour cells, however, are relatively resistant to

acidic pHX, due to mutant p53 genes. Whilst normal cells die in environments with a

persistent pH below about 7, tumour cells typically exhibit a maximum proliferation rate

in a relatively acidic medium (pH 6.8) [20]. As a result, the tumour edge can be seen as

forming a travelling wave progressing into normal tissue, preceded by another travelling

wave of increased microenvironmental acidity.

Cancer cell populations are extremely heterogeneous, displaying a wide range of genotypic

and phenotypic differences [34]. For example, studies of clinical breast cancers have shown

that every cell line exhibited a novel genotype [66]. As a result, no prototypic cancer cell

can be defined. It is likely that several of the lethal phenotypic traits of cancer, such

as invasion and metastasis, are not the direct result of genetic changes, but rather arise

from the unique physiological environments of tumours. Tumour hypoxia and acidity, for
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(a)

(b)

Figure 2.7: (a) DCIS, stained for expression of the hypoxia-inducible protein
carbonic anhydrase IX. The image shows an increase in hypoxic
response with distance from the basement membrane. Reprinted
from [127] with permission from the American Society for Inves-
tigative Pathology. (b) DCIS, stained for the glucose transporter
1 protein. Again the image shows a marked increase in expression
in cells furthest from the membrane, indicating they are adapt-
ing to hypoxia by increasing glucose transport. Figure courtesy
of R. Gatenby.
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example, significantly affect the treatment and progression of cancer. These effects can

either be directly mediated by low pH or low pO2, or they can result from selective pressure

that these parameters place upon cells in hostile environments. Hypoxia and acidity are

not simply phenomena of cancer growth, but may in fact be essential intermediates in the

progression from benign to metastatic growth. Acidity, in particular, has been shown to

have three clear effects on tumour phenotype: resistance to chemotherapy [98], increased

mutation rate [88] and increased invasion [81].

2.5 Summary

In this chapter we have introduced the complex subject of cancer development from a bi-

ological perspective. Cancer may be seen as a somatic evolution process, whereby cancer

cells escape from the cooperative behaviour associated with normal tissue, allowing them

to have a selective advantage over their normal counterparts. Successive rounds of adap-

tation, competition and selection lead to progressively less collaborative and more lethal

cells. In addition to proliferating in excess of their competitors, cancer cells may invade

surrounding tissue, metastasise to form distant colonies within the body and acquire their

own vasculature.

Since the pioneering work of Fearon and Vogelstein, much effort has gone into determin-

ing the specific genetic and epigenetic changes that occur during cancer development.

Whilst a picture of the growth signalling circuitry in the cell is coming into focus, much

of the pathway is still poorly understood. Moreover, the wide range of genotypic and

phenotypic differences between each cancer cell population means it is not possible to
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define a prototypic cancer cell. The genotypic variation between cancer populations is

surprising when one considers their common phenotypic traits of invasion, metastasis and

angiogenesis. This leads us to consider the possibility that these lethal phenotypes may

not be directly caused by genetic differences, but rather may be mediated by the harsh

physiological environment associated with tumours [108].

One such environmental difference is tumour acidification, resulting in part from a consti-

tutive change in tumour glucose metabolism. At first sight, this metabolic change seems

at odds with an evolutionary model of cancer development, as it is both inefficient and

toxic. However, altered glucose metabolism and acidification is near-universally observed

in human primary and metastatic tumours, suggesting that these changes are essential

in the progression from benign to metastatic growth. Throughout this thesis, we shall

examine the evolutionary pressures that lead to tumour acidification, and the effects this

has on tumour growth. The understanding gained from this will allow assessment of novel

therapies directed towards manipulation of tumour pH.



Chapter 3

Modelling tumour development

3.1 Introduction

Non-linear processes dominate the way in which tumour cells interact with their microen-

vironment. It is clear that the intuitive, verbal reasoning approaches employed by many

oncologists are insufficient to describe the resulting complex system dynamics. Nor can

such approaches keep pace with the vast amounts of oncological data being published each

year in response to the rapid technological advances in molecular biology. Rather, expe-

rience from other areas of science has taught us that quantitative methods are needed to

develop comprehensive theoretical models for interpretation, organisation and integration

of this data [46, 70]. Once thought of as too simplistic to describe complex tumour phe-

nomena, we now see that mathematical models, continuously revised by new information,

can be used to guide experimental design and interpretation.

Whilst there is a clear need for a more formal approach to biology [76], there is also a

need for mathematical biologists to avoid post hoc explanations of observations, such as

data fitting. To make experimental biologists take serious note, mathematical biologists

33
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must create models that generate predictions to be tested empirically. Alternatively, these

models should address questions of a higher level, identifying all possible classes of biolog-

ical phenomena that could arise from a given modelling premise [75]. One example of the

former approach is the series of articles written by Hodgkin and Huxley in 1952, the final

paper [59] combining both experimental data analysis and mathematical modelling. The

authors derive a system of equations for describing the generation of an action potential

in a squid giant axon and numerically determine a travelling wave solution, whose shape

and speed agreed with their own experimental measurements. This work led to a Nobel

Prize in 1963, and moreover drove research that resulted in the discovery of membrane

ion channels [78]. An example of the latter approach is Turing’s 1952 article [114], whose

development of the idea that reaction-diffusion equations could provide spatially inho-

mogeneous patterns of chemical concentrations to trigger morphogenetic events, provided

the theoretical framework for a number of biological applications.

Whilst theoretical modelling only contributes to around 5% of the research articles written

on cancer, this figure still equates to over 50 000 papers [103]. Within this chapter, we

clearly cannot describe every model of tumour development; for this, the reader is referred

to various review articles focusing on tumour modelling history [7], avascular growth [103],

colorectal cancer [116], angiogenesis [79], interactions with the immune system [1] and

modelling drug delivery [61]. Here, instead, we subject a small selection of representative

models to in-depth analysis. These models have been chosen both because of their impact

on scientific research into cancer, and their relevance to this thesis. The benefit of this

highly selective approach is that it enables us to fully identify each model’s assumptions,

defining equations and conclusions. Moreover, through outlining the papers that led to,

and from, each of the models, the chapter will maintain the semblance of a standard
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review.

3.2 Greenspan (1972)

Many of the recent mathematical models found in the literature focus on the growth of

multicellular spheroids (MCSs): clusters of cancer cells grown in vitro to mimic the early

stages of in vivo avascular tumour growth and to test the applicability of new cancer

treatment strategies [111]. MCSs have a well-defined structure, possessing a central core

of necrotic cells, with proliferating cells restricted to the outer rim of the tumour. Ex-

isting models of MCS and avascular tumour development, essentially extensions of the

early models of Burton [14] and Greenspan [51], describe the evolution of the tumour

outer boundary in response to vital nutrients (in particular oxygen) and growth factors.

Using the assumption of spherical or cylindrical symmetry, these models give good qual-

itative agreement with experimental results, reproducing both the growth patterns and

macroscopic heterogeneities typical of MCSs and avascular tumours.

Greenspan’s 1972 paper [51] describes a simple mathematical model of tumour growth.

The tumour is assumed to act as an incompressible fluid; as such, local changes in the cell

population, caused by the birth or death of cells, give rise to internal pressure gradients

that induce cellular motion and the expansion or contraction of the tumour colony. The

work extends previous models [14] by introducing cell–cell adhesion forces at the tumour

periphery that maintain the tumour as a compact, solid mass. Subsequent tumour growth

is determined by the interaction between these expansive and restraining forces.

The tumour is modelled as a sphere consisting of a central necrotic core (r ≤ RD), an
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intermediate layer of quiescent (non-proliferating) cells (RD ≤ r ≤ RQ) and an outer layer

of proliferating cells (RQ ≤ r ≤ RM – see Fig. 5.5). Necrotic cellular debris is assumed

to continually disintegrate into simpler chemical compounds that are freely permeable

through cell membranes. The cell volume lost in this way is replaced by cells pushed

inward through adhesion or surface tension. Assuming that the rates of cell proliferation

and necrotic disintegration are constant per unit volume (s and 3λ respectively), we find

R2
M

dRM

dt
=
s

3

[
R3

M −max(R3
D, R

3
Q)

]
− λR3

D. (3.1)

Cancer cells are assumed to die when the concentration σ of a crucial nutrient falls below

a critical level σl. Thus the necrotic radius RD is defined by the relationship σ(RD) = σl,

whilst if σ > σl everywhere, then we take RD = 0. Note that the nutrient diffusion time-

scale (∼ minutes) is much shorter than the tumour growth time-scale (∼ days), and hence

as the tumour grows, the nutrient quickly redistributes and reaches equilibrium. Thus we

may assume that σ is in diffusive equilibrium at all times. If the nutrient has constant

diffusion rate k and is consumed by living cells at constant rate A per unit volume, then

∇2σ =
A

k
H(RM − r)H(r −RD), (3.2)

where H denotes the Heaviside (or unit step) function, subject to the condition that

σ(RM) = σ∞ is constant at the tumour boundary.

Noting the finding that the mitotic index of proliferating cells tends to decrease with

distance from the spheroid surface [112], Greenspan assumes that a chemical β must be

produced within the tumour that inhibits mitosis once the concentration of the chemical

reaches a critical level βl; thus the quiescent radius is defined by β(RQ) = βl, whilst

RQ = 0 if β < βl everywhere.
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Two different possibilities are then considered separately. The first model assumes that

the chemical inhibitor is a result of inadequate nutrient supply, and a product of the

necrotic material. Then we find

∇2β = −P
κ
H(RD − r), (3.3)

where κ is the diffusion rate and P the production rate of β per unit volume, subject to

the boundary condition β(RM) = 0.

The second model assumes that the inhibitor is produced purely by the metabolic pro-

cesses of living cells, in which case Eq. (3.3) becomes

∇2β = −P
κ
H(RM − r)H(r −RD). (3.4)

Using the non-dimensionalisation

ξ =
RM

Rc

, ζ =
RQ

Rc

, η =
RD

Rc

, τ = st,

Q2 =
βlκA

(σ∞ − σl)kP
, γ =

λ

s
, Rc =

[
6k

A
(σ∞ − σl)

]1/2

, (3.5)

Greenspan provides solutions for both models. Qualitatively, both predict some overall

similarities in the development of the spheroid, showing three distinct growth phases:

initial exponential growth, followed by a degree of retardation, culminating in a final

phase where both mitotic inhibition and cell death give rise to dormancy. However, each

of the two models predicts a distinctly different growth pattern prior to arriving at the

steady state. These results are reproduced in Figs. 3.1 and 3.2.

Details are given of a prototype experiment that could determine, from examination of

the steady-state cell population, which of the two possibilities was the primary source
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Figure 3.1: (From Eqs. (3.1)–(3.4).) Predicted growth patterns from
Greenspan’s models when inhibition is due to (a) dead mate-
rial and (b) the metabolic wastes of live cells. Parameter values
used are ξ(0) = 0.1, γ = 0.22, Q = 0.25 for the first model and
Q = 0.46 for the second model. The three growth phases are
separated by circles.
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Figure 3.2: A comparison of the predicted outer tumour radius of the two
models presented in Fig. 3.1. The models show differing growth
patterns before arriving at a common steady state. Time is mea-
sured from the point of bifurcation.

of growth inhibition. This point is reiterated in a later paper [52]; regrettably, no such

experimental work appears to have been undertaken.

As mentioned at the start of this section, the model of Greenspan is an antecedent to

much of the subsequent mathematical literature relating to tumour development. McEl-

wain and co-workers investigated the effects of non-uniform oxygen consumption on the

model, and apoptosis as a cell loss mechanism [82, 83]. Greenspan himself extended his

own modelling framework to consider the stability of equilibrium-sized tumours to asym-

metric perturbations [53], work continued by Byrne and co-workers [15, 16]. Many recent

models have incorporated differing degrees of cell movement, such as considering cells to

move in a convective manner [37, 121]. The recent work of Franks et al. [37] is represen-

tative of a modern approach to the topic, drawing together many previous approaches to

model the early growth of a ductal carcinoma in situ in a cylindrically-symmetric breast
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duct. Tumour growth is again largely determined by nutrient availability. However, the

work goes much further, describing the live and dead tumour cell concentrations, the

concentration of fluid within the duct, nutrient concentration, local velocity and pressure.

This modelling framework is then used to study the effects of the tissue viscosity on the

shape of the tumour boundary, including the extent to which the cells adhere to the duct

wall.

One of the first to tackle the problem, Greenspan’s model of tumour growth has stood the

test of time. A reformulation of his approach forms the basis of our model of acid-mediated

growth described in Chapter 5.

3.3 Gatenby and Gawlinski (1996)

Population ecology methods provide a means for examining tumours, not as an isolated

collection of transformed cells, but rather as an invading species in a previously stable

multicellular population. Gatenby [39, 40] models the tumour-host interface as a network

of interacting normal and malignant cell populations, using coupled, non-linear differential

equations. The interactions are then explored to define the crucial parameters that control

tumourigenesis and to demonstrate the limitations of traditional therapeutic strategies.

Tumour cell populations, as with any invading population in biology, must directly per-

turb their environment in such a way as to facilitate their own growth while inhibiting

the growth of the original community. The commonality of altered tumour metabolism,

in particular the adoption of the glycolytic phenotype in most cancers, led Gatenby and

Gawlinski to propose the acid-mediated tumour invasion hypothesis [41, 42], as discussed
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in Section 2.4. The authors propose that tumour cells’ increased acid secretion, cou-

pled with their resistance to low extracellular pH, may provide a simple but complete

mechanism for cancer invasion.

The hypothesis is modelled as a system of three coupled partial differential equations

(PDEs), determining the spatio-temporal distribution of three fields: the normal tissue

density N1, the tumour tissue density N2, and the concentration of excess hydrogen ions

L. The model includes: (1) logistic cellular growth; (2) normal cell death due to exposure

to acid; (3) acid production by tumour cells; (4) acid reabsorption and buffering; and (5)

spatial diffusion of acid and cells. It takes the form

∂N1

∂t
= r1N1

(
1− N1

K1

)
− d1LN1, (3.6)

∂N2

∂t
= r2N2

(
1− N2

K2

)
+D2∇ ·

[(
1− N1

K1

)
∇N2

]
, (3.7)

∂L

∂t
= r3N2 − d3L+D3∇2L, (3.8)

where r1 and r2 are the growth rates of the normal and tumour cell populations, respec-

tively, K1 and K2 their carrying capacities, D2 the diffusion coefficient for tumour cells,

d1 the normal cell susceptibility to acid, r3 the rate of hydrogen ion production by tu-

mour cells, d3 the combined rate of acid removal by blood vessels and buffering, and D3

the diffusion coefficient for hydrogen ions in tissue. Notice that there is no normal cell

diffusion within the model, in recognition of the fact that healthy tissue is well-regulated

and participating normally in an organ. Notice also that the tumour diffusion coefficient

is constructed such that when normal tissue is at its carrying capacity, the diffusion co-

efficient for tumour tissue is zero and the tumour is confined. This final assumption is at

the heart of the model: tumour tissue is unable to spread without first diminishing the
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surrounding healthy tissue from its carrying capacity.

In non-dimensional form, Eqns. (3.6)–(3.8) become

∂η1

∂τ
= η1(1− η1)− δ1Λη1, (3.9)

∂η2

∂τ
= ρ2η2(1− η2) + ∆2∇ξ · [(1− η1)∇ξη2], (3.10)

∂Λ

∂τ
= δ3(η2 − Λ) +∇2

ξΛ. (3.11)

The system has four spatially-homogeneous steady states:

• η1 = 0, η2 = 0: the trivial solution.

• η1 = 1, η2 = 0: corresponding to normal healthy tissue with no tumour cells present.

• η1 = 1− δ1, η2 = 1: corresponding to tissue consisting of both normal and tumour

cells at an intermediate level, which may be interpreted as a benign or non-invasive

tumour.

• η1 = 0, η2 = 1: corresponding to total tumour invasion.

Linear stability analysis [89] shows us that the trivial state and the state corresponding to

normal cells alone are unconditionally unstable. Both the invasive state and the coexisting

state are conditionally, but mutually exclusively, stable. The critical parameter is found

to be δ1 = d1r3K2/d3r1. Depending on the value of this dimensionless parameter, either

the steady state for total destruction of normal tissue (δ1 > 1) or the steady state with

the tumour and normal cells coexisting (δ1 < 1) is stable. Thus as the value of δ1 passes

through the critical value of 1, the entire system will change from a benign pattern of

growth to a malignant one. For example, increased tumour vascularity will increase K2
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and push the system to an unstable steady state. This is consistent with data [35] showing

that the acquisition of the angiogenic phenotype radically and abruptly alters the tumour

growth pattern from non-invasive, slow growth to rapidly expanding, invasive growth.

Late-time travelling wave solutions [89] to Eqs. (3.9)–(3.11) are computed in Fig. 3.3.

The first point of note is that the model predicts a smooth pH gradient extending from

the tumour edge into the peritumoural tissue. The authors reanalyse data presented

by Martin and Jain [80] relating to in vivo interstitial pH profiles for the VX2 rabbit

carcinoma and its surrounding normal tissue, demonstrating that the data are consistent

with the presence and approximate range of the pH gradient predicted by the model. Most

significantly, however, the model predicts that (when δ1 > 1) there exists a previously

unrecognised acellular gap separating the advancing tumour and receding host tissue

fronts. In subsequent in vitro experiments, the authors found that, of 21 specimens of

human squamous cell carcinoma of the head and neck, 14 were judged to show such a gap

(see Fig. 3.4). Naked nuclei and morphologically disrupted cells were frequently observed

scattered within the gap, or at its edge, as predicted by the model.

One problem with the model, generally ignored by reviewers, regards the ‘benign’ growth

pattern observed when δ1 < 1, as presented in Fig. 3.3 (b). Whilst the tumour tissue

does not have the capacity to destroy all the host tissue here, nor is there any mechanism

to halt the tumour’s growth. As such, this growth pattern does not accurately represent

benign growth. We return to this point in Chapter 5.

Despite the apparent success of Gatenby and Gawlinski’s model in examining large, clin-

ically apparent tumours, its relevance to early tumour growth is not clear. Continuous

partial differential equation models are well suited to modelling large populations, but
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Figure 3.3: (From Eqs. (3.9)–(3.11).) Late-time travelling wave solutions to
Gatenby and Gawlinski’s model, with respect to the moving co-
ordinate ζ = ξ−cτ . Waves are propagating from left to right and
parameter values used are ρ2 = 1, ∆2 = 4×10−5 and δ3 = 70. (a)
The invasive case with δ1 = 12.5 > 1. Notice the formation of an
acellular gap separating the advancing tumour (η2) and receding
host tissue (η1) fronts. (b) The benign case with δ1 = 0.5 < 1.
Notice the coexistence of tumour and host tissue behind the wave
front. In both cases there is a smooth pH gradient (Λ) extending
from the tumour edge into the surrounding normal tissue.
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Figure 3.4: Formalin-fixed micrograph of the tumour-host interface (arrows)
from human squamous cell carcinoma of the head and neck. A
hypocellular gap at the interface associated with disrupted nor-
mal cells (arrowheads) is identified. The gap size ranges from
10–100 µm. Reproduced with permission from [96].
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individual-based models such as cellular automata (CA) are more appropriate when the

activity of individual cells must be considered. Traditional CA methods lack the ability to

deal with continuously varying elements such as substrate diffusion and utilisation. Thus

Patel et al. [92] developed a hybrid CA (see also [2, 5]) to evaluate the acid-mediated

invasion hypothesis. The model incorporates normal cells, tumour cells, empty space and

native microvessels as the automaton elements. Diffusion of glucose and H+ ions to and

from the microvessels, and their utilisation or production by cells are modelled through

the solution of differential equations. Individual cells are then updated according to the

local glucose and H+ concentration.

The model predicts that even a small tumour nodule of 21 cells (in a 200×200 automaton)

is able to generate sufficient changes in the local microenvironment to degrade the normal

tissue and allow tumour growth. Early tumour growth is shown to be critically depen-

dent on H+ production by transformed cells and the level of vasculature. A variety of

tumour morphologies are observed through varying these factors. This includes tumours

growing to large volumes with declining growth rates or highly necrotic growth with the

development of tumour chords. Some tumours even demonstrate initial growth followed

by a decrease in tumour volume representing spontaneous regression.

The model of Gatenby and Gawlinski is the first to consider acidity as a mechanism medi-

ating tumour growth. The prediction of a previously unobserved acellular gap separating

the normal and tumour tissue goes a long way to validating their hypothesis. However,

neither the PDE nor the CA formulation are capable of reproducing a benign growth

pattern. We return to this point in Chapter 5.
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3.4 Casciari et al. (1992)

A wide range of mathematical and computational models have been used to study the

various mechanisms underlying nutrient consumption and metabolism [60, 71]. The com-

putational model of Banaji et al. [8] is a typical example; the authors describe a model

of the human brain circulation, one of its constituent parts being “a basic model of brain

metabolic biochemistry”. The Banaji et al. model is, in fact, anything but basic, describ-

ing in detail each of the many reactions taking place during cellular glucose metabolism.

The main drawback to this approach is that there are over 100 parameters, many of which

are unknown and difficult to estimate experimentally.

At the other end of the complexity scale is an interesting paper by Webb et al. [123],

examining the dynamics that lead to tumour cells maintaining their intracellular pH at

physiological levels, despite an acidic extracellular pH. Acknowledging the difficulties in

parameterising their model, the authors adopt a purely qualitative approach, investi-

gating how general functional shapes affect the steady-state pH levels. In a subsequent

paper [122], the authors extend this work to examine the effect of pH on the secretion

and activity of two classes of proteinases known to promote invasion through extracellular

matrix degradation.

Casciari et al. [19] is one of few experimentally validated models of cellular nutrient

dynamics. Their model considers the interaction of tumour cells with oxygen a, glucose b,

lactate ions c, carbon dioxide d, bicarbonate ions e, chloride ions f , hydrogen ions g and

sodium ions h. The work provides a model of tumour cell glucose metabolism, which is

used to determine metabolite profiles within the tumour. It goes on to incorporate these
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profiles in a model of tumour growth; however, we shall focus on the early part of the

paper here.

The oxygen and glucose consumption rates were based on previous experimental work [20];

Pa = −ρc

(
Aa +

Ba

CbCm
g

)( Ca

Ca + kma

)
, (3.12)

Pb = −ρc

(
Ab +

Bb

Ca

)( 1

Cn
g

)( Cb

Cb + kmb

)
, (3.13)

where Pi denotes the net production rate of metabolite i, Ci its extracellular concentration

and ρc is the number of cells per unit volume. Note that the functional forms for these

rates arise from empirical considerations, rather than biochemistry. Assuming the forms

of Eqs. (3.12) and (3.13) to be correct, the authors measured changes in EMT6/Ro breast

carcinoma oxygen and glucose consumption with varying levels of oxygen, glucose and pH

to find the parameters therein. These parameter values may be found in Table 3.1.

A schematic representation of the simple model of glucose metabolism proposed by Cas-

ciari et al. is given in Fig. 3.5. The authors make a number of reasonable assumptions,

in particular that the intracellular and extracellular concentrations of carbon dioxide are

equal, and that lactic acid fully disassociates into lactate and hydrogen ions in the extra-

cellular space. They also appear to assume that the chloride/bicarbonate antiport plays

a negligible role, though this is not mentioned explicitly. Then, through stoichiometric

analysis (conservation of reactants) and the assumption of no net current flow, production

rates Pc, . . . , Ph are obtained for the remaining metabolites.

Pc = −(2Pb − Pa/3), (3.14)

Pd = −kfCd + krCeCg, (3.15)

Pe = kfCd − krCeCg − Pa, (3.16)
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Parameter Value Units Reference

ρc 2.01× 108 cell/cm3 [19]

Aa 7.16× 10−17 mol/cell · s [20]

Ba 2.02× 10−21 mol ·mM1.921/cell · s [20]

m 0.921 1 [20]

kma 4.64× 10−3 mM [20]

Ab 1.93× 10−21 mol ·mM2.21/cell · s [20]

Bb 1.94× 10−23 mol ·mM2.21/cell · s [20]

n 1.21 1 [20]

kmb 4× 10−2 mM [77]

kf 5.88× 10−2 1/s [8]

kr 74.5 1/s [8]

Cao 5× 10−2 mM [8]

Cbo 2.09 mM [8]

Cco 1.90 mM [8]

Cdo 1.78 mM [8]

Ceo 25.1 mM [8]

Cgo 5.62× 10−5 mM [8]

Cho 1.38× 102 mM [8]

Table 3.1: Parameter values used in Casciari et al. [19] model.
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Figure 3.5: A model of oxygen, glucose and pH regulation, waste product
transport and buffering for a tumour cell and its surroundings.
Adapted from [20].

Pf = 0, (3.17)

Pg = kfCd − krCeCg − Pa + Pc, (3.18)

where kf and kd are the forward and reverse rates, respectively, of dissociation of carbon

dioxide into bicarbonate.

Normal extracellular metabolite concentrations Cio (except for chloride, i = f) are given

in Table 3.1. The chloride level is then calculated by the assumption of zero net charge at

each point. Using these concentrations as base values, typical solutions to the metabolic
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model are given in Fig. 3.6. The consumption/production rates Πi are given by normalis-

ing the rates Pi by their base values (Pa = −1.46×10−2 mM/s, Pb = −6.35×10−2 mM/s,

Pg = 0.122 mM/s). In (a) we see that as the oxygen level increases, oxygen uptake (Πa)

follows typical Michaelis-Menten kinetics, increasing to a steady-state. Contrastingly, as

oxygen increases, glucose uptake (Πb) and hydrogen ion production (Πg) fall, due to re-

duced reliance on glycolysis as a means of energy production (the Pasteur effect [95]).

However, this effect is severely reduced compared to normal cells; in well-oxygenated

conditions, normal tissue relies only on aerobic respiration to produce energy, so by con-

servation of reactants Pb/Pa ≈ 1/6. For EMT6/Ro cells, however, Pb/Pa ≈ 4 – a 24-fold

increase in glucose uptake. In (b), we see that glucose consumption also follows Michaelis-

Menten kinetics. The figure also shows that as glucose concentration increases, oxygen

consumption decreases, a property of tumour cells known as the Crabtree effect [23]. No-

tice that, as Cb drops below 7 × 10−2 mM, we see an unexpected sharp rise in hydrogen

ion production. This is due to an inconsistency in the model – for very low glucose lev-

els, Pb/Pa < 1/6, and there is insufficient glucose consumed to react with the amount of

oxygen consumed by the cell.

This model of cellular respiration is then used to answer quantitative questions about the

expected pH inside tumours. This aspect of the work is not reproduced here. We do note,

however, that one of the major problems with the paper is not specifying many of the

parameter values used.

Notwithstanding the problems outlined above, Casciari et al. is one of very few

experimentally-grounded models of cellular metabolism, focusing on the metabolic dy-

namics of tumour growth. Of particular interest would be construction and analysis of
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Figure 3.6: (From Eqs. (3.12)–(3.18).) Changes in oxygen consumption (Πa),
glucose consumption (Πb) and hydrogen ion production (Πg) as
predicted by the Casciari at al. [19] model. (a) The Pasteur
effect – glucose consumption falls as oxygen levels rise. (b) The
Crabtree effect – oxygen consumption falls as glucose levels rise.
Note that the model is invalid for very low glucose levels (Cb <
7× 10−2 mM). Parameter values are as in Table 3.1.
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a similar, experimentally-grounded model of normal cellular metabolism, to investigate

which parameter changes are necessary to produce the constitutive upregulation of gly-

colysis commonly seen in tumours. This point is discussed further in Section 8.2.1.

3.5 Ramanujan et al. (2000)

Mathematical modelling of angiogenesis has received much attention over the past two

decades (see [79] for a recent review). Many of these models (e.g. [6]) have focused on the

dynamics of blood vessel sprouting and branching; whilst these models produce vascular

structures that qualitatively resemble those seen in vivo, it is difficult to quantitatively

compare the results with experimental data and hence verify the models.

One of the few simple, continuous models of angiogenesis was put forward by Ramanujan

et al. [100]. Noting that solid tumours produce both stimulators and inhibitors of angio-

genesis, they propose that many of the properties of tumour vasculature, including a lack

of blood vessels in the central tumour region, may be explained by the intrinsic differences

in the physicochemical properties of these regulators. Whilst the authors stumble during

the mathematical analysis of their model, their hypothesis is still of interest. For this

reason, we reanalyse their modelling framework below.

The tumour is modelled as a sphere of radius R, residing in a medium of host tissue.

These different tissues produce multiple angiogenic regulators that work in concert to

stimulate or inhibit angiogenesis. Let c denote the concentration of such an angiogenic

factor, and for simplicity suppose that its rate of production or activation is constant.

Suppose further that its rate of deactivation or degradation follows first-order kinetics.
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Then, assuming the angiogenic factor is at equilibrium, we find

De∇2c− kec+ ge = 0, (3.19)

where De is the diffusion rate (assumed constant), ke the degradation rate and ge the

production rate. The subscript e represents environment (tumour (t) or host (h) tissue)

– the factor may diffuse, degrade and be produced at different rates in the tumour and

host tissue.

At this point the paper provides an incorrect solution to Eq. (3.19), which we rectify here.

Let c∞ = limr→∞ c(r) denote the concentration of the factor in tumour-free, host tissue,

which we assume to be non-zero. Then, in non-dimensional form, Eq. (3.19) becomes

∇2
ηθ − κ2

t θ + γ = 0 0 < η ≤ 1,

∇2
ηθ − κ2

h(θ − 1) = 0 1 ≤ η, (3.20)

where

η =
r

R
, θ =

c

c∞
, κt = R

√
kt

Dt

, κh = R

√
kh

Dh

, γ =
gtR

2

c∞Dt

. (3.21)

Assuming that θ and its derivative are continuous at η = 1, Eq. (3.20) has solution

θ(η) =


Aη−1 sinh(κtη) + γ/κ2

t 0 < η ≤ 1,

Bη−1e−khη + 1 1 ≤ η.

(3.22)

where

A =
(κ2

t − γ)(1 + κh)

κ2
t (κh sinhκt + κt coshκt)

, B =
eκh(κ2

t − γ)(sinhκt − κt coshκt)

κ2
t (κh sinhκt + κt coshκt)

. (3.23)

Consider now the interaction between two angiogenic factors, one pro-angiogenic θ+ and

one anti-angiogenic θ−. The ratio θ+/θ− represents the local balance between these
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factors, and thus the local angiogenic tendency. The key point is that their limit,

(θ+/θ−) |∞= 1, defines the reference condition for stable vascularisation expected in

tumour-free host tissue. Whenever θ+/θ− > 1, angiogenesis is stimulated; elsewhere,

angiogenesis is suppressed. Through this, we can circumvent the difficulty in assigning

effectiveness parameters to the factors.

It remains to define the six dimensionless parameters κ±t , γ± and κ±h . Parameter esti-

mates are based on those given in Ramanujan et al., but it should be noted with caution

that, in that paper, the dimensionless values do not tally with the corresponding dimen-

sional estimates given. Typical concentration profiles for the angiogenesis stimulators

and inhibitors are presented in Fig. 3.7 (a). In (b), we see that central regions of the

tumour experience an anti-angiogenic effect (θ+ < θ−). Ultimately, this area will become

under-perfused leading, in turn, to central necrosis. Towards the tumour periphery, this

behaviour reverses (θ+ > θ−), with stimulation of angiogenesis continuing well into the

host tissue. Thus angiogenic factors produced in the tumour will directly influence the

adjacent host tissue.

The parameter values within the model are difficult to quantify and, moreover, are likely

to vary widely amongst tumour types. Hence, in Fig. 3.8 we examine how parameter

changes affect system dynamics. Angiogenesis stimulation within the tumour may be

classified as (a) full suppression of angiogenesis (corresponding to dormancy); (b) full

stimulation of angiogenesis (progression); or (c) central suppression of angiogenesis (as in

Fig. 3.7). In Fig. 3.8 (a) and (b) we see that central suppression requires a careful balance

between the parameters, or one factor will dominate within the tumour. By contrast,

Fig. 3.8 (c) demonstrates that small changes in κ+
h or κ−h are insufficient to induce full
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Figure 3.7: (From Eq. (3.22).) (a) Normalised concentration profiles for an-
giogenesis promoters (θ+) and inhibitors (θ−) in tumour (η ≤ 1)
and surrounding host (η ≥ 1) tissue. (b) Concentration ratio pro-
file with a crossover from net angiogenesis inhibition to stimula-
tion at η = 0.68. Parameter values used are κ+

t = 5.4, κ−t = 4.1,
γ+ = 170, γ− = 110, κ+

h = 5.6 and κ−h = 5.4.
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Figure 3.8: The effects of changing (a) degradation rate in tumour tissue
κt, (b) production rate γ and (c) degradation rate in host tis-
sue κh on the extent of angiogenesis stimulation. The tumour
may experience • full suppression, ◦ central suppression, or • full
angiogenesis. Base parameter values used are as in Fig. 3.7.
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stimulation of angiogenesis in the system.

Whilst slightly flawed, the paper by Ramanujan et al. provides a novel approach to the-

oretical angiogenesis modelling.

3.6 Summary

Mathematical approaches to the study of tumour development have a long history, dating

back to the early work of diffusion in tissues [57, 72, 113]. The majority of mathematical

models have appeared in the literature since 1990, though many of these have extended

the basic frameworks developed by investigators such as Greenspan in previous decades.

The astonishing variety of theoretical approaches used attests to the complexity of the bi-

ological and physiological processes underlying tumour development. It has become clear

that gaps in our understanding of these processes may only be filled through continued

close collaborations between theoreticians and experimentalists. In this way, the pathway

from model hypothesis and parameterisation to testing of model predictions will become

more structured and rigorous.

In this chapter, we have reviewed a small selection of diverse models. Each of the models

presented here has been chosen for its simplistic nature; whilst such simple models can-

not hope to fully capture the diverse behaviour observed in tumour development, they

benefit from relying on a relatively small parameter space. In contrast to more detailed

approaches, most of the parameters are readily obtained from the literature.

The models presented and implemented here may also be considered as distinct ‘modules’,

each describing a different aspect of tumour growth. These well-parameterised models may
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then be brought together to produce a more detailed model, describing multiple factors.

For example, it is simple to imagine modifying Greenspan’s tumour growth framework to

include Gatenby and Gawlinski’s acid-mediated invasion. A more realistic (non-constant)

acid production rate could then be included through incorporating a model of tumour

metabolism, such as that described in Casciari et al. Finally, the model could be modified

to include vasculature for nutrient supply and waste removal. This vasculature could

adapt to the balance of pro-angiogenic and anti-angiogenic factors as in Ramanujan et al.

We shall address some of these approaches in the forthcoming chapters.



Chapter 4

Metabolic changes during

carcinogenesis

4.1 Introduction

The phenotypic traits of malignant cancers arise as a result of environmental selection

pressures during carcinogenesis [10]. Hence it is important to understand the physical

environment of early pre-malignant lesions. Carcinomas in situ are often characterised

as highly vascularised. This is misleading, however, as whilst they may have a vascular

stroma (external connective tissue), the tumour cells are actually physically separated

from their blood supply by a thin basement membrane until this membrane is breached

by an invasive cell. Therefore, carcinogenesis and the development of the malignant

phenotype actually occur in an avascular environment, whereby substrates must diffuse

across the basement membrane and through layers of tumour cells to be metabolised.

This anatomy places consistent and significant boundary conditions on the biology of

carcinogenesis.

60
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A model for the key cell–environment interactions that we propose occur during carcino-

genesis is shown in Fig. 4.1. This model, first proposed by Gatenby and Gillies [45], was

discussed in Section 2.4, but we reiterate the main points here. Initial proliferation in

premalignant lesions carries cells into the lumen, away from the basement membrane,

and, therefore, away from their blood supply. This steadily increases the distance that

substrate must diffuse between the vessels and the intraluminal tumour cells and results in

regions of hypoxia but near normal glucose concentrations. This initiates an evolutionary

sequence consisting of adaptation to hypoxia by upregulation of glycolysis, acidification of

the environment due to anaerobic respiration of glucose, and then cellular adaptation to

acid-induced cellular toxicity. The phenotype that emerges from this sequence has a pow-

erful adaptive advantage because it creates an environment (due to increased glycolysis)

that is toxic to its competitors but relatively harmless to itself. This adaptive advantage

may be sufficient to allow unconstrained proliferation and, thus, be a critical component

in the transition from a premalignant tumour to an invasive cancer.

In vivo experimental verification of the hypothesis that the final stages of carcinogenesis

are driven by cellular adaptation to hypoxia and acidosis is difficult, as measurement of

the evolutionary pressures acting on cells is not possible. To test the feasibility of the

theoretical model of Gatenby and Gillies, we frame the hypothesis using mathematical

methods that examine somatic evolution of premalignant cells within the constraints of

ductal anatomy. This allows us to test the proposed sequence of environmental changes

and cellular adaptations in silico. We use evolutionary models of carcinogenesis that

explicitly include spatial parameters to accommodate the geometry of early tumour de-

velopment, requiring the application of a hybrid cellular automaton approach [5, 92]. The

key advantage of this technique is that it allows cells to be treated as discrete individ-
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achieved through multiple mechanisms, including
oncogene activation or stabilization of transcription
factors such as HIF1α.

Angiogenesis
We suggest that the glycolytic phenotype evolves in a
microenvironment that is avascular; that is, the evolv-
ing tumour cells remain physically separated from
their blood supply by a basement membrane, as
occurs in in situ tumours. This invokes the diffusion
of substrates from the vascularized stroma to the pro-
liferating tumour epithelium. Therefore, even though
late-stage carcinoma in situ can be characterized as
‘angiogenic’, the tumour does not become vascular-
ized until the basement membrane is breached by an
invasive cell. In fact, there is emerging evidence that
the ‘glycolytic switch’ occurs before the ‘angiogenic
switch’; lactic acid has been observed in regions of
invasive gliomas76,77 that lack vessel permeability, as
shown by the absence of contrast enhancement with
MRI78. We do not wish to indicate that angiogenesis
does not have a role in this process. In fact, it is likely
that angiogenic factors, such as VEGF, are produced
by the tumour and that this will promote increased
vascularity within the stroma (FIG. 6). However, these
new vessels remain physically separated from the
tumour cells by the basement membrane (see figure 2

Multiple cellular pathways might lead to the gly-
colytic phenotype, so that altered glucose metabolism
might even result in cells with normal HIF levels. For
example, upregulation of glycolytic enzymes can be
coordinated in response to oxidation–reduction
changes by the Sp1 transcription-factor complex68.
GLUT1 can be upregulated directly by MYC13,69 or indi-
rectly by KRAS70. Interestingly, in this latter study,
KRAS activation was only associated with a subset of
GLUT1-positive colon cancers, indicating that it is one
of several mechanisms to activate glycolysis in this sys-
tem. RAS activation of GLUT1 transcription seems to
be mediated through HIF1α transactivation71.
Hexokinase II can be transcriptionally activated by
mutant p53 (REF. 72) or through demethylation of its
promoter73. It is also intriguing to note that transfection
of fibroblasts with H+-ATPase or Na+–H+ exchange
raises the intracellular pH, makes them tumorigenic
and leads to marked increases in glycolysis74,75. These
alternative systems for upregulating glycolysis are con-
sistent with our basic proposal that the mechanism of
induction is not as important as the induction itself.
That is, the glycolytic phenotype is not a secondary
phenomenon that results from induction of some
other pathway during carcinogenesis. Rather, it is
directly selected because it provides a growth advantage
and acquisition of the glycolytic phenotype might be
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Figure 6 | Model for cell–environment interactions in carcinogenesis. Early carcinogenesis proceeds from normal tissues
through initiation to a hyperplastic state to interstitial neoplasia, progressing to carcinoma in situ. Until this stage, epithelial cancers are
avascular, as shown by histopathology (FIG. 5). Following breakdown of the basement membrane, cells gain access to existing and
newly formed blood and lymphatic vascular routes for metastasis. The stages of tumour growth and their associated physiological
states are diagrammed, showing that progression from one stage to the next is governed by state processes. Normal epithelial cells
(grey) become hyperproliferative (pink) following induction. As they reach the oxygen diffusion limit, they become hypoxic (blue), which
can either lead to cell death (apoptotic cells shown with blebbing) or adaptation of a glycolytic phenotype (green), which allows cells to
survive. As a consequence of glycolysis, lesions become acidotic, which selects for motile cells (yellow) that eventually breach the
basement membrane. As cancer progression proceeds, the mutations in cells increase (nuclei shown as light orange for one mutation
and darker oranges for more mutations). HIF1α, hypoxia-inducible factor-1α; VEGF, vascular endothelial growth factor.

Figure 4.1: Model for cell-environment interactions during carcinogenesis,
giving the stages of tumour growth and their associated phys-
iological states. Shown are normal epithelial (grey), hyperplas-
tic (pink), hypoxic (blue), glycolytic (green) and motile (yellow)
cells. Reproduced with permission from Nature Reviews Cancer
[45] c© 2004 Macmillan Magazines Ltd.

http://www.nature.com/reviews
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uals, enabling cellular processes such as proliferation, death, adaptation and metabolite

consumption/production to be modelled at the individual cell level. However, the automa-

ton is described as hybrid because the metabolite distributions, specifically the oxygen,

glucose and H+ concentrations, are allowed to form a continuous field across the cells.

4.2 Model development

A hybrid cellular automaton model is used to simulate carcinogenesis. This two-

dimensional model is composed of an M ×N array of automaton elements with a specific

rule-set governing their evolution, as well as oxygen, glucose and H+ fields, each satisfying

reaction-diffusion equations. A two-dimensional automaton is used as we focus on growth

away from the basement membrane, rather than along the duct. Each automaton ele-

ment corresponds to either a cell or a vacant space. Tumour cell diameter can be highly

variable, ranging from 10 to 100µm [85], depending on the specific tumour type under

consideration. Here we assume each automaton element, and hence each tumour cell, has

constant physical size ∆×∆, where ∆ = 25µm.

In the model we reflect the avascular geometry of premalignant epithelia by assuming

that one edge of the array represents the basement membrane. The array (i, j) is labelled

so that i = 0 corresponds to the basement membrane. Beyond this membrane we assume

the stroma is sufficiently well-vascularised that the metabolites remain at their normal

extracellular concentrations.

To investigate the hypothesis presented in Fig. 4.1, we consider the selective pressures

placed on a number of different possible tumour phenotypes. Initially, the automaton
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consists of a layer of a normal epithelial tissue. We assume it to be a simple epithelium

i.e. the cells grow in a monolayer along the basement membrane. Then the initial array

consists of normal cells at (1, j) and is vacant elsewhere. As well as proliferation and death,

we assume that these cells may randomly undergo three possible heritable changes, either

through mutations or epigenetic changes such as alterations in the methylation patterns

of promoters. The cells may become:

• hyperplastic, allowing growth away from the basement membrane;

• glycolytic, increasing their rate of glucose uptake and utilisation;

• acid-resistant, requiring a lower extracellular pH to induce toxicity.

These three changes give rise to eight different phenotype combinations, and thus eight

competing cellular populations. The timescales for induction of the three heritable changes

during carcinogenesis will give insight as to their relative importance.

The model development is set out in three sections below. In the first section, we create a

model of cellular glucose and oxygen consumption, and ATP and hydrogen ion production.

This model of metabolism is then used in the second section to determine the extracellular

glucose, oxygen and hydrogen ion profiles for a given cellular distribution. Finally, in the

third section, we define the rules that govern automaton evolution at each generation in

response to local metabolite levels.
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4.2.1 Cellular metabolism

We first define a simple model of cellular glucose metabolism. Under normal physiological

conditions, human cells rely on aerobic respiration to produce their energy. Each glucose

molecule reacts with six oxygen molecules to produce carbon dioxide and ATP. This

reaction may be caricatured by

glucose + 6 O2 −→ 6 CO2 + nA ATP, (4.1)

where nA denotes the number of ATP molecules produced during complete oxidation of

glucose. Here we assume nA = 36, though this value may vary slightly depending on the

specific cell type under consideration.

During periods of hypoxia, cells revert to the less efficient anaerobic metabolism, produc-

ing two molecules of lactic acid per glucose molecule

glucose −→ 2 lactic acid + 2 ATP. (4.2)

Suppose the cell consumes glucose and oxygen at rates ΦG and ΦC respectively, and that

all of the consumed glucose and oxygen is used to generate ATP under the two processes

outlined above. This is a reasonable assumption, as the primary role of cellular glucose and

oxygen is to generate energy via ATP. Now, from Eq. (4.1), we are assuming ΦG ≥ ΦC/6.

If this condition is satisfied, we may calculate the rates of ATP production ΦA and lactic

acid production ΦL from Eqs. (4.1) and (4.2)

ΦA =
nAΦC

6
+ 2

(
ΦG −

ΦC

6

)
, (4.3)

ΦL = 2
(
ΦG −

ΦC

6

)
. (4.4)
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The lactic acid produced by the cell partially disassociates into H+ and lactate. These

H+ ions lower the pH of the extracellular space, inducing cellular toxicity. The rate of

cellular H+ production ΦH is taken to be proportional to the rate of lactic acid production,

ΦH = kHΦL, for some kH < 1. We return to discuss this assumption of simple, linear

dynamics at the end of Section 4.2. Note that the aerobic pathway also contributes to

cellular acid production through hydration of CO2. However, this contribution is small –

for each mole of ATP synthesised, anaerobic metabolism produces one mole of lactic acid,

whilst aerobic metabolism produces only 1/6 mole of CO2. As such we ignore this term,

considering only the acid production in excess of the normal rate.

It remains to define the rates of cellular glucose and oxygen consumption ΦG and ΦC

respectively. Whilst complex empirical functional forms for these rates are available [20],

here we assume that the rates follow simpler first-order dynamics

ΦG =


kNG in a normal cell,

kTG in a glycolytic cell,

(4.5)

ΦC = kCC, (4.6)

where G and C denote the extracellular concentrations of glucose and oxygen respectively,

and kT > kN . Note that we assume that tumour cells do not significantly alter their rate of

oxygen consumption during carcinogenesis, consistent with experimental observations [99].

We non-dimensionalise Eqs. (4.3) – (4.6) to reduce the size of the parameter space. Let

GX and CX denote the normal extracellular concentrations of glucose and oxygen, and

suppose that under normal conditions, normal cells rely on aerobic respiration alone to
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produce energy. Then kCCX = 6kNGX and

φg =


g in a normal cell,

kg in a glycolytic cell,

(4.7)

φc = c, (4.8)

φa = c+ n(φg − c), (4.9)

φh = φg − c, (4.10)

subject to the condition φg ≥ c, where

g =
G

GX

, c =
C

CX

, φg =
ΦG

kNGX

, φc =
ΦC

kCCX

,

φa =
ΦA

nAkNGX

, φh =
ΦH

2kHkNGX

, n =
2

nA

, k =
kT

kN

. (4.11)

The non-dimensionalised model of cellular respiration relies on two parameters: n = 1/18

and k. Given ranges 10−6 s−1 < kN < 5 × 10−4 s−1 and 10−5 s−1 < kT < 10−3 s−1 [63]

for the rates of glucose consumption by normal and tumour cells respectively, we assume

1 < k < 103, i.e. that glycolytic cells may increase their glucose consumption by up to

three orders of magnitude.

During the first stage of carcinogenesis, the dominant growth constraints involve cellular

interactions with the extracellular matrix and other cells. Once these social constraints

have been overcome, the dominant growth constraint becomes limited substrate availabil-

ity, and thus increased ATP production confers a competitive advantage. From Eqs. (4.7)

– (4.10), we see that within our model, glycolytic cells always produce more ATP than

their normal counterparts. However, this ATP is produced very inefficiently (in terms

of glucose uptake) and the benefits of their transformed metabolism are only seen when

oxygen supply is low. As a quantitative example, consider the case k = 10. The model pre-

dicts that, under normoxic (c = 1) and normoglycaemic (g = 1) conditions, normal cells
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produce ATP at rate 1 non-dimensional unit, whilst their glycolytic counterparts produce

ATP at rate 1.5; despite the tenfold increase in glucose uptake, under normal conditions

glycolytic cells have only a small proliferative advantage. However, under anoxic (c = 0)

and normoglycaemic conditions normal cells produce ATP at a rate approximately equal

to 0.06, whilst glycolytic cells produce ATP at a rate approximately equal to 0.6. Thus we

see that glycolytic cells are much better suited to adapt to periods of low oxygen supply.

Differences between the two cell types are also seen in H+ production. Normal cells only

rely on glycolysis, thus producing acid, when oxygen supply is low. However, glycolytic

cells produce H+ at a high rate, and thus acidify the extracellular space, irrespective of

the oxygen levels. Continuing with the example k = 10 above, under normoxic conditions

normal cells produce H+ at rate 0, whilst under anoxic conditions they are produced at

rate 1. In contrast, the glycolytic cells produce H+ at rates 9 and 10 under normoxic and

anoxic conditions respectively.

4.2.2 Metabolite profiles

Having defined a model of cellular respiration, we are now in a position to determine the

metabolite distributions around the cells. After each automaton generation, the known

rates of metabolite consumption and production for each cell are used to calculate the

corresponding metabolite profiles. Consider first the extracellular concentration of glu-

cose, G. Note that the glucose diffusion time-scale (∼minutes) is much shorter than the

cellular proliferation timescale (∼days), and thus we may assume that G is in diffusive

equilibrium at all times. Then we have

DG∇2G− ΦG = 0, (4.12)
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where DG is the (assumed constant) glucose diffusion coefficient. We non-dimensionalise

Eq. (4.12), taking cell diameter as our length scale. Using Eq. (4.11),

d2
g∇2

ξ g − φg = 0, (4.13)

where ξ = x/∆ and dg =
√
DG/kN∆2. Given DG = 5 × 10−6 cm2 s−1 [54] and taking

kN = 5× 10−5 s−1, we find dg = 1.3× 102. In a spatially homogeneous system of normal

cells, dg log 2 ≈ 90 represents the number of cells away from the basement membrane at

which the glucose concentration drops to half its normal level. In a system of glycolytic

cells, where glucose is consumed at a higher rate, this distance falls to dg log 2/
√
k.

Eq. (4.13) is solved using a finite-difference approximation on the square grid

gi+1,j + gi−1,j + gi,j+1 + gi,j−1 − (4 + δi,j)gi,j = 0, (4.14)

where gi,j refers to the glucose level of the i-jth automaton element and δi,j depends on

the element’s occupancy

δi,j =


0 in a vacant cell,

1/d2
g in a normal cell,

k/d2
g in a glycolytic cell.

(4.15)

As boundary conditions, we assume that the glucose level is fixed at its normal level

g = 1 at the basement membrane (as the stroma is well-vascularised), zero flux at the

edge furthest from the membrane (as there are no sources or sinks of glucose beyond

this point), and periodic boundary conditions at the other two edges. Periodic boundary

conditions are used as the cross-sectional view of a duct is approximately circular, and

hence the edges of our array will adjoin. Using the notation of Eq. (4.14), the boundary

conditions may be written as

g0,j = 1, gM+1,j = gM,j ∀j = 1, . . . , N,
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gi,0 = gi,N , gi,N+1 = gi,1 ∀i = 1, . . . ,M. (4.16)

Eq. (4.14) holds ∀i = 1, . . . ,M and ∀j = 1, . . . , N and is thus representative of a system

of M × N linear algebraic equations in the unknowns gi,j. The equilibrium glucose field

g = (gi,j) may then be found through simple matrix inversion.

The oxygen distribution around the tumour is found using the same method. In non-

dimensional form we have

d2
c ∇2

ξ c− φc = 0, (4.17)

where dc =
√
DC/kC∆2 and DC is the oxygen diffusion coefficient. Given kC = 9.41 ×

10−2 s−1 [20] and DC = 1.46 × 10−5 cm2 s−1 [90], we find dc = 5 � dg. In stark contrast

to glucose, oxygen supply is very limited due to its small diffusion to consumption ratio,

with areas of hypoxia developing within a few cells of the basement membrane. Note

that, in order for the model to be well-defined, from Eq. (4.10) we require φg ≥ c at each

cell, for which it is sufficient that g ≥ c everywhere. This holds if k ≤ d2
g/d

2
c ≈ 700 and

as such we restrict our attention here to the parameter range 1 < k ≤ 500.

The equilibrium oxygen field c is found from Eq. (4.17) using the same technique as

for glucose. Having determined the glucose and oxygen fields, we know their rates of

consumption, φg and φc, for each individual cell. Then, from (4.10), we may calculate

the rate of cellular H+ production, φh. Unlike glucose and oxygen, H+ ions do not follow

simple (Fickian) diffusion, as this would lead to charge separation. Rather, they diffuse

in association with mobile buffering species such as bicarbonate, phosphate, or amino

acids [104]. However, their movement may be approximated by simple diffusion, with

appropriate modification of the diffusion coefficient. Thus the H+ distribution, h, is
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defined by

∇2
ξ h+ φh = 0, (4.18)

where h = (H −HX)/H0 and H0 = 2kHkNGX∆2/DH . Here the variable H denotes the

extracellular concentration of H+, HX ≡ pH 7.25 the normal level and DH the effective

H+ diffusion coefficient. This specific non-dimensionalisation is chosen to remove all pa-

rameters from (4.18). Given parameter values DH = 1.08×10−5 cm2 s−1 and a maximum

tumour acid production rate of 10−4 mM s−1 [92], and assuming this is equivalent to our

maximum non-dimensionalised rate of φh = 500, we may estimate H0 = 1.1× 10−7 mM.

Eq. (4.18) is solved as before using a finite-difference approximation, with the difference

in this case that h = 0 is the normal level at the basement membrane.

4.2.3 Cell dynamics

We now proceed to investigate how the carcinoma evolves in response to the associated

distributions of glucose, oxygen and H+ within the tissue. Initially, the automaton is

composed of normal cells forming a monolayer along the basement membrane. After each

generation, the resultant glucose, oxygen and H+ fields are calculated using the methods

outlined above. Each cell in the automaton is then updated (in a random order) according

to the local metabolite levels. Cells may proliferate, adapt or die, and cells with different

phenotypic patterns respond to the microenvironmental pressures in different ways. As

such, competition is incorporated into the model: for a new population to progress and

grow, it must successfully compete for space and resources with existing populations.

Through randomly updating the automaton, and defining cellular death and division as
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stochastic processes (see Eqs. (4.19) and (4.20)), we go a long way to addressing the

problems associated with synchronicity in cellular automata [126].

The rules governing the evolution of the automaton elements are as follows:

1. An element that is empty does not evolve directly. It may evolve indirectly when

cell division takes place in a neighbouring cell.

2. If the amount of ATP produced by a cell φa falls below a critical threshold value,

a0, it dies, and the element becomes empty. As such, a0 represents the level of

ATP required for normal cellular maintenance. We do not allow hypoxia to directly

induce cellular death within our model. Rather, hypoxia indirectly causes cell death

through a reduction in ATP production. As mentioned previously, cells displaying

the glycolytic phenotype produce significantly more ATP than their normal coun-

terparts during periods of hypoxia, thus they are less susceptible to cell death via

this mechanism. We assume a0 = 0.1, corresponding to normal cell death occurring

when oxygen levels drop below c = 0.05 [5].

3. The local H+ level may also induce cellular death, with probability pdea. We define

this probability by

pdea =


h/hN in a normal cell, if h < hN ,

h/hT in an acid-resistant cell, if h < hT ,

1 otherwise.

(4.19)

where hN < hT . Thus the probability of cell death increases with acidity, and

the cell will always die if the H+ level is greater than hN or hT , dependent on the

cell type under consideration. These values are taken to be hN = 9.3 × 102 and
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hT = 8.6 × 103 for normal and acid-resistant cells respectively, corresponding to

threshold values of pH 6.8 and pH 6 [92].

4. If the cell is not attached to the basement membrane, and is not hyperplastic, it

dies.

5. If the cell does not die through any of the mechanisms above, it either attempts to

divide, with probability pdiv, or becomes quiescent. The probability of division is a

function of the cellular ATP production

pdiv =


(φa − a0)/(1− a0) a0 < φa < 1,

1 φa ≥ 1.

(4.20)

Hence we assume that the probability of division is proportional to the ATP gen-

erated that is not needed for maintenance, and that the cell will always attempt to

divide if the production rate is more than its normal level of 1. If the cell attempts

to divide, we determine whether cell division occurs by sampling its neighbouring

elements. If there is one empty space, then the cell divides, and the new cell occu-

pies this empty space. If there is more than one empty space, the new cell goes to

the element with the largest oxygen concentration (following [2]).

6. If a cell divides, each of the two daughter cells has probability pa of randomly

acquiring one of the three heritable characteristics (hyperplasia, glycolysis and acid-

resistance). In order to avoid bias in the model, we assume these changes are

reversible. For example, a cell displaying constitutive up-regulation of glycolysis

may revert to normal glucose metabolism; if this metabolism is most appropriate

for the current microenvironmental conditions, the cell will successfully compete for
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resources with its neighbours. We choose pa = 10−3 as a base value, to reflect the

fact that heritable change is a relatively rare occurrence.

It remains to define the dimensions of the automaton M and N . We take N = 50,

corresponding to a typical ductal carcinoma of radius 200 µm. However, we leave M

undefined, allowing it to dynamically increase as the carcinoma grows. Essentially the

final value taken by M will represent the maximum distance from the basement membrane

the cells may survive, given the limited nutrient supply and acid removal.

Throughout this model derivation, we have assumed that various processes follow sim-

ple, linear dynamics (Eqs. (4.5), (4.6), (4.19) and (4.20)). It can be argued that these

assumptions are too unrealistic to represent complex biological phenomena such as these.

However, these processes are poorly understood and, as a first approximation, an as-

sumption of linearity is sufficient to capture qualitatively similar monotonic behaviour.

We would not expect these assumptions to have a marked effect on the model’s conclu-

sions. Moreover, the relative simplicity of the model means that the parameter space is

kept to a manageable size.

4.3 Results

We now apply the procedures outlined in the previous section. The simulations involved

systematically varying the glycolytic rate k, tumour cell acidity threshold hT and adapta-

tion rate pa whilst keeping other parameters constant. Multiple repetitions of the evolution

of the system for each (k, hT , pa) triple were performed to obtain adequate statistics.
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Fig. 4.2 shows the temporal evolution of a typical cellular automaton (k = 10, hT =

8.6× 103, pa = 10−3), and may be compared to the model described in Fig. 4.1. Initially,

normal epithelial cells (grey) line the basement membrane (Fig. 4.2 (a)). Acquisition

of the hyperplastic phenotype (pink) allows growth away from the membrane towards

the oxygen diffusion limit (Fig. 4.2 (b)). Beyond this point, cells cannot exist as the

oxygen levels are insufficient to meet cellular ATP demands. This drives adaptation to

a glycolytic phenotype (green), less reliant on oxygen for ATP production (Fig. 4.2 (c)).

The increased ATP levels within glycolytic cells give a competitive advantage over the

existing population, thus glycolytic cells dominate the system. Note, however, that the

total number of cells within the system has decreased; the increased reliance on glycolysis

has resulted in higher levels of acidity, in turn inducing cell death. Further adaptation

occurs to an acid-resistant phenotype (Fig. 4.2 (d)). Increased use of glycolysis allows

growth well beyond the oxygen diffusion limit, whilst the cells are more resistant to the

resulting acidosis.

Fig. 4.3 shows how metabolite levels vary across the lesion at this final stage of develop-

ment. Here we see growth approximately thirty cells deep from the basement membrane.

Oxygen levels drop to c = 0.02, in comparison to their normal level of 1. In contrast,

glucose levels fall to g = 0.9; despite the tenfold increase in consumption rate, the ex-

tracellular glucose levels are only slightly reduced. This is an important point – over the

length scale of carcinogenesis, glucose supply is not a limiting factor. Rather, the cells

furthest from the basement membrane are kept at equilibrium through a modest reduc-

tion in ATP production (φa = 0.5) accompanying cellular death through a large increase

in H+ levels (h = 2× 103). In contrast to the theoretical model presented in Fig. 4.1, we

find that the most likely mechanism for necrosis of cells furthest from the basement mem-
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(a) (b)

(c) (d)

Figure 4.2: The temporal evolution of a typical cellular automaton (k = 10,
hT = 8.6 × 103, pa = 10−3) after (a) t = 0, (b) t = 100, (c)
t = 250 and (d) t = 300 generations. Shown are normal epithelial
(grey), hyperplastic (pink), hyperplastic–glycolytic (green) and
hyperplastic–glycolytic–acid-resistant (yellow) cells. Cells with
other phenotypic patterns are shown as black.

brane is acid-induced toxicity, rather than glucose deprivation. In turn, this enhances the

argument that acid-induced cellular toxicity is a major evolutionary force in the hypoxic

regions of premalignant tumours. The inhibitory effect conferred by acidosis increases

with distance from the basement membrane, inducing heterogeneities that may be seen

in Fig. 4.2 (b)–(d).

In Fig. 4.4 the proportion of cells displaying each heritable change is shown for the au-

tomaton displayed in Fig. 4.2. The three stages of growth from normal cells acquiring,

in turn, hyperplastic, glycolytic and acid-resistant phenotypes can be clearly seen. The

steepness of the hyperplastic and acid-resistant curves suggests that these changes are ex-

tremely beneficial to the underlying population. The glycolytic curve is shallower as the

benefits of increased ATP production are counteracted by acidosis. The order in which
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Figure 4.3: Variation in metabolite concentrations with distance from the
basement membrane for the automaton generation displayed in
Fig. 4.2 (d). Shown are the mean glucose (g), oxygen (c) and
H+ (h) concentrations. The H+ profile has been scaled by its
maximum value (h ≈ 2× 103).
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changes are accumulated is random; however, for a new phenotype to successfully compete

with an existing population for resources it must be better suited to respond to existing

microenvironmental factors. It is interesting to note that throughout the simulations

performed here, the heritable changes within the dominant population are accumulated

in this same order. Within our model, the underlying environmental selection parame-

ters drive the cells to always follow this adaptive pathway – escaping in turn from the

constraints of limited proliferation (hyperplasia), substrate availability (glycolysis) and

waste removal (acid-resistance). The same order of progression occurs despite allowing

phenotypic reversibility within our model. This is an important conceptual advance as it

means mutations are not a necessary mechanism for phenotypic variation within tumour

tissue; rather the model demonstrates that reversible, epigenetic changes are sufficient to

drive global change.

In order to examine the effects of parameter changes on system dynamics, we define a

measure of the ‘fitness’ of a specific parameter set. Let ‘invasive’ be used to describe

cells displaying all three heritable changes and, for a particular automaton, let T denote

the number of generations after which 95% of the cells in the system display the invasive

phenotype. Thus T is representative of the amount of time taken for full carcinogenesis

to occur. Now let the development rate R = T−1, where we take R = 0 if T ≥ 5000

(equivalent to approximately 20 years). Automata with a higher value of R proceed more

quickly through the carcinogenesis pathway.

In Fig. 4.5 we see how the development rate R varies with changes in (a) glycolytic rate

k, (b) acid-resistance hT and (c) adaptation rate pa. Using default parameters of k = 10,

hT = 8.6× 103 and pa = 10−3, the three graphs show the effects of changing one of these
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Figure 4.4: Accumulation of heritable changes over time for the automaton
displayed in Fig. 4.2. Shown are the proportion of cells displaying
the hyperplastic, glycolytic and acid-resistant phenotypes.
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parameters whilst keeping the other two fixed at their default value. Each data point is

the mean value of R calculated over fifty simulations, whilst the accompanying error bars

show the standard errors of these means.

Fig. 4.5 (a) shows a sharp transition from slow development to rapid development as the

glycolytic rate k is increased through a critical threshold value of k ≈ 3. This transition

occurs when the increase in ATP production and extracellular acidity, due to upregulation

of glycolysis, is sufficient to give the invasive cell population a significant advantage over

their untransformed counterparts. A similar bifurcation has been seen in other models

looking at the role of acidity in tumour growth, whereby a transition from benign to

malignant growth is seen when the cellular acid production rate increases through a

critical point [41, 46, 92, 107]. Increasing k beyond 20 results in a slow monotonic

decrease in the development rate. For such large values of k, acid accumulates to a degree

unfavourable even to the resistant invasive cells, inducing auto-toxicity.

In Fig. 4.5 (b) we see that initially the development rate increases sharply with increasing

acid-resistance, reaching a plateau at hT ≈ 2 × 103. For large hT , we find the benefits

of increasing acid-resistance are counteracted by clumps of acid-resistant non-glycolytic

cells developing near the basement membrane, withstanding the progression of the invasive

phenotype. In the microenvironment near the membrane, the non-glycolytic cells produce

sufficient ATP and are extremely resistant to extracellular acidity; thus their invasive,

glycolytic counterparts have only a small competitive advantage.

Finally, Fig. 4.5 (c) shows that, as with the glycolytic rate k, there is a value of adaptation

rate pa at which the development rate is optimal. Increasing the adaptation rate increases

the diversity of the system. This leads to an increased chance of acquiring the invasive
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Figure 4.5: Variation in the development rate R with (a) glycolytic rate k, (b)
acid-resistance hT and (c) adaptation rate pa. Default parameter
values used are k = 10, hT = 8.6 × 103 and pa = 10−3. Note
that k, hT and pa are plotted on a log-scale. Each data point
is the mean value of R calculated over fifty simulations, whilst
the accompanying error bars show the standard errors of these
means.
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phenotype, whilst reducing the dominance of the main population in the system. This

balance resolves itself with the maximum development rate occurring at pa ≈ 10−2.

4.4 Variable adaptation rates

RNA viruses are known to mutate at very high rates. The evolutionary success of RNA

viruses is due to their enormous plasticity and adaptability to changing environments.

This high mutation rate generates a highly heterogeneous population, known as molecular

quasispecies. The quasispecies structure provides an extraordinary reservoir of variants

with potentially useful phenotypes in the face of environmental change. As predicted

by Eigen and Schuster’s theory of quasispecies [31, 105], a critical mutation rate known

as the ‘error catastrophe’ exists beyond which the genomic information is lost i.e. no

Darwinian selection operates. Ribavirin, a common antiviral drug, exploits this property

therapeutically; by its mutagenic action it drives poliovirus into an error catastrophe of

replication, thereby turning a productive infection into an abortive one [25].

One hallmark of cancer cells is their underlying genetic instability – a term used to describe

the occurrence of both small genetic changes such as nucleotide deletions or insertions, or

larger changes such as alterations in the number of chromosomes (aneuploidy). Tumour

progression benefits from genetic instability by generating cellular diversity, allowing the

cells to overcome selection barriers.

Given the similarities in the quasispecies structure of cancer and RNA virus populations,

we would expect a similar error catastrophe threshold to exist beyond which cancer cells

cannot survive. Returning to Fig. 4.5 (c), we see this is indeed the case; as the adaptation
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rate pa increases beyond a critical value (pa ≈ 10−2) the fitness of the cells quickly drops

to zero. This analysis suggests that cancers close to this threshold value will be highly

susceptible to therapies directed at further increasing their mutation rate.

To investigate how adaptation rates vary during carcinogenesis, we extend the model

presented in Sections 4.2–4.3 to allow this rate pa to change dynamically. Specifically, we

add a further automaton rule as follows:

7. When a cell with adaptation rate pa divides, each of its two daughter cells has new

adaptation rate p′a, where

p′a ∼ U
(
(1− σ)pa, (1 + σ)pa

)
(4.21)

is drawn from a uniform distribution on the interval
(
(1−σ)pa, (1+σ)pa

)
, for some

σ ∈ [0, 1]. Note that σ = 0 implies p′a = pa, and the analysis reduces to that given

in the previous section.

There are two points of note about this choice of definition for p′a. Firstly, p′a > 0,

as adaptation rates cannot be negative. Secondly, the daughter cell’s mean adaptation

rate E(p′a) = pa is the same as that of the parent. As such, we introduce no bias into

the system; rather, the underlying evolutionary pressures will drive changes in systemic

adaptation.

The results of this extended model are presented in Fig. 4.6, showing how the adaptation

rate changes during carcinogenesis over fifty simulations. Initially, each cell in the simple

epithelium has adaptation rate p̄a, where we choose p̄a = 10−4, an order of magnitude

less than the base value taken in the previous section. Cellular adaptation then varies
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Figure 4.6: Variation in the mean adaptation rate pa with time during car-
cinogenesis. The graph shows the average rates over fifty sim-
ulations, with time scaled so that generation 0 corresponds to
the first appearance of the invasive phenotype. Parameter values
used are p̄a = 10−4, σ = 0.25, k = 10 and hT = 8.6× 103.

according to Eq. (4.21). We choose σ = 0.25, so that pa may change by up to 25% at each

cellular division. Generation numbers are shifted in the figure so that time 0 corresponds

to the first appearance of the invasive phenotype (hyperplastic–glycolytic–acid-resistant).

Following the appearance of the invasive phenotype, its clone cells quickly populate the

lesion (see Fig. 4.2). As this cell is first to display the phenotype, it is likely to have a

higher adaptation rate than its competitors. Thus, at time 0 we see a very sharp rise in

the average systemic adaptation rate. Once the majority of cells within the system are of

the invasive phenotype, evolutionary pressures will act against cells that adapt into other,

less fit, phenotypes. As such, approximately 50 generations after the appearance of the
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invasive phenotype, pressures act to reduce the adaptation rate in the system.

In summary, the model predicts that during early carcinogenesis, evolutionary pressures

act to favour cells with high adaptation rates. Later in the process, once cells have reached

the peak of the fitness landscape, the model predicts that these pressures will act to favour

cells with smaller adaptation rates.

4.5 Discussion

In this chapter we address the evolutionary dynamics in carcinogenesis that promote

aerobic glycolysis in the malignant phenotype and examine the potential role of abnormal

glucose metabolism in formation of invasive cancers.

Carcinogenesis is a complex multi-step process governed by the interactions of heritable

phenotypic variations with continuously changing environmental selection forces. The

dynamics of carcinogenesis are often summarised as somatic evolution because they appear

to be formally analogous to Darwinian selection in nature. Thus defined, the common

appearance of a specific phenotype within different cancer populations must be the result

of environmental selection and, therefore, must confer a significant growth advantage.

Since the pioneering work of Warburg [119] nearly a century ago, experimental observa-

tions have consistently demonstrated that cancer cells, unlike their normal counterparts,

utilise anaerobic pathways to metabolise glucose even in the presence of oxygen. The

clinical importance of this phenotypic trait is suggested by FDG-PET imaging, which

demonstrates a several-fold increased glucose uptake in the vast majority of human pri-

mary and metastatic cancers. However, in the context of the evolutionary model of
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carcinogenesis, the competitive advantage of altered glucose metabolism is not immedi-

ately clear since it represents a highly inefficient means of energy production and results

in significant acidosis of the tumour microenvironment.

The work presented here uses a hybrid cellular automaton approach to examine the role

of the microenvironment in mediating the somatic evolution of cancer cells. Utilising

the fact that epithelial tumours evolve on mucosal surfaces separated from their blood

supply by the intact basement membrane, we extend previous evolutionary modelling of

carcinogenesis to explicitly include spatial parameters that accommodate these boundary

conditions. This new modelling approach allows quantification of regional variations in

the microenvironment in premalignant lesions.

We examine the hypothesis that upregulation of glycolysis represents an adaptation to

hypoxia in premalignant lesions that develops as tumour cells grow into the lumen of

the duct and away from their blood supply. This new phenotype, in turn, produces

environmental acidosis which promotes additional adaptation to prevent acid-induced

cell death. The phenotype that emerges from this sequence has a substantial proliferative

advantage because it creates an environment that is toxic to its competitor but not to

itself. The invasive phenotype permits penetration through the basement membrane and

formation of a primary carcinoma.

Our results confirm the hypothesis that hypoxia and anoxia will be common in prema-

lignant lesions such as DCIS or advanced colon polyps. In fact, we demonstrate that

even early hyperplastic lesions will contain areas of hypoxia once tumour growth carries

cells to more than a few cell layers beyond the basement membrane. Similarly, our re-

sults confirm that regional development of hypoxia will promote upregulation of anaerobic
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metabolism of glucose and subsequent development of extracellular acidosis. Finally, we

find the acidic pHX that develops from this sequence will, in some regions, result in cellular

toxicity and therefore become a significant environmental selection factor that promotes

resistant phenotypes.

Clearly, confirmation of the modelling results by direct measurement of regional varia-

tions in oxygen, glucose and H+ concentrations in premalignant lesions will be difficult.

However, our results are likely to be realistic since the work is based on well established

biological application of reaction–diffusion models where the values of critical parameters

are known. In fact, the potential for development of hypoxia within tissue was demon-

strated mathematically by Krogh nearly 100 years ago [72]. The presence of hypoxia

in tumour cells more than 100 to 150 microns from a blood vessel has been demon-

strated experimentally by many investigators since the pioneering work by Thomlinson

and Gray [29, 113]. Finally, experimental measurement of perivascular oxygen and pHX

gradients that both qualitatively and quantitatively resemble our modelling results have

been reported by Helmlinger et al. [56].

The results also demonstrate possible pathways in somatic evolution that may result

as cellular populations acquire new, fitter phenotypes in response to local proliferative

constraints caused by variations in microenvironmental properties. This allows explicit

predictions regarding regional variations in phenotype in both premalignant lesions such

as DCIS and early invasive cancers. This predicted phenotypic variability should be

experimentally verifiable and we are encouraged that published studies [127] have shown

evidence of adaptation to hypoxia through increased expression of carbonic anhydrase IX

in DCIS cells that are nearest the lumen (i.e. most distant from the basement membrane
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– see Fig. 2.7 (a)).

Finally, the results suggest that tumour prevention strategies aimed at interrupting the

hypoxia–glycolysis–acidosis cycle and the resulting cellular adaptations will delay or pre-

vent transition from in situ to invasive cancer. For example, our results suggest that

drugs that block the function of the Na+/H+ antiport (such as amiloride) would likely

inhibit the adoption of constitutive upregulation of aerobic glycolysis.

In summary, the model supports the hypothesis that regional variations in oxygen, glu-

cose and H+ levels drive the final stages of somatic evolution during carcinogenesis. We

propose that the phenotypic adaptations to the sequence of hypoxia–glycolysis–acidosis

are necessary to form an invasive cancer. For this reason, interruption will likely delay or

prevent transition from in situ to invasive cancer.



Chapter 5

Acidity in tumour growth and invasion

5.1 Introduction

In Section 2.4 we saw that tumour cells generally display increased anaerobic respira-

tion, known as the glycolytic phenotype. This metabolic regime is more than an order of

magnitude less efficient than its aerobic counterpart. Moreover, glycolysis produces lactic

acid, causing an acidification of the extracellular space that is potentially toxic. Despite

its sub-optimality, the presence of aerobic glycolysis in such a wide range of cancer pop-

ulations is evidence that it must confer a significant growth advantage during somatic

evolution.

Recall that tumour cells are relatively resistant to extracellular acidity due to increased

Na+/H+ antiport activity and mutations in acid-induced apoptosis pathways. As dis-

cussed in Section 3.3, Gatenby and coworkers propose that tumour cells’ increased acid

secretion, coupled with their resistance to low extracellular pH, provides a simple but

complete mechanism for cancer invasion. Their models show that the H+ ions produced

by tumour cells diffuse along concentration gradients into normal tissue, inducing normal

89
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cell death. The tumour edge forms a travelling wave progressing into normal tissue, pre-

ceded by another travelling wave of increased microenvironmental acidity. Significantly,

their model predicts an acellular gap separating the tumour and host tissue fronts, a

prediction observed in subsequent experiments.

One major flaw in both the partial differential equation [41, 42] and cellular automaton [92]

models of acid-mediated invasion is their inability to capture physiologically realistic be-

nign growth patterns (see Fig. 3.3 (b) and the discussion in Section 3.3). In this chapter

we overcome this problem, through reformulating the acid-mediated invasion hypothe-

sis within the framework devised by Greenspan [51]. Modelling this hypothesis on the

macroscopic scale allows us to investigate the general tissue dynamics in both vascular

and avascular tumour growth. In particular, for tumour cells displaying the glycolytic

phenotype, we determine the critical parameters that cause the change, within our mod-

elling framework, from a benign to invasive growth pattern. This in turn suggests new

therapeutic regimes for counteracting this invasive growth.

5.2 Model development

Following previous models, we assume that the tumour acts as an incompressible fluid. As

such, local changes in the cell population, caused by the birth or death of cells, give rise to

internal pressure gradients that induce cellular motion and the expansion or contraction of

the tumour colony. This expansive force is counterbalanced by cell-cell adhesion forces at

the tumour periphery that maintain the tumour as a compact mass. Subsequent tumour

growth is determined by the interaction between these expansive and restraining forces.
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We model the tumour as a sphere and assume that spherical symmetry prevails at all

times. Whilst this assumption is valid for early tumour and MCS growth, during later

development tumours often become asymmetric. Moreover, it has been suggested that

some measure of the irregularity of the tumour boundary may provide clinicians with

useful prognostic information [24]. However, under the assumption of spherical symmetry,

the model remains analytically tractable and allows us to perform analysis of the general

tissue dynamics in response to acid production. Having established the validity of our

assumptions, the basic model may then be reworked using a more physiologically accurate

description of the tissue, for example employing finite element or cellular automaton

approaches.

A schematic cross-sectional view of a tumour and its surrounding normal tissue is given

in Fig. 5.1. Let RM denote the tumour (malignant tissue) radius and RD the radius of

the necrotic core (dead tissue). We assume that RD < R < RM is a viable region where

the proliferating tumour cells exist in a spatially homogeneous state at their carrying

capacity KM . We further assume R < RD is a necrotic region, containing no viable cells,

and that the necrotic debris continually disintegrates into simpler compounds that are

freely permeable through cell membranes. The cell volume lost in this way is replaced by

cells pushed inward through adhesion or surface tension. Note that, at this point, we are

neglecting the effects of quiescent (non-proliferating) tumour tissue. We return to this in

Section 5.3 and Chapter 6.
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Tumour
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Figure 5.1: Schematic cross-section of a tumour and its surrounding tissue
showing the central necrotic core, R < RD, the layer of prolifer-
ating tumour cells RD < R < RM , the acellular gap separating
normal and tumour cell fronts RM < R < RN , and the normal
cells RN < R.
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5.2.1 Acid profile

We consider first the distribution of acid generated by the tumour. Let H denote the

extracellular concentration of excess hydrogen ions. Here excess means above the normal

level of 10−7.25 M = pH 7.25. It is assumed that there is a sharp acid threshold concen-

tration HM above which tumour cells cannot survive. Similarly, normal cells die when

this concentration H rises above HN . We assume HN � HM to represent the relative

resistance of tumour cells to extracellular acidity. As such, metabolically-produced acid

can act both as a promoter or inhibitor of tumour growth. Diffusing into the normal

tissue, the acid causes normal cell death which in turn allows the tumour to expand.

Conversely, if acid is not removed from within the tumour sufficiently quickly, tumour

cell death will occur. The interplay between these two mechanisms forms the heart of the

model described below.

We assume that the evolution of H can be described by a reaction-diffusion equation

∂H

∂t
= FH +DH∇2H (5.1)

where DH is the (assumed constant) acid diffusion coefficient and FH represents the

combined rate of acid production and removal from the system.

Acid is produced by tumour cells as a result of their increased reliance on glycolysis and

we assume that this occurs at a constant rate rH per unit volume. The primary mode for

removal of acid from the system is through blood vessels and we assume that this occurs

at a rate rV proportional to the local acid concentration. Note that the acid diffusion

timescale (∼minutes) is much shorter than the tumour growth timescale (∼ days). Hence,

as the tumour grows, the acid quickly redistributes and reaches equilibrium. Following
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previous work, we assume that H is in diffusive equilibrium at all times and set ∂H/∂t = 0

in the acid reaction–diffusion equation. Under these assumptions, and noting spherical

symmetry, Eq. (5.1) becomes

0 = rHM − rV V H +
DH

R2

d

dR
(R2dH

dR
) (5.2)

where M denotes the viable tumour cell density and V the vascular density.

We consider separately the acid profiles generated by vascular and avascular tumours. In

the avascular case, we define V = 0 for R < RM and V = VN elsewhere, i.e. there is no

vasculature within the tumour and the vasculature exists homogeneously at its normal

level outside the tumour. Note we also assume that the acellular gap RM < R < RN

contains no tumour or normal tissue, but does remain vascularised. This is because

endothelial tissue is extremely resistant to acid-induced toxicity [92]. Taking tumour cell

density M to be constant (KM) within the viable region RD < R < RM , and further

taking p =
√
rV VN/DH and H0 = rHKM/rV VN , we may non-dimensionalise Eq. (5.2)

with r = pR and h = H/H0 to obtain

r2h′′ + 2rh′ =


0 0 < r < rD

−r2 rD < r < rM

r2h rM < r

(5.3)

where the primes denote the derivative with respect to r.

Previous models of tumour growth have made the assumption that the nutrients and

other factors determining tumour growth are constant outside the tumour tissue, i.e. for

any growth factor g, g(r) = g∞ for r > rM . In the case of acid, however, this would

be inconsistent with the data of Martin and Jain [80]. Reporting in vivo extracellular

pH profiles for VX2 rabbit carcinoma, they demonstrate a smooth pH gradient extending
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from the tumour edge into the peritumoural normal tissue. Instead, we assume here that

limr→∞ h(r) = 0, i.e. that there is no excess acidity a long distance from the tumour. As-

suming further that h and its derivative are continuous at rD and rM , and that limr→0 h(r)

is finite, Eq. (5.3) has solution

ha(r) =


k1 0 < r < rD

k2 − k3
1
r
− 1

6
r2 rD < r < rM

k4
1
r
e−r rM < r

(5.4)

where the constants ki are given by

k1 =
2r3

D + 3r2
M + r3

M

6(rM + 1)
− r2

D

2

k2 =
2r3

D + 3r2
M + r3

M

6(rM + 1)

k3 =
r3
D

3

k4 =
erM (r3

M − r3
D)

3(rM + 1)
. (5.5)

Returning to Eq. (5.2), we also calculate the predicted acid profile for a vascularised

tumour. In this case we define V = 0 for r < rD and V = VN elsewhere, i.e. the

vasculature exists in a spatially homogeneous state at its normal level throughout the

tumour cell population. For simplicity, we neglect the poor efficiency (‘leakiness’) and

heterogeneities generally found in tumour vasculature, considering only the extreme case

where the tumour is fully vascularised. Moreover, we assume there is no vasculature

within the necrotic core. Non-dimensionalising as before, we find

r2h′′ + 2rh′ =


0 0 < r < rD

r2(h− 1) rD < r < rM

r2h rM < r

(5.6)
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with solution

hv(r) =


k1 0 < r < rD

1− k2
1
r
e−r − k3

1
r
er rD < r < rM

k4
1
r
e−r rM < r

(5.7)

where

k1 = 1− erD−rM (rM + 1)

rD + 1

k2 =
e2rD−rM (rD − 1)(rM + 1)

2(rD + 1)

k3 =
e−rM (rM + 1)

2

k4 =
erM (rM + 1)

2
− e2rD−rM (rD − 1)(rM + 1)

2(rD + 1)
. (5.8)

An example of this predicted vascular acid profile with a comparison against the predicted

avascular profile can be seen in Fig. 5.2, with rD = 1 and rM = 1.5. Given experimentally

determined parameter estimates of p = 0.47 mm−1 and H0 = 1.0 × 10−5 M ≡ pH 5.0

[41, 80], this corresponds to a tumour of radius RM ≈ 3 mm, with necrotic core radius

RD ≈ 2 mm. Notice that the model predicts acidity for an avascular tumour to be higher

than that for a vascular tumour, when both tumours produce acid at the same rate. This

is to be expected given that there is no acid removal within the tumour in the avascular

case. Note, however, that due to an increased reliance on glycolysis, vascular tumours

are often found to be more acidic than their avascular counterparts. In the model, this is

represented by a higher value of H0.
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Figure 5.2: Predicted avascular and vascular acid profiles from Eqs. (5.4) and
(5.7), with rD = 1 and rM = 1.5.
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5.2.2 Necrotic core development

Previous models of tumour growth have assumed tumour necrosis occurs as a result of

insufficient nutrient supply. In this chapter we focus on the effect of acid-mediated tumour

necrosis on the system. Assuming that high acidity is the sole cause of necrosis in the

tumour allows us to calculate the radius of the necrotic core rD in terms of the tumour

outer radius rM .

In the avascular case and in the absence of a necrotic core (i.e. when rD = 0), from

Eq. (5.4) we have

ha(0) =
r2
M(rM + 3)

6(rM + 1)
−→∞ as rM →∞. (5.9)

Thus at some critical value of rM , ha(0) > hM and the cells at the centre of the tumour

will become necrotic. The critical radius r̂M at which the necrotic core develops can be

found by solving ha(0) = hM , with rD = 0

ca(r̂M) = r̂3
M + 3r̂2

M − 6hM r̂M − 6hM = 0 . (5.10)

As an aside, given a cubic equation

f(x) = x3 + a2x
2 + a1x+ a0 = 0, (5.11)

define

P =
3a1 − a2

2

9
,

Q =
9a1a2 − 27a0 − 2a3

2

54
. (5.12)

Then, if the polynomial discriminant D = P 3 + Q2 < 0, all solutions to Eq. (5.11) are

real and unequal, and are given by

xn = 2
√
−P cos (

θ + 2nπ

3
)− a2

3
, (5.13)
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where

θ = arccos (
Q√
−P 3

), (5.14)

for n = 0, 1, 2, where we choose arccos : [−1, 1] → [0, π].

Returning to Eq. (5.10), this cubic has exactly one positive real root r̂M , given by ap-

plication of Eq. (5.13) with n = 0. The correct value of n required here is found simply

through trial and error across the three possibilities. Taking the threshold for tumour

death due to acidity to be hM = 0.1, corresponding to HM ≡ pH 6 [92], we find that

necrosis due to acidity first occurs at r̂M = 0.51 (R̂2 ≈ 1 mm).

If rM > r̂M , then a necrotic core exists, and its radius rD can be found by noting that the

acid concentration at the boundary of the necrotic core will be ha(rD) = hM

2r3
D − 3(rM + 1)r2

D + ca(rM) = 0 . (5.15)

In this case, the root of the cubic satisfying 0 < rD < rM is found from Eq. (5.13), with

n = 2.

From equation (5.15)

lim
rM→∞

(rM − rD) =
√

2hM + 1− 1 (5.16)

and hence

rD

rM

−→ 1, Vol(rD, rM) =
4π

3
(r3

M − r3
D) −→∞ as rM →∞. (5.17)

This means that a large tumour will be mostly comprised of the necrotic core, with

the layer of viable cells limited to a thin region at the tumour edge, consistent with

experimental results. Nonetheless, the total number of viable cells will continue to increase

as the tumour grows.
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Turning now to the vascular case, in the absence of a necrotic core we have, from Eq. (5.7)

hv(0) = 1− e−rM (rM + 1) −→ 1 as rM →∞ (5.18)

and hence we see two distinct patterns of growth, depending on the sign of hM − 1. If

hM ≥ 1, hv(0) < hM for any value of rM ; the tumour vasculature removes the excess

acid sufficiently quickly to avoid tumour cell death and no necrotic core will develop. If,

however, hM < 1, at some value of rM , hv(0) ≥ hM and a necrotic core will develop.

This critical radius r̂M can be found by solving hv(0) = hM , with rD = 0, leading to the

equation

cv(r̂M) = e−r̂M (r̂M + 1) + (hM − 1) = 0 , (5.19)

with solutions

r̂M = −1−W (
hM − 1

e
). (5.20)

Here W denotes the multivalued Lambert W (or product log) function – the inverse

function of f(W ) = WeW . Note that for −1/e ≤ x < 0, there are two possible real values

of W (x), W0(x) ≥ −1 and W−1(x) ≤ −1 [22]. As r̂M ≥ 0, for hM < 1 we can define

r̂M = −1−W−1(
hM − 1

e
) . (5.21)

Further, for hM < 1 and rM greater than this critical radius, we find rD by solving

hv(rD) = hM

erD−rM (rM + 1) + (hM − 1)(rD + 1) = 0 (5.22)

with solution

rD = −1−W−1(
e−(rM+1)(rM + 1)

hM − 1
) . (5.23)

From Eq. (5.22), we find

lim
rM→∞

(rM − rD) = − log(1− hM) (5.24)
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and hence as in the avascular case, Eq. (5.17) holds.

5.2.3 Tumour growth

We consider now the growth dynamics of the tumour, whilst neglecting for now the role

of normal tissue on the system. As such, we analyse the inhibitory effects of acidity on

tumour growth, whilst neglecting the invasive dynamics arising through the destruction

of normal tissue. The rate at which a tumour grows may be dependent on a large number

of factors, such as nutrient supply, cellular density or internal pressure gradients. Here

we make the simplifying assumption that the rate of change of tumour volume is entirely

dependent on the tumour radius and the radius of the necrotic core

d

dt
(Vol) = F (RD, RM) (5.25)

for some mitosis function F . It should be noted, however, that the necrotic radius RD

is defined by the acid profile around the tumour (H(RD) = HM), and hence the growth

function is implicitly dependent on a range of factors, such as vascular density.

Greenspan [51] makes the assumption that the necrotic cellular debris continually dis-

integrates into simpler chemical compounds at a rate proportional to the core volume.

These compounds flow into the surrounding tissue and the cell volume lost in this way is

replaced by cells pushed inward through surface tension forces. Moreover, the assumption

is made that the rate of cellular proliferation is constant per unit volume in the viable

region. Under these assumptions, Eq. (5.25) becomes

dR3
M

dt
= S(R3

M −R3
D)− LR3

D . (5.26)
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Taking τ = St/3 and r = qR, we may non-dimensionalise the system to obtain

r2
M

drM

dτ
= r3

M − γ3r3
D (5.27)

where γ = 3
√
L/S + 1.

Note that while there is no necrotic core (when rD = 0), the tumour radius will grow

exponentially with

rM(τ) = rM(0)eτ . (5.28)

This corresponds to well-known experimental evidence that the early stages of solid tu-

mour development follow a simple exponential growth pattern [74]. In particular, in the

case of a vascular tumour with hM ≥ 1, the model predicts that a necrotic core will never

develop and thus the tumour will continue to grow exponentially into the surrounding

tissue. For an avascular tumour or a vascular tumour with hM < 1, however, a different

growth pattern is observed. From Eq. (5.17), we know that rD/rM → 1 as rM → ∞.

Assuming that, at time 0, the tumour is small enough that there is no necrotic core (i.e.

rM(0) ≤ r̂M), at some value of rM we will find rD = rM/γ < rM . Then from Eq. (5.27),

drM/dτ = 0, and a benign steady state is reached. In other words, we find that an avas-

cular tumour will always have a benign growth pattern. A vascular tumour will either

have a benign or invasive growth pattern dependent on the value of the critical parameter

hM .

The system is completely defined by Eq. (5.27) and Eq. (5.15) or (5.23), and relies only on

the parameters γ, hM and the initial condition rM(0). Examples of the growth patterns

observed are given in Fig. 5.3. In the avascular case, a two-phase growth pattern is

observed (Fig. 5.3 (a)). Initially, the tumour grows exponentially, without a necrotic core.

At the critical time τ̂ , a necrotic core begins to develop and the second phase of tumour
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growth begins. During this phase, we see very little change in tumour size. However,

the necrotic core grows rapidly towards its equilibrium value. Note that γ represents

the equilibrium rM : rD ratio. The corresponding vascular growth is very similar when

hM < 1 (Fig. 5.3 (b)) and may be contrasted to the invasive growth seen when hM ≥ 1

(Fig. 5.3 (c)). In this final case, as rM becomes large, other limiting factors such as

nutrient supply and immune response will have greater impact on the tumour growth.

The time τ̂ at which we see the onset of necrosis can be found from Eq. (5.28), taking

rM = r̂M

τ̂ = log r̂M − log rM(0) . (5.29)

Using parameters hM = 0.1 and rM(0) = 0.1 (RM(0) ≈ 0.2 mm), we find necrosis occurs

at τ̂ = 1.63 and τ̂ = 1.67 in the avascular and vascular cases respectively. The equilibrium

size r̄M may be found by noting that r̄M = γr̄D. In the avascular case, using Eq. (5.15)

we find

r̄M =
γ

(γ − 1)(γ + 2)

[
− (γ + 1) + 2c1 cos

[1

3
arccos(−c2

c31
)
]]

(5.30)

where

c1 =
√

(γ + 1)2 + 2hMγ(γ + 2) ,

c2 = (γ + 1)3 + 6hM(γ + 2) . (5.31)

For the parameter set used in Fig. 5.3, we find r̄M = 0.75, corresponding to a final radius of

R̄M ≈ 1.6 mm. For the vascular case, we use Eq. (5.22), again setting r̄M = γr̄D. Solving

this numerically, we find r̄M = 0.80 corresponding to R̄M ≈ 1.7 cm. These numbers

demonstrate further the similarity between avascular and vascular growth when hM is

small.
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Figure 5.3: Results from Eqs. (5.15), (5.23)) and (5.27). Predicted (a) avas-
cular and (b) vascular tumour growth with parameters γ = 3/2,
hM = 0.1 and rM (0) = 0.1. (c) Vascular growth with hM = 1.5
and rM (0) = 0.1.
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5.2.4 Normal tissue invasion

We now move on to consider the effects of normal tissue on the system. Let rN denote the

non-dimensionalised distance from the tumour centre to the normal tissue. Assume that

initially the system has rD = 0 and rN = rM i.e. the tumour is small enough that there

is no necrotic core. Normal cells die if h increases above a critical value hN = HN/H0,

where hN � hM .

In the vascular case, from Eq. (5.7)

hv(rM) = (rM cosh rM − sinh rM)
e−rM

rM

(as rD = 0). (5.32)

We assume that the only mechanism by which the tumour may invade the normal tissue

is to acidify the peritumoural space and induce normal tissue death. Hence normal tissue

will recede and the tumour will advance if and only if the acid levels at the tumour

periphery are higher than the threshold for normal cell death i.e. h(rM) > hN . Note that

h is an increasing function of rM , and hence if h(rM(0)) > hN , the tumour will grow

unimpeded as was seen when normal tissue was neglected in the system.

In the avascular case, from Eq. (5.4)

ha(rM) =
r2
M

3(1 + rM)
(as rD = 0). (5.33)

Again the normal tissue will recede if and only if h(rM) > hN . Taking hN = 0.01,

corresponding to HN ≡ pH 6.8 [92], we find that in both the vascular and avascular

cases invasion will occur only if rM ≥ 0.19, equivalent to RM ≈ 0.4 mm.

If h(rM) > hN , then we can calculate rN through solution of the equation h(rN) = hN ,
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Figure 5.4: Results from Eq. (5.34). Recession of normal tissue accom-
panying vascular tumour growth. Parameter values used are
hN = 0.01, γ = 3/2, hM = 0.1 and rM (0) = 0.2.

i.e. k4e
−rN/rN = hN

rN = W0

( k4

hN

)
(5.34)

where here we choose the principal value of the Lambert W-function as k4 > 0 and h > 0.

Fig. 5.4 shows normal tissue receding as the tumour grows. Notice the development of an

acellular gap between the advancing tumour front and receding normal tissue, consistent

with experimental observations [41].

5.3 Acid-induced quiescence

In the previous section, we developed a simple model of three-dimensional tumour growth

to examine the role of acidosis in the interaction between normal and tumour cell popula-

tions. Both vascular and avascular tumour dynamics were investigated, and a number of

different behaviours observed. Whilst an avascular tumour always proceeds to a benign

steady state, a vascular tumour may display either benign or invasive dynamics, depend-
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ing on the value of the critical parameter hM . The model also predicts the development of

an experimentally-observed acellular gap separating the advancing tumour and receding

host tissue fronts. One criticism that may be levelled at the model is the size of the

acellular gap as predicted in Fig. 5.4 – the interfacial gap is predicted to be of a similar

size to the tumour, and larger than the experimentally-determined estimates of 10–100

µm [41] (see Fig. 3.4).

In this section, we extend the previous model through the inclusion of quiescent (non-

proliferating) tumour cells. Within avascular tumours, in particular, the vast majority of

viable cells are quiescent, with active cells restricted to the nutrient-rich outer rim. These

quiescent cells are essentially metabolically-inactive, producing significantly less acid than

their proliferating counterparts. By considering both active and quiescent cells, we give a

more physiologically-accurate description of the acidity in and around the tumour tissue.

The tumour is again modelled as a sphere; however, we assume here that within the

viable region RD < R < RM , the active proliferating tumour cells are restricted to the

outer rim RQ < R < RM , whilst the region RD < R < RQ contains quiescent cells (see

Fig. 5.8). Returning to Eq. (5.2), we define the acid production rate rH = φQ within the

quiescent region and rH = φA within the active region, where φQ � φA, as quiescent cells

are relatively metabolically inactive.

We focus here on avascular tumour growth (i.e. V = 0 within the tumour), as this case is

more amenable to analysis. As before, taking p =
√
rV VN/DH and H0 = φAKM/rV VN ,
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Figure 5.5: Cross-section of a tumour and its surrounding tissue showing the
central necrotic core, R < RD, a layer of quiescent tumour cells
RD < R < RQ, a layer of proliferating tumour cells RQ < R <
RM , the acellular gap separating normal and tumour cell fronts
RM < R < RN , and the normal cells RN < R.
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we may non-dimensionalise Eq. (5.2) with r = pR and h = H/H0 to obtain

r2h′′ + 2rh′ =



0 0 < r < rD,

−εr2 rD < r < rQ,

−r2 rQ < r < rM ,

r2h rM < r,

(5.35)

where ε = φQ/φA � 1, and the primes denote the derivative with respect to r.

Assuming as before that limr→∞ h(r) = 0 i.e. that there is no excess acidity a long distance

from the tumour, and further that h and its derivative are continuous at rD, rQ and rM ,

Eq. (5.35) has solution

h(r) =



k1 0 < r < rD,

k2 − k3
1
r
− ε1

6
r2 rD < r < rQ,

k4 − k5
1
r
− 1

6
r2 rQ < r < rM ,

k6
1
r
e−r rM < r,

(5.36)

where the constants ki are given by

k1 =
2εr3

D + 2(1− ε)r3
Q + r2

M(rM + 3)

6(rM + 1)
−
εr2

D + (1− ε)r2
Q

2
,

k2 = k1 + ε
r2
D

2
,

k3 = ε
r3
D

3
,

k4 = k1 +
εr2

D + (1− ε)r2
Q

2
,

k5 =
εr3

D + (1− ε)r3
Q

3
,

k6 = erM
−εr3

D − (1− ε)r3
Q + r3

M

3(rM + 1)
. (5.37)

An example of this predicted acid profile can be seen in Fig. 5.6. Following Patel et

al. [92], we take ε = 0.01 – that is, quiescent tumour cells’ rate of acid production is two
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Figure 5.6: Results from Eq. (5.36). Predicted avascular acid profile for the
extended model including quiescent cells. Parameter values used
are rD = 1, rQ = 1.4, rM = 1.5 and ε = 0.01.

orders of magnitude less than their proliferating counterparts. Because of this, the levels

of acidity within the tumour are found to be significantly lower than those predicted by

the basic model (compare Fig. 5.2).

It is known that high levels of acidity can induce quiescence in tumour tissue [20]. As-

suming that acidity is the sole cause of necrosis and quiescence within the tumour allows

us to calculate the radii of the necrotic core, rD, and the quiescent region, rQ, as functions

of the tumour outer radius, rM . As before, we assume there exist sharp acid threshold

concentrations HQ and HD above which tumour cells cannot proliferate and survive re-

spectively. Taking hi = Hi/H0, the case hQ = hD does not allow for any quiescent tumour

cells within the system, and the analysis reduces to that found in the previous section.
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We consider instead here the case hQ < hD.

Continuing as before, while the tumour consists of only active proliferating cells (i.e.

rD = rQ = 0), from Eq. (5.36) we have

h(0) =
r2
M(rM + 3)

6(rM + 1)
−→∞ as rM →∞. (5.38)

Thus at some critical value rM = r̂M , h(0) = hQ, and the cells at the centre of the tumour

will become quiescent. This critical radius is found by solving

c3(r̂M) = r̂3
M + 3r̂2

M − 6hQr̂M − 6hQ = 0. (5.39)

The positive solution r̂M is given by Eq. (5.13), taking n = 0.

If rM > r̂M , then a quiescent region exists, and its radius rQ may be found by noting that

the acid concentration at its boundary will be h(rQ) = hQ

c4(rQ, rM) = 2(1− ε)r3
Q − (3− 2ε)(rM + 1)r2

Q + c3(rM) = 0. (5.40)

The solution in rQ is given by Eq. (5.13), choosing n = 2.

If ε > 0, then we find that acidity will increase at the tumour boundary as it grows.

Eventually all tumour cells will become quiescent, and the radius r̂Q at which this occurs

may be found through solution of Eq. (5.40), with rQ = rM

r̂Q =
3hQ +

√
9h2

Q + 12hQε

2ε
. (5.41)

Consider now the formation of necrosis within the tumour. While rD = 0 and rQ > 0,

from Eq. (5.36) we have

h(0) = h(rQ) + ε
r2
Q

6
= hQ + ε

r2
Q

6
. (5.42)
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Thus setting

h∗ = hQ + ε
r̂2
Q

6
=
hQ(r̂Q + 3)

2
, (5.43)

we see two distinct patterns of growth, dependent on the sign of hD − h∗. If hD > h∗,

then no necrotic core will develop, and the tumour will grow to a state containing only

quiescent cells. If hD < h∗, however, at some critical value rM = r̂D, h(0) = hD and the

cells at the centre of the tumour will become necrotic. From Eq. (5.42), we find that this

occurs when

rQ = r∗ =

√
6(hD − hQ)

ε
. (5.44)

r̂D may then be found by solving c4(r∗, rM) = 0 for rM . This is achieved using Eq. (5.13),

taking n = 0.

If rM > r̂D, then a necrotic core exists and its radius is given by noting that h(rD) = hD

c5(rD, rQ) = 2r3
D − 3rQr

2
D + (r2

Q − r2
∗)rQ = 0. (5.45)

The solution in rD is found using Eq. (5.13), taking n = 2.

Furthermore, we know that h(rQ) = hQ

c6(rD, rQ, rM) = rQc4(rQ, rM)− 2ε(1 + rM − rQ)r3
D = 0. (5.46)

Given rM , we may numerically calculate rQ ∈ (rD, rM) from Eq. (5.46), using the expres-

sion for rD in Eq. (5.45).

The set of equations above allows calculation of the non-dimensional quiescent tissue

radius, rQ, and the necrotic core radius, rD, for any value of outer radius rM . These radii

may then be used to determine tumour growth. As an analogue to Eq. (5.26), we have

dR3
M

dt
= S(R3

M −R3
Q)− LR3

D, (5.47)
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that is, the tumour grows at a rate proportional to the volume of active proliferating cells,

whilst growth is inhibited through constant degradation of the necrotic material. Taking

τ = St/3 and r = pR, we may non-dimensionalise to obtain

r2
M

drM

dτ
= r3

M − r3
Q − γ3r3

D, (5.48)

where γ = 3
√
L/S. Assuming that, at time 0, the tumour is small enough that there is

no necrotic core or quiescent region (i.e. rD = rQ = 0), then the system is completely

defined by Eqs. (5.45), (5.46) and (5.48), relying on parameters ε, γ, hD, hQ and the

initial condition rM(0).

Examples of the growth patterns observed are given in Fig. 5.7. Using parameter estimates

of hD = 0.1, corresponding to pH 6, and hQ = 0.04, corresponding to pH 6.4 [92], hD < h∗

and so we see a three-phase growth. Initially, the tumour grows exponentially, whilst

all cells are proliferative. At the critical radius rM = r̂M , the central tissue becomes

quiescent, restricting the active cells to a thin outer rim (Fig. 5.7 (a)). At a later stage,

when rM = r̂D, we see the development of a necrotic core, followed by convergence of the

tumour to its equilibrium size (Fig. 5.7 (b)). In Fig. 5.7 (c), we increase the tumour’s

susceptibility to acid-induced quiescence, taking hQ = 0.01, equivalent to pH 6.8. In this

case, hD > h∗, and no necrotic core will develop. Rather, it slowly grows to its equilibrium

size rM = r̂Q where all the tumour cells are quiescent.

We move on now to the acid-mediated invasion of normal tissue, and the corresponding

development of an acellular gap separating the advancing tumour and receding host tissue

fronts. Assume as before that there exists a sharp acid threshold concentration HN above

which normal cells die, and let hN = HN/H0. Then the normal tissue front rN is defined

by the relationship h(rN) = hN . In Fig. 5.7 (b), we see that in necrotic growth, the
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Figure 5.7: Results from Eqs. (5.45), (5.46) and (5.48). (a) Early-stage and
(b) late-stage tumour growth with quiescence and necrosis, with
parameters ε = 0.01, γ = 1/2, hD = 0.1, hQ = 0.04 and rM (0) =
0.1. (c) Non-necrotic growth with parameters ε = 0.01, hD = 0.1,
hQ = 0.01 and rM (0) = 0.1.
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layer of proliferating cells forms a very thin layer at the edge of the tumour, hence we

may approximate rM ≈ rQ at equilibrium. In non-necrotic growth (c), there are no

proliferating cells at equilibrium, hence rM = rQ. In both cases, we may assume that

h(rM) = h(rQ) = hQ. Assuming further that r � 0, then, from Eq. (5.36), the interfacial

width ω at equilibrium may be approximated by the simple relationship

ω = rN − rM ≈ log
hQ

hN

. (5.49)

In Fig. 5.8 we compare the interfacial width at equilibrium ω with changes in tumour

quiescence threshold hQ. Eq. (5.49) represents a reasonable approximation to ω, but we

see the assumptions h(rM) = hQ and r � 0 cause a slight overestimation of this gap size.

Most importantly, through comparison of Figs. 5.7 and 5.8, we see that the equilibrium

tumour width is predicted to be approximately ten times as large as the interfacial width.

This is a significantly more physiologically accurate than the basic model (see Fig. 5.4),

where the gap was predicted to be of a similar size to the tumour.

5.4 Discussion

In this chapter we have presented a mathematical study of both vascular and avascular

tumour growth, where the invasion mechanism is the acidification of the microenviron-

ment surrounding the tumour due to increased reliance on glycolysis. Utilising the vast

difference between the timescales of tumour growth and acid movement allows us to treat

the tumour radius as a parameter in terms of which other variables are expressed. In par-

ticular, we determine the equilibrium acid profile and necrotic core radius as a function

of the tumour radius.
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Figure 5.8: Variation in size of acellular gap separating tumour and normal
tissue fronts at equilibrium, with changes in the tumour quies-
cence threshold hQ. The gap width is compared with the simple
approximation in Eq. (5.49). Parameter values used are ε = 0.01,
γ = 1/2, hD = 0.1 and hN = 0.01. The dotted line represents
the crossover from non-necrotic to necrotic growth.
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The analysis of the basic model in Section 5.2 predicts three regimes of tumour growth.

If the rate of acid removal from the tumour is insufficient, we see exponential growth

followed by auto-toxicity, resulting in a benign tumour. This is found always to occur in

an avascular tumour, and it may also occur in a vascular tumour if the critical parameter

hM < 1. Conversely, if hM ≥ 1, a vascular tumour displays sustained growth, and

invades the whole of the normal tissue space. In both of these cases, the advancing

tumour front is separated from the receding normal tissue by an acellular gap. Finally,

if the tumour is sufficiently small, we see no growth as the microenvironmental acid

perturbations are insufficient to induce normal cell death. Note, however, that for tumours

of this size, inhomogeneities have more effect on the system and thus stochastic or cellular

automaton [5, 92] approaches may be more applicable than the mean-field type approach

used here.

Within the model, three dominant factors determine tumour growth: acid production,

acid removal due to tumoural and peritumoural vascularity, and cellular sensitivity to

acid. In general, tumour growth is enhanced through increasing acid production to induce

toxicity in the adjacent normal tissue. However, in order to display sustained growth, the

tumour must limit excess acid accumulation to avoid auto-toxicity. This balance may

resolve itself in several ways. Tumour growth could be limited by cellular sensitivity:

that is, the dominant populations within the tumour may retain significant sensitivity

to acid-induced apoptosis. As such, tumour expansion is halted when the intratumoural

pHX is only modestly reduced. Tumour growth could also be limited if the vascularity is

limited: the intratumoural hydrogen ions will accumulate sufficiently to create an acidic

pHX that halts proliferation. In these settings, tumour growth could be rapidly increased

through adoption of the angiogenic phenotype or emergence of new populations with
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additional mutations that render them more resistant to acid-induced apoptosis. Finally,

tumour growth could be limited by acid production: the tumour does not produce enough

acid to create a peritumoural hydrogen ion gradient sufficient to kill the normal cells.

In this case, emergence of phenotypes with higher glycolytic metabolism will result in

invasive growth, consistent with findings that rate of glucose uptake correlates with more

malignant behaviour [73].

The converse of each of the above scenarios suggests possible cancer treatment strate-

gies. In general, the results favour tumour anti-angiogenesis strategies, because decreased

vascular density will reduce acid removal as well as nutrient supply. If the resulting

decrease in pHX exceeds the tolerance of tumour cells to local acidosis, the resulting

apoptosis would halt tumour growth. Mathematically, this is achieved through reducing

hM = HMrV VN/rHKM below the critical value of 1. This parameter may also be reduced

through the novel strategy of manipulating systemic pH. A recent study demonstrated

that patients with metastatic renal cancer benefit from cytoreductive nephrectomy [44].

The authors propose that removal of functioning nephrons produces mild renal failure

that is associated with systemic acidosis. This decrease in the serum pH reduces acid

removal, since diffusion of hydrogen ions from the tumour interstitium into blood vessels

is dependent on the concentration gradient across the vessel wall. The resulting decrease

in intratumoural pHX may again induce tumour auto-toxicity. However, both approaches

above come with a cautionary note. Reduced acid removal will result in an increased

peritumoural pH gradient, thus increasing degradation of normal tissue and thus poten-

tially promoting tumour growth. As such, perhaps the most effective treatment suggested

by the model is to poison the membrane pumps that transport hydrogen ions from the

intracellular to extracellular space within the tumour (through drugs such as amiloride,
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for example). This would increase the tumour cell sensitivity to pHX and furthermore

decrease the peritumoural acid gradient.

The model’s predictions may be compared to experimental results and clinical observa-

tions. The prediction of the presence and range of a pH gradient extending into the

peritumoural normal tissue is consistent with the data of Martin and Jain [80]. We also

demonstrate that whilst acidity correlates with increased tumour invasion [81], brief sys-

temic acidosis may induce widespread tumour apoptosis and regression [65]. The most

verifiable prediction is the development of an appreciable acellular gap separating the ad-

vancing tumour and receding normal tissue edges. Our analysis shows that the existence

of such a gap is dependent only on tumour size and acid production rates and thus should

be apparent in a wide range of cancer types. In a study performed on human head and

neck carcinoma, this acellular gap was observed in 67% of cases [41]. It should be noted,

however, that tumours use a variety of mechanisms to invade normal tissue. As such,

they may create insufficient acid perturbations to induce an acellular gap, but nonethe-

less continue to grow. In these cases, mechanisms additional to tissue acidification must

be considered.

One criticism of the basic model described in Section 5.2 is that the width of the interfacial

acellular gap is predicted to be of a similar size to the tumour, larger than has been

observed experimentally. Within the basic model, we considered two types of tumour

cell – active proliferating cells and necrotic cells. Within avascular tumours in particular,

the vast majority of the viable cells are quiescent, producing significantly less acid than

their proliferating counterparts. In Section 5.3 we extended our modelling framework

to account for these quiescent tumour cells within avascular tumours. Analysis of this
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extended model gives a more physiologically accurate description of the interfacial gap,

predicting that the gap width is an order of magnitude smaller than the tumour radius

at equilibrium.

It is clear that tumour growth is dependent on the complex interactive dynamics of many

different factors, including the supply of nutrients and growth factors and the specific

mutations displayed by the tumour population. This growth is further complicated by

any inhomogeneities found within the tumour. Using simplifying assumptions, we have

shown here that increased tumour acid production alone, almost universally observed in

clinical cancers, is sufficient to explain both benign and invasive growth. As such, acidity

may play a dominant role in tumour progression. Critical parameters in the transition

from premalignant to malignant morphology include acquisition of angiogenesis, increased

glucose utilisation and loss of critical pH-sensitive genes, all observed in human tumours.

Various therapeutic strategies are suggested to inhibit tumour growth. In particular, the

model suggests the counter-intuitive approach of further increasing tumour acidity, in

order to induce auto-toxicity. Experimental results verifying this observation would be of

considerable interest.



Chapter 6

Quiescence as a mechanism for cyclical

acidosis

6.1 Introduction

A key factor in the adoption of aerobic glycolysis by tumour cell populations is their

exposure to an unstable microenvironment, experiencing fluctuations in substrate supply.

For example, normoxic–hypoxic cycles in tumours have been measured to occur with

periodicities of minutes [68], hours [58] and days [47]. From a bioenergetic perspective,

those cells in which aerobic glycolysis is constitutively upregulated will be better placed to

respond to these periods of hypoxia, and thus positively selected by somatic evolutionary

pressures.

Using a magnetic resonance imaging (MRI) technique that is sensitive to oxygen levels,

fluctuations in signal intensity (oxygenation) have been shown to occur with periodic-

ities of both one and twenty cycles per hour [9]. Contrastingly, using microelectrodes,

oxygenation cycles have been measured with periodicities of 1–2 per minute [13]. These

121
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discrepancies may be explained because MRI is relatively insensitive to rapid fluctua-

tions, whilst instabilities in microelectrodes mean this modality is insensitive to slower

changes [45].

Each of the studies mentioned above shows that tumour cells experience considerable

inconsistencies in oxygen delivery. The primary explanation put forward for transient

hypoxia and reoxygenation is fluctuations in the haemodynamics, or blood delivery, of

nearby and distant vessels [45, 67]. Rapid normoxic–hypoxic cycles are thought to occur

due to fluctuations in haematocrit, the concentration of red cells in the blood [28], or

through vasomotion, rhythmic oscillations in vessel diameter [109]. Longer cycles, occur-

ring over days, are likely to be due to vascular remodelling, the active process of altering

the structure and arrangement of blood vessels [67, 91]. Vascular remodelling is driven

by cycles of angiogenesis promoted by hypoxia-induced expression of vascular endothelial

growth factor (VEGF), an induction and survival factor for new blood vessels [47].

In this chapter, we examine an alternative mechanism for the observed substrate fluctu-

ations in tumour tissue, namely cellular quiescence. In Section 5.3, we noted that high

levels of acidity can induce cells to cease proliferation, i.e. become quiescent [20]. Quies-

cent cells are essentially metabolically inactive, producing significantly less acid than their

proliferating counterparts. Thus the level of acidity will decrease, in time allowing cells to

resume proliferation. We demonstrate that this simple negative feedback mechanism may

produce the observed cycles in tumour substrate levels. Whilst our focus is on growth

inhibitors produced by tumour tissue, such as lactic acid, the analysis is equally valid for

growth promoters consumed by tumour tissue, such as oxygen.
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6.2 Model development

Following Chapter 5, we model the tumour as a sphere of radius RM and assume that

spherical symmetry prevails at all times. We consider first the dynamics of acidity in and

around the tumour, though later we shall show that the analysis holds for the dynamics

of other substrates, such as oxygen.

Reiterating the notation of Eq. (4.2), letH denote the extracellular concentration of excess

hydrogen ions, where excess means above its normal level. We assume that there exists a

sharp acidity threshold HQ above which tumour cells cease proliferation [20]. Define the

acid production rate rH = φQ per unit volume for quiescent cells and rH = φA for active

cells, where φQ � φA as quiescent cells are relatively metabolically inactive. The vascular

density is taken to be homogeneously V = VM within the tumour, and V = VN elsewhere.

Extending the work of Chapter 5, we allow for a lag time t0 between extracellular acid

levels changing, and cells mounting the appropriate response of quiescence or proliferation.

Under these assumptions, we have

∂H

∂t
− DH

R2

∂

∂R

(
R2∂H

∂R

)
(6.1)

=


[
(φA − φQ)θ(HQ −H(t− t0)) + φQ

]
KM − rV VMH 0 < R < RM

−rV VNH RM < R,

where KM denotes the tumour cell density, rV the acid removal rate, DH the acid diffusion

coefficient and θ the Heaviside (or unit step) function defined by

θ(x) =


0 x < 0

1 x ≥ 0.

(6.2)
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The bracketed term in the second line of Eq. (6.1) simply represents cells producing acid

at rate φA if H(t− t0) < HQ, and φQ otherwise.

Taking p =
√
rV VN/DH , H0 = φAKM/rV VN and T = (rV VN)−1, we may non-

dimensionalise Eq. (6.1) with r = pR, h = H/H0 and τ = t/T to obtain

hτ − (hrr + 2hr/r) =


(1− ε)θ(hQ − h(τ − τ0)) + ε− ψ2h 0 < r < rM

−h rM < r,

(6.3)

where ε = φQ/φA � 1, τ0 = t0/T , hQ = HQ/H0, ψ =
√
VM/VN and rM = pRM , subject

to continuity of h and hr at r = rM and limr→∞ h(r) = 0.

Whilst within this thesis we focus on describing the dynamics of acid in and around tumour

tissue, Eq. (6.3) can be applied to describe a number of different growth factors. Consider,

for example, the dynamics of oxygen – from this perspective a positive growth factor

consumed by both normal and tumour tissue. Let C denote the extracellular concentration

of oxygen, and suppose that tumour cells cease proliferation when oxygen drops below a

threshold concentration CQ. Let φ̄A, φ̄Q and φ̄N denote the rates of oxygen consumption

by active tumour, quiescent tumour and normal cells respectively. We assume that oxygen

is supplied through blood vessels at a rate r̄V , proportional to the difference between the

extracellular oxygen and serum oxygen concentration CS. Then we find

∂C

∂t
− DC

R2

∂

∂R

(
R2∂C

∂R

)
(6.4)

=


−

(
(φ̄A − φ̄Q)θ(C(t− t0)− CQ) + φ̄Q

)
KM + r̄V VM(CS − C) 0 < R < RM

−φ̄NKN + r̄V VN(CS − C) RM < R,

where DC is the oxygen diffusion coefficient, and KN the normal tissue density. Now



Chapter 6: Quiescence as a mechanism for cyclical acidosis 125

using the transformations h = (CX − C)/C0, r = p̄R and τ = t/T̄ where

CX = CS −
φ̄NKN

r̄V VN

, C0 =
(φ̄A − φ0)KM

r̄V VN

, p̄ =

√
r̄V VN

DC

,

T̄ =
1

r̄V VN

, ε =
φ̄Q − φ0

φ̄A − φ0

, φ0 = φ̄N
KN

KM

ψ2, τ0 =
t0
T̄
,

hQ =
CX − CQ

C0

, ψ =

√
VM

VN

, rM = p̄RM , (6.5)

we may recover Eq. (6.3). Note that this model only makes sense if φ̄A > φ0, or equiv-

alently φ̄AKM/VM > φ̄NKN/VN . If this effective rate of active tumour cell oxygen con-

sumption is smaller than the corresponding normal rate, the tumour will receive sufficient

oxygen supply, and no regions of hypoxia will occur. One minor difference between the two

models is that for acid-induced quiescence we require ε ≥ 0, whilst for hypoxia-induced

quiescence no such restriction is in place.

Through the remainder of this chapter, we shall investigate the delay partial differential

equation (6.3). This analysis will allow us to understand the effects of cellular quiescence

on cyclical acidosis within tumour tissue.

6.2.1 Spatial homogeneity

We first consider the dynamics of Eq. (6.3) in the absence of diffusion. Assuming spatial

homogeneity, within the tumour (r < rM) we have

hτ = (1− ε)θ(hQ − h(τ − τ0)) + ε− ψ2h. (6.6)

To reduce the size of the parameter space, when the vascular density within the tumour

is non-zero (i.e. ψ > 0), we may rescale the variables in Eq. (6.6) to obtain

~τ̄ = (1− ε)θ(~Q − ~(τ̄ − τ̄0)) + ε− ~, (6.7)
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where

~ = ψ2h, ~Q = ψ2hQ, τ̄ = ψ2τ, τ̄0 = ψ2τ0. (6.8)

If there is no lag time, i.e. τ̄0 = 0, then this equation reduces to

~τ̄ = (1− ε)θ(~Q − ~) + ε− ~. (6.9)

Looking for steady state solutions to Eq. (6.9), we see differing behaviours dependent on

the value of ~Q. If ~Q > 1, then the unique steady state is given by ~ = 1, whilst if ~Q < ε

this steady state is given by ~ = ε. However, if ~Q ∈ (ε, 1), Eq. (6.9) has no steady state

solution. Interestingly in this case, ~τ̄ > 0 for ~ < ~Q and ~τ̄ < 0 for ~ > ~Q, and thus ~

globally converges to ~Q, even though it is not strictly a steady state solution.

We move on to consider Eq. (6.7) with a non-zero lag time τ̄0. In determining typical

parameter values, we assume as a base value ψ2 = 1 i.e. waste removal occurs at the same

rate in both normal and tumour tissue. Given experimentally-determined parameter

values of p = 4.7 cm−1, H0 = 10−2 mM and DH = 1.08 × 10−5 cm2 s−1 [41, 80, 92], we

may calculate T = 4.2×103 s, meaning that each time unit is equivalent to approximately

one hour. Following Chapter 5, we take ε = 0.01 � 1, as quiescent cells are essentially

metabolically-inactive, and ~Q = 0.04 ≡ pH 6.4 [92]. A change in cellular metabolism in

response to a change in extracellular acidity is likely to be mediated by gene transcription

and expression. Thus the lag time is likely to be on a similar timescale to that of gene

transcription; as such we take τ̄0 = 0.5, equivalent to a lag of t0 ≈ 30 minutes. Notice

that with this parameter set we find ~Q ∈ (ε, 1), and thus from the analysis above there

is no steady state and we would expect cyclical acidosis to occur.
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For ~Q ∈ (ε, 1), Eq. (6.7) has analytical solution

~ =


1− (1− ~Q)e−τ̄ ~ increasing

ε+ (~Q − ε)e−τ̄ ~ decreasing.

(6.10)

where τ̄ is shifted such that τ̄ = 0 corresponds to ~ = ~Q. The maximum and minimum

acid levels are given, respectively, by substituting τ̄ = τ̄0 above. The cycle time is given

by

τ̄c = log

[(
eτ̄0

1− ε

~Q − ε
− 1

)(
eτ̄0

1− ε

1− ~Q

− 1
)]
. (6.11)

In Fig. 6.1 we present results for the spatially homogeneous model of tumour acidity,

using the typical parameter values above. Cycles of acidosis are indeed observed; the acid

levels vary between their maximum level of ~ ≈ 0.42 ≡ pH 5.4 to their minimum level of

~ ≈ 0.028 ≡ pH 6.5. The cycle time is τ̄ ≈ 3.6, equivalent to four hours.

6.2.2 Temporal homogeneity

Typically, the first step we take when investigating the role of a specific metabolite in

tumour development is to look for temporally-homogeneous solutions to the metabolite

evolution equation. The justification for this is that the timescale of metabolite diffusion

is much less than the timescale of, for example, tumour growth, and hence the metabo-

lite can be assumed to be in diffusive equilibrium. This removes the need for both the

metabolite evolution term ∂h/∂τ and the lag term τ0, and is the same assumption we used

in the previous chapter. However, the astute reader will have noticed that we considered

only avascular (ψ = 0) growth in Section 5.3; the reasons for this will become clear be-

low. Essentially, the previous chapter relied on the fact that acid levels increase towards
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Figure 6.1: Results from Eq. (6.10). Predicted cyclical acidosis for the
spatially-homogeneous model, using typical parameter values
~Q = 0.04, ε = 0.01 and τ̄0 = 0.5 and initial conditions ~(t) = ~Q

for τ̄ ∈ [−τ̄0, 0]. The acid level cycles around ~Q, between its
maximum value of ~ ≈ 0.42 and minimum value of ~ ≈ 0.028.
The cycle time is approximately 3.6 non-dimensional units.
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the centre of the tumour. When considering a vascularised tumour (ψ > 0) containing

quiescent cells, this property does not necessarily hold.

Assuming temporal homogeneity, Eq. (6.3) reduces to

r2h′′ + 2rh′ =


ψ2r2h−

(
(1− ε)θ(hQ − h) + ε

)
r2 0 < r < rM

r2h rM < r,

(6.12)

where the primes denote the derivative with respect to r. To simplify the analysis, when

ψ > 0 we may rescale the variables

~ = ψ2h, ~Q = ψ2hQ, ρ = ψr, ρM = ψrM . (6.13)

We may solve Eq. (6.12) for rM < r; applying continuity of h and its derivative at rM we

find that within the tumour

ρ2~′′ + 2ρ~′ = ρ2~−
(
(1− ε)θ(~Q − ~) + ε

)
ρ2 0 < ρ < ρM , (6.14)

subject to the boundary conditions

~′(0) = 0, ~′(ρM) = −~(ρM)
ρM + ψ

ψρM

, (6.15)

where the primes now denote derivative with respect to ρ.

We will now move on to show that, if ~Q ∈ (ε, 1) and ρM is sufficiently large, Eq. (6.14)

has no solution. As such, the standard assumption that the substrate of interest is in

diffusive equilibrium will be invalid, and cycles of limited substrate availability must be

observed.

Consider first a tumour in which all cells are active. Then, from Eq. (6.14)

ρ2~′′ + 2ρ~′ − ρ2~ + ρ2 = 0, (6.16)
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which, subject to the boundary conditions in Eq. (6.15) has solution

~(ρ) = 1− k1
sinh ρ

ρ
, (6.17)

where

k1 =
ρM + ψ

ψ cosh ρM + sinh ρM

. (6.18)

In particular

~(0) = 1− k1 → 1, as ρM →∞. (6.19)

Thus, if ~Q < 1, at some radius ρM = ρ?, ~(0) = ~Q and the cells at the tumour centre will

become quiescent. This radius ρ? may be found numerically from the expression above

for h(0), i.e. through solution of

ρ? = (1− ~Q)(ψ cosh ρ? + sinh ρ?)− ψ. (6.20)

For typical parameter values ~Q = 0.04 and ψ = 1, we find ρ? = 0.31, equivalent to the

first quiescent cells appearing when the tumour has radius R ≈ 0.7 mm.

Assuming that ρ > ρ?, some of the tumour cells must be quiescent. Suppose ~Q ∈ (ε, 1)

and consider a region (ρ1, ρ2) containing only quiescent cells, i.e. a region where ~ > ~Q

everywhere. Then, from Eq. (6.14) within this region

ρ2~′′ + 2ρ~′ − ρ2~ + ερ2 = 0. (6.21)

The edges of the region ρ1 and ρ2 must either be a tumour boundary (0 or ρM) and satisfy

the appropriate boundary condition in Eq. (6.15) or they must satisfy ~(ρi) = ~Q. We

consider each case separately below.

• Case 1, ρ1 = 0, ρ2 = ρM .
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Consider the case where all the cells in the tumour are quiescent. Then, applying the

boundary conditions in Eq. (6.15),

~(ρ) = ε(1− k1
sinh ρ

ρ
), (6.22)

where, in particular

~(0) = ε(1− k1) < max(ε, 0) < ~Q. (6.23)

This contradicts the fact that the whole tumour is quiescent.

• Case 2, ρ1 = 0, ~(ρ2) = ~Q.

Consider now the case where the quiescent cells are limited to the tumour centre. Then

in (0, ρ2)

~(ρ) = ε+
[
(~Q − ε)

ρ2

sinh ρ2

]sinh ρ

ρ
, (6.24)

where, in particular

~(0) = ε+ (~Q − ε)
ρ2

sinh ρ2

< ~Q, (6.25)

as ρ2/ sinh ρ2 ∈ (0, 1), again contradicting the fact that cells at the tumour centre are

quiescent.

• Case 3, ~(ρ1) = ~Q.

Suppose finally that the cells in the tumour centre (0, ρ1) are active (~ < hQ) and sur-

rounded by quiescent cells. Then ~(ρ1) = ~Q and, in (0, ρ1),

~(ρ) = 1−
[
(1− ~Q)

ρ1

sinh ρ1

]sinh ρ

ρ
, (6.26)

where, in particular

~(0) = 1− (1− ~Q)
ρ1

sinh ρ1

> ~Q, (6.27)
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contradicting the fact that the cells at the tumour centre are active.

The analysis presented above has shown that, when ψr = ρ > ρ? and ψ2h = ~ ∈ (ε, 1),

Eq. (6.12) has no solution. As such, the standard assumption of temporal homogeneity is

not valid; instead we must consider the temporal dynamics of the system. In the previous

section we showed that when ~ ∈ (ε, 1), the assumption of spatial homogeneity leads to

cyclical solutions. Given this evidence, for the full model defined in Eq. (6.3), we expect

cyclical behaviour to occur whenever ρ > ρ? and ~ ∈ (ε, 1). This behaviour is analysed

in the next section.

6.2.3 Full model analysis

We move on to analyse the full model, including both temporal and spatial dynamics.

The model is defined by Eq. (6.3), which we reiterate here

hτ − (hrr + 2hr/r) =


(1− ε)θ(hQ − h(τ − τ0)) + ε− ψ2h 0 < r ≤ rM

−h rM < r,

(6.28)

subject to the boundary conditions hr(0, τ) = 0, continuity of h and hr at r = rM and

limr→∞ h(r, τ) = 0, and initial conditions h(r, τ) = 0 for τ ∈ [−τ0, 0]

The method of lines [86] is a technique that may be applied to numerically solve parabolic

equations, involving discretising in all but one dimension, and then integrating the semi-

discrete problem as a system of ordinary differential equations (ODEs). The method

allows us to take advantage of the sophisticated tools available for numerical solution of

ODEs and, in this case, delay (ordinary) differential equations (DDEs).
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We discretise Eq. (6.28) with respect to the variable r using finite differences, in particular

using the approximations

hr(r, τ) ≈
h(r + ∆, τ)− h(r −∆, τ)

2∆

hrr(r, τ) ≈
h(r + ∆, τ) + h(r −∆, τ)− 2h(r, τ)

∆2
, (6.29)

for small ∆.

To use the discretisation above, we first approximate the infinite domain [0,∞) as a finite

domain [0, r∞], where r∞ = krM for some integer k > 1. The boundary condition at

r = ∞ is then replaced by the condition h(r∞, τ) = 0. We then choose a uniform grid rj,

j = 1, . . . , kN with spacing ∆ = r∞/kN = rM/N such that rj = j∆. This allows us to

define hj(τ) = h(rj, τ) to be the value of h at each of these grid points.

The Dirichlet boundary condition h(r∞, τ) = 0 is handled easily by defining hkN(τ) =

0. The Neumann boundary condition hr(0, τ) = 0 requires more care. We first apply

l’Hôpital’s rule to obtain

lim
r→0

hr(r, τ)

r
= lim

r→0

[hr(r, τ)]r
[r]r

= hrr(0, τ). (6.30)

To handle this second order difference, imagine the problem is instead being solved on the

domain [−r∞, r∞], with the tumour tissue confined to [−rM , rM ] and the same boundary

conditions at r = ±r∞. The Neumann boundary condition then implies that the solution

will be symmetric with respect to r for all time. Thus h(−∆, τ) = h(∆, τ), so h−1(τ) =

h1(τ).
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The system of (kN + 1) DDEs in the variable τ is then given by

h′j =



6
[
h1 − h0

]
∆−2 + f0 j = 0[

(1 + j−1)hj+1 + (1− j−1)hj−1 − 2hj

]
∆−2 + fj j = 1, . . . , N[

(1 + j−1)hj+1 + (1− j−1)hj−1 − 2hj

]
∆−2 − hj j = N + 1, . . . , kN − 1

0 j = kN,

(6.31)

where

fj(τ) = (1− ε)θ(hQ − hj(τ − τ0)) + ε− ψ2hj(τ). (6.32)

The system of DDEs in (6.31) is solved using the MATLABr integrator dde23 [106]. Pre-

liminary tests showed that k = 5 was a suitable choice – integrating over domains larger

than [0, 5 rM ] had a negligible effect on the system solution.

Typical model solutions are shown in Figs. 6.2 and 6.3. Given typical parameter values

of hQ = 0.04 and ψ = 1, we may calculate from Eq. (6.20) r? = ρ?/ψ = 0.31, the tumour

radius at which quiescence first occurs. Choosing rM = 1 > r? and ε = 0.01, we have

ψ2hQ ∈ (ε, 1), and thus, from previous analyses, cyclical acidosis will occur.

Fig. 6.2 shows cyclical acidity at the tumour centre (red) and tumour edge (blue) using

these parameter values. The cells at the tumour centre cycle between their maximum level

of h ≈ 0.23 ≡ pH 5.6 and their minimum level h ≈ 0.016 ≡ pH 6.7. The cells at the

tumour edge also experience cyclical acidity about the quiescence threshold, though their

maximum acidity h ≈ 0.11 ≡ pH 5.9 is less than the cells at the centre. The cycle time is

τ ≈ 1.4, equivalent to 100 minutes. This may be compared to the spatially homogeneous

model presented in Fig. 6.1. Addition of diffusion to the model acts to smooth system
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Figure 6.2: Results from Eq. (6.31). Predicted cycles of acidity observed
at the tumour centre (red) and tumour edge (blue) for the full
model, using typical parameter values hQ = 0.04, ε = 0.01,
ψ = 1, τ0 = 0.5 and rM = 1. The domain of integration used
is [0, 5 rM ], divided into 251 grid points. The acidity levels cycle
around the quiescence threshold hQ, with cycle time of approxi-
mately 1.4 units.

dynamics, reducing the maximum acidity levels seen and in turn decreasing the acid cycle

time.

In Fig. 6.3 we investigate how acidity levels vary through the tumour during each cycle.

Initially (blue), all the cells within the tumour are below the quiescence threshold. Cycles

of acidity are out of phase for different sections of the tumour and an increase in acidity

is first seen at the tumour edge (r = 1, red). Acidity then increases at the tumour centre

(r = 0, black), before reaching its maximum level (green). This figure demonstrates that,

whilst acid levels are on average higher in the tumour centre than the tumour edge, this
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Figure 6.3: Changing acid profiles in and around the tumour during the aci-
dosis cycle as depicted in Fig. 6.2. Times shown are τ = 1.3
(blue), τ = 1.5 (red), τ = 1.6 (black) and τ = 2.0 (green). Notice
that for some of this cycle, acidity is higher at the tumour edge
than centre. Parameter values used are as in Fig. 6.2. The dot-
ted lines represent the tumour radius (rM = 1) and quiescence
threshold (hQ = 0.04).

property does not hold throughout the acid cycle. The point is reinforced in Fig. 6.4,

which shows how the metabolic characteristics of tumour cells vary during each cycle.

The first cells to become quiescent due to high extracellular acidity are not at the tumour

centre, rather this occurs at r ≈ 0.81 near the edge of the tumour.
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Figure 6.4: Changing metabolic characteristics during the acidosis cycle as
depicted in Figs. 6.2 and 6.3. The first cells to become quiescent
are located at r ≈ 0.81, whilst the first cells to resume prolifera-
tion are at the tumour edge, r = 1. For the majority of the cycle,
the whole of the tumour is in the same metabolic state, with all
cells either active or quiescent. Parameter values used are as in
Fig. 6.2.
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6.3 Discussion

Fluctuations in metabolite levels are known to occur within tumours with discrete pe-

riodicities of hours, minutes and days. Cells that are best suited to respond to these

periods of cellular stress, such as through constitutive upregulation of aerobic glycolysis,

will be positively selected by somatic evolutionary forces. These cycles are assumed to

occur due to haemodynamic variations such as changes in the local concentration of red

blood cells or structural rearrangement of blood vessels. In this chapter we have inves-

tigated a further hypothesis, namely that quiescence in response to cellular stress, and

the corresponding drop in metabolism, provides a negative feedback mechanism capable

of reproducing such metabolite cycles.

A simple reaction-diffusion system is used to describe the evolution of the metabolite of

interest. Whilst we focus on the dynamics of acidity within the tumour, the model is

equally valid for any growth inhibitor produced by tumour cells or any growth promoter

consumed by tumour cells. The model is similar to that used in Chapter 5, with the

addition of temporal dynamics and a lag term corresponding to gene transcription and

expression.

We show, for a biologically realistic range of parameter values (rM > r? and ψ2hQ ∈ (ε, 1)),

that the standard assumption of the metabolite reaching diffusive equilibrium is not valid.

Rather, when investigating the distribution of acid around a vascularised tumour in which

cellular quiescence occurs, temporal dynamics must be considered.

We first investigate a spatially homogeneous model, and find that cycles of acidity due

to cellular quiescence occur with a periodicity of around four hours. Inclusion of spatial
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aspects and diffusion reduces this cycle time to between one and two hours, consistent with

experimental evidence [58]. Within the parameter regime used here we find the acid levels

at the tumour centre will fluctuate between pH 6.7 and pH 5.6. Given the importance

of acidic and hypoxic cycles in mediating the evolution of cancer cell metabolism and

resistance to acidity, further experimental verification of the role of quiescence in inducing

metabolic cycles will be of considerable interest.



Chapter 7

pH imaging

7.1 Introduction

The relatively young field of molecular imaging is focused on the in vivo characterisation

and measurement of biological processes at the cellular and molecular level. In contrast

to ‘classical’ diagnostic imaging, it probes the molecular abnormalities that are the basis

of disease, rather than imaging the end effects of these molecular alterations. Specific

imaging of such targets allows earlier detection and characterisation of disease, earlier and

direct molecular assessment of treatment effects, and a more fundamental understanding

of the disease process.

The measurement of extracellular pH of tumours in vivo has historically been performed

using microelectrodes [118]. This approach has the disadvantage of being both invasive

and destructive. Over the past two decades, noninvasive magnetic resonance (MR) tech-

niques have been developed to measure both intracellular pH (pHI) and extracellular pH

(pHX) of human and animal tissues [48, 49]. Virtually all tumour pH data to date show

an acidic pHX and alkaline pHI relative to normal tissue. Moreover, it is found that the

140
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Tumour Species Type pHX pHI

Normal Rat Liver 7.34± 0.03 7.26± 0.02

Normal Rat Muscle 7.39 7.39± 0.10

MCF-7 Human Breast 6.99± 0.11 7.15± 0.08

MDA-mb-435 Human Breast 6.80± 0.11 7.37± 0.07

MDA-mb-435/nm23-H1 Human Breast 7.17± 0.10 7.16± 0.05

HT-29 Human Colon 6.79± 0.05 7.02± 0.05

Table 7.1: Extracellular and intracellular human and animal tumour pH,
measured with 31P magnetic resonance spectroscopy [49].

pHX becomes more acidic as the tumour grows, consistent with reduced perfusion [49].

In Table 7.1, we present a sample of the data as measured using 31P MR spectroscopy.

Significant differences in tumour pHX have been found that correlate with the aggressive-

ness of the tumour cell phenotype. For example, breast cancer tumours expressing nm23,

a metastasis-inhibiting protein, had significantly higher pHX and lower pHI compared

to their metastatic counterparts. Similarly, tumours of highly metastatic cells, such as

MDA-mb-435, have a lower pHX than non-metastatic MCF-7 tumours of comparable size.

Most recently we have witnessed the development of pH-sensitive gadolinium complexes,

offering the possibility of imaging pH with a spatial resolution comparable to that of

standard MR imaging. Through sequentially administering two contrast agents with

similar tissue pharmacokinetics, one insensitive to tissue pH and the other pH-sensitive,

it has been possible to compute pH images of kidneys and nearby tissues following renal

acidosis [97].

In the long term, clinical applications of this emergent high-resolution tumour pH imaging
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technology can be envisioned, including the characterisation of tumours and the assess-

ment of chemotherapy. The extraction of key biological parameters from such images

could prove invaluable to the clinician as a diagnostic tool, for example in determining

whether a given tumour is benign or cancerous.

In this chapter we undertake a comparison between tumour pH images obtained through

optical imaging techniques to the reaction-diffusion model of acid dynamics set out in

previous chapters. The motivations behind this are two-fold. Firstly, the analysis will

allow us to assess and verify the previous modelling work, giving the mathematics a firm

biological foundation. Secondly, we aim provide a methodology for calculating cellular

acid production rates from pH images – an important parameter known to correlate with

tumour aggressiveness [81].

7.2 Fluorescence data

The data used in this chapter have been provided by collaborators at the University

of Arizona. The data are extracted from eight tumours implanted in severe combined-

immuno-deficient (SCID) mice. These SCID mice have no immune system, allowing the

foreign tumour cells to invade. Each of the eight data sets consists of three pH images,

taken approximately one, two and three weeks after tumour implantation, making a total

of 24 images. The tumour cell line used, PC3N/eGFP, is a rapidly growing human prostate

cancer, modified to express green fluorescent protein (GFP). Each tumour pH image has

a corresponding GFP image, allowing detection of the tumour cells. Each image contains

512 × 512 pixels, with a spatial resolution of 25 µm. An example of a typical pH–GFP
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image pair is given in Fig. 7.1.

The pH profile is created using a technique known as fluorescence ratio imaging. Flu-

orescence occurs when a molecule absorbs a photon, then emits a photon of slightly

longer wavelength. This simple concept has been used in a wide variety of applications

in biology and medicine. The tumour was injected with the pH-sensitive fluorescent dye

seminaphthorhodofluor-1 (SNARF-1) prior to image acquisition. Two sets of emission

data were then collected in different spectral regions (red and blue). Using a suitable

transformation, the ratio of the two intensities at each point was used to calculate the pH

as in Fig. 7.1 (a). This method was shown to yield a pH resolution of 0.042 pH units [64].

Examination of a third spectral region (green), allows us to view the emission of the GFP

used to locate the tumour, as shown in Fig. 7.1 (b). Note that the GFP image has been

scaled here so that 1 corresponds to the intensity threshold used by the experimentalists

to identify the tumour edge [64].

It should be noted that, in order to perform the optical imaging technique described

above, a dorsal skin fold chamber must be attached to the mouse (see Fig. 7.2). The

dorsal skin is a flap of tissue on the back of the mouse. This tissue is clamped inside a

thin window chamber, and the skin is then removed, exposing the smooth muscle tissue

and allowing the implanted tumour to be viewed. The circular window of the chamber

can also be clearly seen at the edge of both the pH and GFP profiles in Fig. 7.1.

Because of these experimental methods, this fluorescence imaging technique is suitable

only for animal models, rather than in a clinical setting. Nonetheless, the methods of

analysis presented below will apply to any imaging modality capable of producing pH

profiles around a tumour, such as the MR imaging discussed in the Introduction.
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Figure 7.1: (a) Typical pH profile of tumour and surrounding tissue obtained
through SNARF-1 fluorescence ratio imaging. (b) Corresponding
GFP profile of tumour. The field of view is (12.74mm)2.



Chapter 7: pH imaging 145

Figure 7.2: Dorsal skin fold chamber. Figure courtesy of R. Gatenby.

7.3 Image analysis

7.3.1 Preprocessing

Determining the ROI

Before undertaking a comparison between the models and experimental data, the images

must be preprocessed. Returning to Fig. 7.1 (a), we see some artefacts of the experimental

approach that must be removed before analysis can be performed. The region of interest

(ROI) of the image is the tumour and its surrounding smooth muscle tissue, which has a

pH of approximately 7 (green). Other than this region, the image shows points outside

the circular window, which are the metal casing of the window chamber. These points

have a speckled appearance, with some pixels having very high or very low apparent pH.
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The image also shows an area of low apparent pH (orange) just inside the window; this

is skin that has regrown or slipped into view.

In order to remove the artefacts and show only the ROI – the tumour and surrounding

smooth muscle tissue – we use the method presented pictorially in Fig. 7.3. The method is

based essentially on removing regions of the image that have a low pH. Since the tumour

itself has a low pH and we do not wish to remove it from the processed image, the first

step is to set all pixels with a non-zero GFP level to have a high pH (Fig. 7.3 (b)). This

has the effect of removing the cells within the tumour, as well as a ring of cells at the edge

of the image. The next step is to apply an erosion–dilation filter (Fig. 7.3 (c)). Erosion

works by replacing each pixel’s pH by the minimum pH in a specified neighbourhood of

that pixel, where we choose the neighbourhood to be a disc of radius R pixels. This is

followed by a dilation, which works in the same way except that the maximum pH in the

neighbourhood is taken. The erosion–dilation filter modifies the intensity values in the

image, but does not affect the overall geometry.

There is now a clear delineation between the different regions within the image. Thus we

may threshold the image to extract all pixels where pH < pHc (Fig. 7.3 (d)), and then the

region of interest is given by the central ‘hole’ (Fig. 7.3 (e)). The final panel (Fig. 7.3 (f))

shows the ROI plotted on the original pH image. Also highlighted is the tumour edge as

found from the GFP image.

Scaling

Let P̄ denote the experimental pH profile, Ḡ the GFP profile and let H̄ = 10−P̄ denote

the hydrogen ion concentration. Because we are dealing with micromolar concentrations
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a) b)

c) d)

e) f)

Figure 7.3: Method for determining the ROI of the pH image. (a) Initial
tumour pH image. (b) Removal of tumour. (c) Erosion-dilation
filter with R = 5. (d) Thresholding the image with pHc = 6.9.
(e) Extracting the critical region. (f) The ROI (solid line) plot-
ted on the original pH image, with the tumour boundary also
highlighted (dashed line).
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of hydrogen ions over micrometre distances, it is important to scale the variables to avoid

computational problems associated with very small numbers.

We non-dimensionalise:

~ =
H̄

H0

, ξ =
x

∆
, ḡ = max(Ḡ− 1, 0), (7.1)

where we choose H0 = 10−7.25M ≡ pH 7.25 and ∆ = 25 µm is the pixel width. Under

these scalings, the hydrogen ion concentration and distance variables ~ and ξ are non-

dimensional and of order unity. As mentioned earlier, the tumour tissue is defined as all

points where Ḡ > 1. By performing the shift above, the tumour tissue is redefined as all

points where ḡ is non-zero.

7.3.2 Parameter estimation

Having performed the necessary preprocessing, we are now in a position to compare the

experimental data to the modelling work discussed in previous chapters.

Let ~ denote the experimental hydrogen ion profiles, ḡ the GFP profile and ΩR the region

of interest as calculated above. The viable tumour tissue ΩM is defined to be all points

x ∈ ΩR such that ḡ(x) > 0, and all points surrounded by tumour tissue. In this way,

debris within the tumour not expressing GFP will still be considered part of the tumour.

Returning now to Eq. (5.1), we assumed that the evolution of the model hydrogen ion

profile H may be described by a reaction-diffusion equation:

∂H

∂t
= rHM − rV V (H −HX) +DH∇2H (7.2)
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where rH is the rate of tumour cell acid (hydrogen ion) production, M the tumour cell

density, rV the rate of acid removal through blood vessels in normal tissue, V the vas-

cular density, HX the normal extracellular hydrogen ion concentration, and DH the acid

diffusion coefficient. The boundary condition is that H → HX a long distance from the

tumour. This equation was analysed in Section 5.2, for the case of a spherically-symmetric

tumour.

In order to compare the model of hydrogen ion evolution given in Eq. (7.2) to the ex-

perimental pH images, a number of simplifying assumptions must be made. Whilst we

do not know the tumour cell density M , it may sensibly approximated as proportional

to the level of GFP expression, M = kgḡ. The vascular density V is also not known.

In reality tumour tissue is initially avascular, with tumour vessel density increasing with

growth through angiogenesis mechanisms. However, in the absence of precise informa-

tion, we assume that there exists a region ΩV where the vessels exist homogeneously at

their carrying capacity (V = KV ), and that the remaining tissue is avascular (V = 0).

Finally, we assume that the acid reaches equilibrium over the timescale of tumour growth,

i.e. ∂H/∂t = 0. However, as was shown in Chapter 6, this assumption may not be valid for

a particular parameter range. With these reservations in mind and under the assumptions

stated above, in non-dimensional form Eq. (7.2) becomes

θ1ḡ + (θ2 − h)
⌋

ΩV
+ θ3∇2

ξh = 0, (7.3)

where

h =
H

H0

, θ1 =
rHkg

rVKVH0

, θ2 =
HX

H0

, θ3 =
DH

rVKV ∆2
. (7.4)

The notation f(x)
⌋

Ω
is used to represent taking the value f(x) if x ∈ Ω, and 0 otherwise.

As boundary conditions, we take the hydrogen ion concentration at the edge of the region
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of interest to be fixed at the background level, H(δΩR) = θ2.

It remains to define the unknown region of vascularity ΩV , for which we investigate

three possibilities. We first consider the tumour to be avascular, ΩV = ΩR − ΩM . We

also take the tumour to be fully vascularised ΩV = ΩR. In Chapter 5, we considered a

third possibility, a partially vascularised tumour – the vasculature exists homogeneously

throughout the tumour, except for in the necrotic core. Thus ΩV = ΩR − ΩD, where

ΩD ⊂ ΩM denotes the necrotic region. Whilst we do not have precise information about

the areas of necrosis within the tumour, this region may be estimated from the data

available. Noting that necrotic debris will be expressing significantly less GFP than the

surrounding, viable tissue, we empirically define Ω?
D = {x ∈ ΩM : ḡ(x) > max(ḡ)/4}. We

then take ΩD to be all pixels surrounded by, but not in Ω?
D.

For a given parameter set Θ = (θ1, θ2, θ3), the solution h = hΘ to Eq. (7.3) may be found

through first making a finite difference approximation.

∇2
ξh(x, y) ≈ h(x+ 1, y) + h(x− 1, y) + h(x, y + 1) + h(x, y − 1)− 4h(x, y). (7.5)

Then Eq. (7.4) reduces to a system of N linear equations, using the same methods as

Chapter 4, where N ∼ 105 denotes the number of pixels within the region of interest ΩR.

The full parameter estimation problem to compare an experimental image ~ with our

model Eq. (7.3) may be described as:

Find Θ = (θ1, θ2, θ3) to minimise ‖d‖R where d = hΘ − ~, ~ is

the experimental image, hΘ is the solution to Eq. (7.3) and ‖.‖R

denotes RMS norm.
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This inverse problem is computationally expensive as it requires multiple solutions of

Eq. (7.3) for different parameter estimates Θ. Moreover, three-dimensional minimisation

routines suffer from a number of problems, including convergence to local, rather than

global, minima. However, through a suitable transformation, it may be reduced to a

one-dimensional minimisation problem.

Suppose first that we fix θ3. We may calculate the solution h? to the equation

ḡ − h?
⌋

ΩV
+ θ3∇2h? = 0, (7.6)

subject to the boundary condition h?(δΩR) = 0, using the finite difference approximation

outlined above. Then the solution to Eq. (7.3) is given by h = θ−1
1 h? + θ2. Thus, for fixed

θ3, the problem reduces to finding θ1 and θ2 to minimise
∥∥θ−1

1 h? + θ2 − ~
∥∥

R
. This is now

a simple linear least squares problem. Writing

σxx =
∑
ξ̄∈ΩR

(
h?(ξ̄)− h?

µ

)2
,

σyy =
∑
ξ̄∈ΩR

(
~(ξ̄)− ~µ

)2
,

σxy =
∑
ξ̄∈ΩR

(
h?(ξ̄)− h?

µ

) (
~(ξ̄)− ~µ

)
, (7.7)

where h?
µ and ~µ are the means of h? and ~, respectively, the best fit solution is given by

θ−1
1 =

σxy

σxx

, θ2 = ~µ − θ−1
1 h?

µ, (7.8)

and the RMS fit by

‖.‖R =

√
σxxσyy − σ2

xy

|ΩR|σxx

. (7.9)

Thus we reduce the parameter fitting routine to the one-dimensional problem of finding

θ3 to minimise the RMS difference defined in Eq. (7.9).
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Unlike multi-dimensional problems, minimisation in one dimension is well understood and

does not suffer to such an extent from convergence to local minima. The Golden Section

search is one method for minimising functions on a bounded interval [36]. Note from

Eq. (7.3) that θ3 must be strictly positive, as if θ3 = 0, h is not defined outside of the

vascular region ΩV . Note also from Eq. (7.3) that d = ln 2
√
θ3 represents the number of

pixels away from the tumour edge at which the excess hydrogen ion concentration falls

to half its level. We choose the bounded interval d ∈ [0.1, 40] as, for d < 0.1 pixels, the

spatial resolution of the images will not be able to detect the acid gradient; d > 40 ≡ 1 mm

is beyond the expected diffusion distance for the acid gradient. Converting these bounds

for d to θ3, we perform the Golden Section search on the interval θ3 ∈ [0.02, 3000]. The

results of the parameter estimation process are given in the next section.

7.4 Results

The parameter estimation algorithm was run for each of the 24 pH images. In Fig. 7.4

we present the predicted pH profiles for the tumour shown in Fig. 7.1, for each of the

three levels of tumour vascularity: avascular (ΩV = ΩR − ΩM), partially vascularised

(ΩV = ΩR − ΩD) and fully vascularised (ΩV = ΩR). Fig. 7.4 (a) shows the experimental

pH image within the region of interest. Figs. 7.3 (b), (c) and (d) show the predicted pH

profiles under the assumptions of an avascular (RMS = 7.11 × 10−2 pH units), partially

vascular (RMS = 7.06 × 10−2 pH) and fully vascular tumour (RMS = 8.56 × 10−2 pH),

respectively.

Comparing the experimental and predicted pH profiles, we see that the model is unable to
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a) b)

c) d)

Figure 7.4: A comparison between (a) an experimental pH profile within the
region of interest, and the model profiles under assumptions of (b)
an avascular tumour, (c) a partially vascularised tumour and (d)
a fully vascularised tumour. The best fit is given by the partially
vascularised model, with an RMS difference of 7.06 × 10−2 pH
units.
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reproduce the spatial inhomogeneities both within and surrounding the tumour. Whilst

the model assumes spatially homogeneous vasculature within the normal tissue, in reality

the normal tissue contains both well perfused (blue) and poorly perfused (yellow) regions.

Moreover, the model predicts acidity to be much higher in the top region of the tumour

than is actually the case. Nonetheless, the best-fit RMS of 7.06 × 10−2 pH units in

Fig. 7.4 (c) is excellent, when we consider that the pH resolution of the experimental

image is 4.2 × 10−2 units [64]. This goodness-of-fit goes some way to validating the use

of Eq. (7.3) as a model for the hydrogen ion distribution around a tumour.

In Tables 7.2 and 7.3 we present the results of the parameter estimation process for both

the avascular and partially vascular cases. Over the 24 images, the fully vascular model

(ΩV = ΩR) was never found to give the best fit, and thus cannot be considered the most

appropriate model for tumour vasculature. The partially vascular model provided the

best description of acidity around most of the tumours, though the avascular model was

best in some cases.

From the tables we see that, for the avascular model, in 15 of the 24 images there was a

RMS fit of less than 0.1 pH units. For the partially vascular model, this fit was observed in

13 of the 24 images. Given that five of the experimental images (marked with asterisks)

were corrupted, displaying regions of physiologically unrealistic pH (less than pH 5 or

greater than pH 8), we may conclude that the models are concurrent with the data in the

vast majority of cases.

We calculate the means and standard deviations of θi from the estimates that produce a

good fit (RMS < 0.1 pH units). At this point one problem with the parameter estimation

process becomes clear. For parameter θ1 in the avascular model, and parameter θ3 in
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both models, we see a very large standard deviation relative to the mean. Even for

individual tumours we see a large change in these predicted parameters over the course

of the tumour’s growth. This is because the landscape over which we are minimising is

fairly shallow. In other words, large changes in θ3 are compensated for by large changes

in θ1, as defined by Eq. (7.8), leading to only a small change in the RMS difference. The

shallowness of the RMS landscape in response to changes in θ3 is highlighted in Fig. 7.5.

Notwithstanding these problems with the fitting process, we look for a relationship be-

tween the cellular acid production rate θ1 and the tumour growth rate. Assuming the

tumour follows an exponential growth process, the growth rate between times t0 and t1 is

defined as

λ =
lnA(t1)− lnA(t0)

t1 − t0
, (7.10)

where A(t) denotes the area of the tumour (in mm2) at time t. The vascular model in

Table 7.3 is used to investigate the relationship, as θ1 is reasonably ‘well behaved’. The

results are presented in Fig. 7.6. We see that there may indeed be a relationship here

between tumour acid production rates and growth rates, as has been shown previously [81].

The correlation coefficient between θ1 and λ is r = 0.587; the probability of observing a

correlation this large when the true correlation is zero is p = 0.0576. This is not quite

sufficient evidence to reject the null hypothesis that there is no correlation between the

two variables at the standard 0.05 level of significance. Nonetheless, given the small size

of the available data set, it goes some way to confirming this relationship.
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Mouse Time (days) θ1 θ2 (pH) θ3 RMS (pH) Size (mm2)

0208-r1 0 5.22× 104 7.05 2.00× 10−2 6.86× 10−2 4.17

10 6.15× 102 7.03 4.45 6.86× 10−2 5.70

15∗ 1.12× 104 7.01 2.00× 10−2 5.77× 10−1 7.27

0208-r2 0 1.08× 105 7.12 2.00× 10−2 9.29× 10−2 19.6

9 7.80× 101 6.91 3.03× 101 1.19× 10−1 24.8

12∗ 1.31× 102 6.92 1.88× 101 1.95× 10−1 26.6

0209-00 0 3.74× 101 7.00 4.64× 101 8.68× 10−2 9.85

8 3.43× 101 7.02 1.30× 102 9.59× 10−2 8.84

13 2.72 7.03 3.00× 103 9.78× 10−2 9.14

0209-r1 0 4.56× 102 6.99 4.22 7.11× 10−2 14.0

8 1.83× 101 7.03 8.08× 101 9.99× 10−2 17.9

11 7.37× 101 7.12 7.48× 101 9.34× 10−2 22.1

0406-00 0∗ 2.01× 10−1 6.96 2.01× 103 2.09× 10−1 5.18

6 0 6.22 – 7.67× 10−1 11.5

13 2.06× 102 7.02 4.55× 101 1.24× 10−1 20.6

0407-00 0 3.44× 101 7.01 5.28× 101 5.99× 10−2 2.73

6 3.46× 101 6.94 8.11× 101 6.74× 10−2 3.72

13 6.59× 102 7.06 3.54 5.95× 10−2 5.22

0407-r1 0 4.23× 103 6.98 3.09× 10−1 7.94× 10−2 7.36

6∗ 1.89× 101 7.07 5.44× 101 1.29× 10−1 10.7

13∗ 8.03× 10−1 7.12 4.52× 101 5.53× 10−1 21.9

0407-r2 0 7.86× 101 7.00 4.44 7.77× 10−2 10.4

6 1.64× 102 6.96 7.43 9.70× 10−2 10.3

13 1.36× 103 6.98 2.29× 101 1.12× 10−1 10.6

Mean 1.11× 104 7.02 2.33× 102

Standard deviation 2.98× 104 5.10× 10−2 7.67× 102

Table 7.2: Results of the avascular (ΩV = ΩR − ΩM ) parameter estimation.
Means and standard deviations are taken from all runs where the
RMS fit < 0.1 pH units.
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Mouse Time (days) θ1 θ2 (pH) θ3 RMS (pH) Size (mm2)

0208-r1 0 4.00 7.05 9.87× 101 7.22× 10−2 4.17

10 5.74 7.03 8.05× 101 6.94× 10−2 5.70

15∗ 4.34× 10−1 7.04 8.03× 101 5.85× 10−1 7.27

0208-r2 0 1.03 7.20 3.00× 103 1.46× 10−1 19.6

9 6.70× 10−1 6.99 2.33× 103 1.43× 10−1 24.8

12∗ 1.10 6.98 1.04× 101 2.04× 10−1 26.6

0209-00 0 2.29 7.01 1.20× 102 8.81× 10−2 9.85

8 5.75 7.01 7.95 9.49× 10−2 8.84

13 1.81 7.03 3.00× 103 9.78× 10−2 9.14

0209-r1 0 3.55 7.01 1.24× 102 7.06× 10−2 14.0

8 1.31 7.04 8.66× 101 1.02× 10−1 17.9

11 3.97 7.13 9.05× 101 9.14× 10−2 22.1

0406-00 0∗ 1.39× 10−1 6.96 2.41× 103 2.10× 10−1 5.18

6 0 6.88 – 1.57× 10−1 11.5

13 4.75 7.04 4.74 1.15× 10−1 20.6

0407-00 0 5.59 7.01 6.38× 101 5.97× 10−2 2.73

6 7.23 6.94 1.23× 101 6.61× 10−2 3.72

13 7.70 7.06 9.13 5.88× 10−2 5.22

0407-r1 0 3.93 6.98 1.28× 101 7.94× 10−2 7.36

6∗ 1.39 7.07 3.30× 101 1.28× 10−1 10.7

13∗ 0 5.34 – 1.23 21.9

0407-r2 0 8.74× 10−1 7.01 6.84× 101 8.87× 10−2 10.4

6 2.47 6.96 3.78× 101 9.89× 10−2 10.3

13 3.42× 101 6.99 3.73× 101 1.11× 10−1 10.6

Mean 4.22 7.02 2.87× 102

Standard deviation 2.08 4.75× 10−2 8.16× 102

Table 7.3: Results of the partially vascular bed (ΩV = ΩR − ΩD) parameter
estimation. Means and standard deviations are taken from all
runs where the RMS fit < 0.1 pH units.
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Figure 7.5: Variation in RMS fit with θ3 for the partially vascular bed model
(mouse 0209-r1, time 0 – see Table 7.3). θ3 is varied by two
orders of magnitude around its best-fit value of 1.24×102. Shown
is linear least squares (LLS) best-fit (blue), whereby θ1 and θ2
respond to changes in θ3 as per Eq. (7.8). Shown also is the fit
obtained with θ1 and θ2 fixed (red) at the levels given in Table
7.3. The shallowness of the RMS landscape occurs because large
changes in θ3 are compensated by changes in θ1 and θ2, leading
to a small change in RMS fit. However, even when θ1 and θ2 are
fixed we see little change in fit as θ3 is increased from its base
value, demonstrating that the model is relatively insensitive to
changes in θ3.
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Figure 7.6: Relationship between the tumour acid production rate θ1 and
growth rate λ. Data points are taken from the model presented
in Table 7.3. Also shown is the line of best fit. The correlation
coefficient for the two variables is r = 0.587, with p = 0.0576.

7.5 Discussion

In this chapter, we have analysed a number of pH images obtained through fluorescence

spectroscopy of tumours implanted in mice. The aims behind this chapter were twofold.

Firstly, throughout this thesis, we have assumed that the hydrogen ion profile in and

around a tumour evolves according to a simple reaction-diffusion equation. Comparing our

model profile with the experimental image allows validation of the work we have carried

out so far. Secondly, in recent years we have seen a move towards functional, rather than

physical, imaging of tumours. Imaging pH with a spatial resolution comparable to that

of standard MR imaging has emerged as a promising alternative to monitoring glucose

uptake through FDG-PET. As imaging technology continues to advance, we see increased

need for extracting key diagnostic parameters from such images.
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The model equation (Eq. (7.3)) relies on three parameters. Through a suitable transfor-

mation, the parameter estimation process was reduced to minimising a function over one

variable. The results from this process were very promising – in the majority of cases,

the RMS distance between the experimental and model pH image was less than 0.1 pH

units, which can be considered an excellent fit, given the pH resolution of the experimental

images of around 0.04 pH units.

The background extracellular pH, θ2, was found to be close to pH 7 for all of the images

analysed here. This is somewhat less than the normal range of pH 7.2–7.4, but coincides

with the experimentalists’ belief that the installation of window chambers can cause slight

tissue injury and acidification [64]. The other parameter estimates, θ1 and θ3, were found

to have a very high standard deviation. This is an artefact of the shallowness of the RMS

landscape – large changes in these parameters only lead to small changes in the RMS

error. Unfortunately, this means that, as set out above, the method is unsuitable for use

in a diagnostic setting, as the parameter estimates can not be considered very reliable.

Nonetheless, as shown in Fig. 7.6, the estimation process goes some way to validating the

relationship between tumour acid production rate and growth rate.

The primary aim of this chapter has been to provide a preliminary investigation into pH

image analysis – acting as a proof-of-concept that critical biological parameters may be

extracted from pH images through solution of an inverse problem. Clearly, pH images

obtained in a clinical setting will not involve window chambers, and the precise methodol-

ogy for parameter extraction will depend on the imaging modality used. Nonetheless, the

initial results have been promising, and there is much scope for further work. The first

step would be to create a sharper error landscape in order to more confidently estimate
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the parameters. Applying this to a larger data set than we have available here would

allow verification of the correlation in Fig. 7.6, and thus could have immediate impact

as a diagnostic tool. Returning to Fig. 7.4 (a), the model could be extended to incor-

porate a more realistic description of the vasculature surrounding the tumour, through

extracting those areas of high pH. Finally, in the longer term, a greater understanding of

the relationship between pH and cellular division could allow the image analysis to have

predictive power – given a pH image, an experimentally-validated model could describe

the state of the tumour at some point in the future, a tool that would be invaluable to

the clinician.
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Summary and further work

8.1 Summary

Cancer is a major cause of sickness and death throughout the world. During the 1990s

in the UK and Ireland, there were on average 270 000 new cases of cancer diagnosed and

165 000 deaths from cancer each year [94]. In England and Wales, cancer became the most

common cause of death in females in the late 1960s, and in males in the mid-1990s [93].

In this post-genomic era, much of cancer research continues to focus on searching for the

genetic abnormalities underlying cancer development. Each year a vast array of papers

are published announcing the discovery of a new oncogene or tumour suppressor gene.

However, we may question the validity of such an approach; at the genetic level, cancers

are extremely heterogeneous, with no single set of genetic changes found in every cancer

population [21]. It is likely that the common lethal phenotypic traits of cancer, such as

invasion and metastasis, are not the direct result of genetic changes but rather may be

mediated by other mechanisms.

162
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One characteristic common to most tumours is an altered microenvironment. Due in

part to poor vasculature, marked fluctuations may be seen in tumour metabolite con-

centrations, in particular displaying low oxygen and high acid levels. In this thesis, we

investigate the effects this harsh microenvironment has during cancer development. In

particular, we focus on understanding the evolutionary pressures leading to upregulation

of aerobic glycolysis and the role this metabolic change will play during subsequent growth.

Approaching this from a mathematical modelling perspective allows integration of exist-

ing experimental data and quantitative insights into the underlying processes. In this

chapter, we draw together the important points of the thesis, comparing and contrasting

current oncological belief with the results of our work. We also set out the key ques-

tions that remain unanswered and suggest experimental and mathematical approaches to

tackling these problems.

The phenotypic traits of cancer arise early during carcinogenesis [10]. Thus, in Chap-

ter 4, we investigate the evolutionary pressures acting during avascular, pre-malignant

growth. A model for the key cell–environment interactions occurring during this phase of

development was proposed by Gatenby and Gillies [45]. Their model is difficult to test

experimentally, as measurement of the evolutionary pressures acting on cells is not pos-

sible. Instead, we employ a hybrid cellular automaton approach to test their hypotheses

mathematically. We find, consistent with their hypotheses, that upregulation of glycol-

ysis represents an adaptation to hypoxia that develops as tumour cells grow away from

their blood supply. This new phenotype, in turn, causes environmental acidosis which

promotes subsequent adaptation to prevent acid-induced cell death. The phenotype that

emerges from this sequence has a substantial proliferative advantage because it creates

an environment that is toxic to its competitors but not to itself.
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The mathematical framework also provides some predictions beyond the previous theo-

retical model. We find that the key limiting factor in lesion expansion away from the

surrounding basement membrane is not glucose levels. Over the length scale under con-

sideration, a negligible drop in glucose concentration is observed; rather, necrosis of cells

furthest from the basement membrane is due to acid-induced toxicity. Any therapeutic

approach that blocks the function of the Na+/H+ antiport (such as amiloride) will inhibit

the adoption of the invasive phenotype through increasing susceptibility to acid.

In Chapters 5 and 6 we move on to consider a different length scale. Using partial

differential equations, we examine the role played by acidity in the growth of a mass of

tumour cells displaying increased aerobic glycolysis and acid resistance. We amalgamate a

previous model of tumour growth (Greenspan [51]) with a model of acid-mediated invasion

(Gatenby and Gawlinski [41]). The work identifies a critical bifurcation parameter that

determines the change from a benign to an invasive growth pattern. We predict that

an acellular gap will separate the advancing tumour and receding normal tissue fronts,

and that reducing the level of systemic acidity will reduce tumour invasiveness and slow

growth. Each of these observations had been made previously in the model of Gatenby and

Gawlinski. Unlike the previous model, our approach leads to a physiologically-accurate

description of benign growth – exponential growth, followed by slow growth towards a

equilibrium size. Moreover, we predict an unexpected and counter-intuitive therapeutic

approach; we show that further increasing the acidity within a tumour beyond a critical

threshold may induce auto-toxicity and cause widespread tumour regression.

Recent technological advances have led to the emergence of pH imaging as an alternative

to existing techniques for functional tumour imaging. In Chapter 7 we develop a new



Chapter 8: Summary and further work 165

technique for extracting key biological parameters from pH images. The work demon-

strates an excellent agreement between the experimental pH profiles and the theoretical

profiles derived in Chapter 5, which goes some way to justifying our previous modelling

work. More importantly, we show a correlation between the estimated acid production

rate and tumour growth rate, consistent with previous observations [81]. As such, this

key parameter – tumour acid production rate – may be used as a quantitative diagnostic

tool in a clinical setting. Validation of the technique on a larger data set, particularly one

drawn from high-resolution magnetic resonance imaging, would be of considerable value.

8.2 Further work

8.2.1 Cellular metabolism

One major criticism that may be levelled at our work is that we have assumed that

many processes follow simple zeroth or first order dynamics; in reality, these processes

are likely governed by much more complex functional forms. In Chapters 5 and 6 we

assume that acidity is the primary factor governing tumour growth; in reality growth will

also be governed by oxygen and glucose concentrations, as well as levels of other critical

metabolites. The advantage of our simplistic approach is two-fold. Firstly, the models

remain tractable – determination of the bifurcation parameter in Chapter 5 would not

have been possible with a more complex model. Secondly, the interdependence between

the consumption and production of various metabolites is not known, hence use of more

complex forms is not currently possible.
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In the post-genomic era, we have a greatly increased understanding of the protein–protein

and protein–metabolite interactions that regulate cellular glucose metabolism [69]. The

metabolic pathway by which cells produce ATP from glucose involves a large number of

intermediate reactions, transport processes and feedback mechanisms. Recent authors

have produced a large-scale model of this pathway based on dynamic mass balances and

mechanistic kinetics [8], capturing in detail each of these intermediate processes. The

major problem with such an approach is that almost all of the parameter values are

unknown and difficult to estimate accurately.

One technique for gaining insight into the dynamics of these complex networks involves

breaking down the pathway into its constituent motifs [115]. Application to glucose

metabolism will allow the key behaviours associated with each set of reactions to then

be captured. Moreover, through recombination of these motifs, we will produce a full

model of cellular metabolism reliant on significantly fewer parameters, verifiable through

comparison with extant data (e.g. [20]).

This work would allow formulation of more accurate analogues of the models presented

in this thesis. For example, normal tissue undergoes apoptosis in response to a drop in

extracellular pH. Contrastingly, tumour tissue undergoes necrosis in response to a drop

in intracellular pH, occurring when cells can no longer maintain the gradient across the

cell membrane. A model for both intracellular and extracellular pH would be a natu-

ral byproduct of this work on metabolism. The work would have further implications,

providing a framework for understanding the regulation of glucose, oxygen, lactate and

ATP flux through the interaction of physical and biochemical processes at the cellular,

tissue/organ subsystem and whole body level. It would have a broad spectrum of appli-
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cations, increasing our understanding of diseases where altered metabolism plays a key

role, such as diabetes.

8.2.2 Early carcinogenesis

The cellular automaton model presented in Chapter 4 provides a novel framework for

understanding the cell–cell and cell–microenvironment interactions driving evolutionary

changes during early carcinogenesis. However, the model may benefit from certain adap-

tations. In addition to the accurate model of cellular respiration outlined above, it is

possible to include necrotic debris within the model. Looking to the late stage ductal

carcinoma in situ in Fig. 2.6, we see that the lumen (centre of the duct) is filled with cell

debris. There are no macrophages within the duct, but the debris is naturally washed

away with time. Within our current framework, the debris is removed from the system

immediately. A lag time could be introduced through defining a stochastic removal of de-

bris at each generation. The differing sizes of cells and necrotic debris could be accounted

for by letting live cells occupy 3 × 3 automaton elements, say, whilst the debris would

occupy a single element.

Within our model, we investigated the effects of three specific phenotypic changes: hy-

perplasia, glycolysis and acid-resistance. However, the same model framework could be

used to investigate any phenotypic change that affects a cell’s interactions with other cells

or its microenvironment. The model could also be extended to incorporate any specific

epithelial geometry, such as the crypts that develop into colorectal cancer.

One practical problem associated with this modelling approach can be seen in Fig. 4.5.
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The stochastic nature of the system means that, in order to obtain a quantitative under-

standing of the role of a specific parameter in the system, a large number of simulations

must be performed, and the average dynamics examined. Each of the panels in Fig. 4.5 is

the result of 850 simulations, and hence requires a large amount of computational time.

One method for overcoming this problem is to recast the model as a system of partial

differential equations (PDEs). Returning to the Gatenby and Gawlinski model defined

in Eqs.(3.6)–(3.8), we see that the system is defined as two competing populations that

produce acid, respond to acid, proliferate and diffuse at different rates. Our recast model

would simply be an extension of this to include eight competing populations, each re-

sponding to oxygen, glucose and hydrogen ions according to their specific phenotype. For

example, only cells displaying the hyperplastic phenotype would be allowed to diffuse

away from the basement membrane.

It is not clear how valid PDEs are at describing early carcinogenesis. Given the size of the

system, it is important to consider the effects of individual cells. Moreover, adaptation

between phenotypes happens at the individual cell level, not continuously throughout the

whole population. Nonetheless, from a mathematical perspective, it would be interesting

to compare the two approaches. Moreover, use of PDEs would allow insight into the roles

of individual parameters on system dynamics without the necessity of running multiple

simulations outlined above.

8.2.3 Experimental work

The modelling work within this thesis provides answers for some key questions – why tu-

mours display aerobic glycolysis and what effect aerobic glycolysis has on tumour growth.
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Experimental verification of some of the modelling predictions would be of interest:

• During early carcinogenesis, glucose supply is not limited (Chapter 4)

• During early carcinogenesis, cellular adaptation rates increase until cells reach the

peak of the fitness landscape (Chapter 4)

• Cellular quiescence induces cycles of hypoxia and acidity (Chapter 6)

However, I feel the most important results of this thesis are the predicted therapeutic

strategies, directed towards increasing tumour cells’ susceptibility to acidity. Of consider-

able interest would be testing these predictions in vitro in multicellular spheroid models.

Initial experimental work suggests that brief systemic acidosis may induce widespread

tumour apoptosis and regression [65]. Subjecting spheroids to acidosis, combined with

use of amiloride, could prove to be an even more effective therapeutic regime. Taking

advantage of altered cellular metabolism may prove to be a new weapon in the ongoing

battle against cancer.
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Glossary

adenoma Benign epithelial tumour in which the cells form recognisable glandular struc-

tures.

angiogenesis The formation of new capillary blood vessels.

anthracycline Type of chemotherapy that acts to prevent cell division by disrupting

the structure of the DNA.

apoptosis Programmed cell death, as signalled by the nuclei in normally functioning

cells.

basement membrane Extracellular matrix characteristically found under epithelial

cells. There are two distinct layers: the basal lamina, immediately adjacent to

the cells, and the reticular lamina.

benign Not malignant. Benign tumours do not invade or metastasise, having lost growth

control but not positional control. They are usually surrounded by a fibrous capsule

of compressed tissue, and treatment or removal is curative.

carcinogen Chemical, virus or radiation that can induce cancer.

170
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carcinoma Malignant epithelial tumour.

clastogenic Altering the structure of chromosomes.

differentiation Process undergone by cells as they mature into normal cells. Differen-

tiated cells have distinctive characteristics, perform specific functions and are less

likely to divide.

epigenetic Differentiation due to selective gene activation and expression. Not due to

changes in the genome.

epithelium Covering of internal and external surfaces of the body, including the lining

of vessels and other small cavities. It consists of cells joined by small amounts of

‘cementing’ substances. Epithelium is classified into types on the basis of its depth

(in terms of cell number) and the shape of the superficial cells.

extracellular matrix (ECM) Any material produced by cells and secreted into the

surrounding medium, usually applied to the noncellular portion of tissues. Although

produced by cells, the ECM can influence the behaviour of cells quite markedly, an

important factor to consider when growing cells in vitro.

heritable Capable of being transmitted from parent to child.

hyperplasia Abnormal increase in the number of normal cells in a tissue.

hypoxia Diminished oxygen supply.

in situ Localised. A carcinoma that has not breached the basement membrane.

invasion Movement of cells into adjacent tissue normally occupied by a different cell

type.
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in vitro Cell manipulation outside the body.

in vivo In the living body. An experimental procedure using an intact live animal.

malignant Tending to become progressively worse and to result in death. Malignant

tumours are invasive and have the capacity to metastasise. Compare benign

metastasis Transfer of cells from one organ or part to another, not directly connected

with it. This usually occurs through the blood vessels, lymph channels or spinal

fluid.

oncogene Overexpressed version of a normal gene (the proto-oncogene) that promotes

excessive growth. Compare tumour suppressor gene.

necrosis Cell death.

quiescence The state of not dividing.

somatic Characteristic of the body.

stroma (syn: interstitium) Connective tissue framework of an organ, gland or other

structure, in contrast to the functional cells. Rich in extracellular matrix.

tumour (syn: neoplasm) Abnormal mass of tissue serving no useful function to the

host, resulting from excessive cell division that is uncontrolled and progressive. May

be either benign or malignant.

tumour suppressor gene (TSG) (syn: anti-oncogene) A gene negatively regulating

cell division that, when inactivated (through mutation for example), allows escape

from normal growth constraints. Compare oncogene.
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