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Detection Theory, Decision

Theory, and Hypothesis

Testing

A wide variety of engineering problems involve making decisions based on a set
of measurements. For instance, suppose that in a digital communications system,
during a particular interval of time one of two possible waveforms is transmit-
ted to signal a 0-bit or a 1-bit. The receiver then obtains a noisy version of the
transmitted waveform, and from this data must determine the bit. Of course, the
presence of noise means in general that the decision will not always be correct.
However, we would like to use a decision process that is as good as possible in an
appropriate sense.

As another example, this time involving air traffic control, suppose that a
radar system is set up to detect the presence of an aircraft in the sky. During
a particular time interval, a suitably designed radar pulse is transmitted, and if
an aircraft is present, this pulse reflects off the aircraft and is received back at
the ground. Hence, the presence or absence of such a “return pulse” determines
whether an aircraft (or other target) is present. Again the presence of noise in the
received signal means that perfect detection is generally not possible.

Still other examples, sometimes quite elaborate, arise in voice and face recog-
nition systems. Given a segment of voice waveform known to come from one of a
finite set of speakers, one is often interested in identifying the speaker. Similarly,
the problem of identifying a face from an image (i.e., spatial waveform) is also
important in a number of applications.

Addressing problems of this type is the aim of detection and decision theory,
and a natural framework for setting up such problems is in terms of a hypothesis
test. In this framework, each of the possible scenarios corresponds to a hypothe-
sis. When there are M hypotheses, we denote the set of possible hypotheses us-
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56 Detection Theory, Decision Theory, and Hypothesis Testing Chap. 2

ing {H0, H1, . . . , HM−1}.1 For each of the possible hypotheses, there is a different
model for the observed data, and this is what we will exploit to distinguish among
the hypotheses.

In this chapter, we will restrict our attention to the case in which the observed
data can be represented as a K-dimensional random vector

y =
[

y1 y2 · · · yK

]T
, (2.1)

with scalar observations corresponding to the special case K = 1. As will become
apparent, this case is sufficiently general for a wide range of applications, and
allows the key concepts and perspectives to be developed. Extensions to obser-
vations that take the form of (infinite-length) random sequences and (continuous-
time) random waveforms we postpone until Chapter 6.

In many cases the valid hypothesis can be viewed as a (discrete-valued) ran-
dom variable, and thus we denote it using H . That is, we can associate a priori
probabilities

Pm = Pr [H = Hm]

with the hypothesis. Our binary communication example fits within this class,
with M = 2 and the a priori probabilities typically being equal. In this case, the
model for the observed data under each hypothesis takes the form of a conditional
probability density, i.e., py|H(y|Hm) for m = 0, 1, . . . , M−1. As we’ll see, in practice
these conditional probabilities are often specified implicitly rather than explicitly,
and must be inferred from the available information.

In other cases, it is more appropriate to view the valid hypothesis not as a
random variable, but as a deterministic but unknown quantity, which we denote
simply by H . In these situations, a priori probabilities are not associated with the
various hypotheses. The radar detection problem mentioned above is one that
is often viewed this way, since there is typically no natural notion of the a priori
probability of an aircraft being present. For these tests, while the valid hypoth-
esis is nonrandom, the observations still are, of course. In this case, the proba-
bility density model for the observations is parameterized by the valid hypothesis
rather than conditioned on it, so these models are denoted using py(y; Hm), for
m = 0, 1, . . . , M − 1. As in the random hypothesis case, these densities are also
often specified implicitly.

This chapter explores methods applicable to both random and nonrandom
hypothesis tests. However, we begin by focusing on random hypotheses to de-
velop the key ideas, and restrict attention to the binary (M = 2) case.

1Note that H0 is sometimes referred to as the “null” hypothesis, particularly in asymmetric
problems where it has special significance.
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2.1 BINARY RANDOM HYPOTHESIS TESTING: A BAYESIAN APPROACH

In solving a Bayesian binary hypothesis testing problem, two pieces of information
are used. One is the set of a priori probabilities

P0 = Pr [H = H0]

P1 = Pr [H = H1] = 1− P0.
(2.2)

These summarize our state of knowledge about the applicable hypothesis before
any observed data is available.

The second is the measurement model, corresponding to the probability den-
sities for y conditioned on each of the hypotheses, i.e.,

H0 : py|H(y|H0)

H1 : py|H(y|H1).
(2.3)

The observation densities in (2.3) are often referred to as likelihood functions. Our
choice of notation suggests that y is continuous-valued; however, y can equally
well be discrete-valued, in which case the corresponding probability mass func-
tions take the form

py|H [y|Hm] = Pr [y = y | H = Hm] . (2.4)

For simplicity of exposition, we start by restricting our attention to the continuous
case. Again, it is important to emphasize in many problems this measurement
model information is provided indirectly, as the following example illustrates.

Example 2.1

As a highly simplified scenario, suppose a single bit of information m ∈ {0, 1} is to
be sent over a communication channel by transmitting the scalar sm, where s0 and
s1 are both deterministic, known quantities. Let’s further suppose that the channel
is noisy; specifically, what is received is

y = sm + w ,

where w is, independent of m, a zero-mean Gaussian random variable with variance
σ2. From this information, we can readily construct the probability density for the
observation under each of the hypotheses, obtaining:

py |H(y|H0) = N(y; s0, σ
2) =

1√
2πσ2

e−(y−s0)2/(2σ2)

py |H(y|H1) = N(y; s1, σ
2) =

1√
2πσ2

e−(y−s1)2/(2σ2).

(2.5)

In addition, if 0’s and 1’s are equally likely to be transmitted we would set the a
priori probabilities to

P0 = P1 = 1/2.
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2.1.1 Optimum Decision Rules: The Likelihood Ratio Test

The solution to a hypothesis test is specified in terms of a decision rule. We will
focus for the time being on deterministic decision rules. Mathematically, such a
decision rule is a function Ĥ(·) that uniquely maps every possible K-dimensional
observation y to one of the two hypotheses, i.e., Ĥ : RK → {H0, H1}. From this
perspective, we see that choosing the function Ĥ(·) is equivalent to partitioning the
observation space Y = {y} into two disjoint “decision” regions, corresponding to
the values of y for which each of the two possible decisions are made. Specifically,
we use Zm to denote those values of y for which our rule decides Hm, i.e.,

Z0 = {y | Ĥ(y) = H0}
Z1 = {y | Ĥ(y) = H1}.

(2.6)

These regions are depicted schematically in Fig. 2.1.

Our goal, then, is to design this bi-valued function (or equivalently the asso-
ciated decision regions Z0 and Z1) in such a way that the best possible performance
is obtained. In order to do this, we need to be able to quantify the notion of “best.”
This requires that we have a well-defined objective function corresponding to a
suitable measure of quality. For Bayesian problems we use an objective function
taking the form of an expected cost function. Specifically, we use

C̃(Hj, Hi) , Cij (2.7)

to denote the “cost” of deciding that the hypothesis is Ĥ = Hi when the correct
hypothesis is H = Hj. Then the optimum decision rule takes the form

Ĥ(·) = arg min
f(·)

J(f) (2.8)

where the average cost, which is referred to as the “Bayes risk,” is

J(f) = E
[

C̃(H, f(y))
]

, (2.9)

and where the expectation in (2.9) is over both y and H , and f(·) is a generic deci-
sion rule.

Often, the context of the specific problem suggests how to choose the costs
Cij . For example, a symmetric cost function of the form Cij = 1− δ[i− j], i.e.,

C00 = C11 = 0

C01 = C10 = 1
(2.10)

corresponds to seeking a decision rule that minimizes the probability of a decision
error. However, there are many applications where such symmetric cost functions
are not well-matched. For example, in a medical diagnosis problem where H0

denotes the hypotheses that the patient does not have a particular disease and H1
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{y}

Z 0

Z 1
Z 1

Z 1 Figure 2.1. The regions Z0 and Z1 as
defined in (2.6) corresponding to an ex-
ample decision rule Ĥ(·).

that he or she does, we would typically want to select cost assignments such that
C01 ≫ C10.2

Having chosen suitable cost assignments, we proceed to our solution by con-
sidering an arbitrary but fixed decision rule f(·). In terms of this generic f(·), the
Bayes risk can be expanded in the form

J(f) = E
[

C̃(H, f(y))
]

= E

[

E
[

C̃(H, f(y)) | y = y
]

]

=

∫

J̃(f(y),y) py(y) dy, (2.11)

with
J̃(H,y) = E

[

C̃(H, H)
∣

∣

∣
y = y

]

, (2.12)

and where to obtain the second equality in (2.11) we have used iterated expecta-
tion.

From the last equality in (2.11) we obtain a key insight: since py(y) is nonneg-
ative, it is clear that we will minimize J if we minimize J̃(f(y),y) for each particular
value of y. The implication here is that we can determine the optimum decision rule
Ĥ(·) on a point by point basis, i.e., Ĥ(y) for each y.

Let’s consider a particular (observation) point y = y∗. For this point, if we
choose the assignment

Ĥ(y∗) = H0,

2In still other problems, it is difficult to make meaningful cost assignments at all. In this case,
the Neyman-Pearson framework developed later in the chapter is more natural than the Bayesian
framework we develop in this section.
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then our conditional expectation (2.12) takes the value

J̃(H0,y∗) = C00 Pr [H = H0 | y = y∗] + C01 Pr [H = H1 | y = y∗] . (2.13)

Alternatively, if we choose the assignment

Ĥ(y∗) = H1,

then our conditional expectation (2.12) takes the value

J̃(H1,y∗) = C10 Pr [H = H0 | y = y∗] + C11 Pr [H = H1 | y = y∗] . (2.14)

Hence, the optimum assignment for the value y∗ is simply the choice correspond-
ing to the smaller of (2.13) and (2.14). It is convenient to express this optimum
decision rule using the following notation (now replacing our particular observa-
tion y∗ with a generic observation y):

C00 Pr [H = H0 | y = y]

+ C01 Pr [H = H1 | y = y]

Ĥ(y)=H1

R
Ĥ(y)=H0

C10 Pr [H = H0 | y = y]

+ C11 Pr [H = H1 | y = y] .
(2.15)

Note that when the two sides of (2.15) are equal, then either assignment is equally
good—both have the same effect on the objective function (2.11).

A minor rearrangement of the terms in (2.15) results in

(C01 − C11) Pr [H = H1 | y = y]
Ĥ(y)=H1

R
Ĥ(y)=H0

(C10 − C00) Pr [H = H0 | y = y] . (2.16)

Evidently, the a posteriori probabilities, i.e., the probabilities for each of the two hy-
potheses conditioned on having observed the sample value y of the random vector
y, play an important role in the optimum decision rule (2.16). These probabilities
can be readily computed from our measurement models (2.3) together with the
a priori probabilities (2.2). This follows from a simple application of Bayes’ Rule,
viz.,

Pr [H = Hm | y = y] =
py|H(y|Hm) Pm

py|H(y|H0) P0 + py|H(y|H1) P1
. (2.17)

Since for any reasonable choice of cost function the cost of an error is higher
than the cost of being correct, the terms in parentheses in (2.16) are both nonnega-
tive, so we can equivalently write (2.16) in the form3

Pr [H = H1 | y = y]

Pr [H = H0 | y = y]

Ĥ(y)=H1

R
Ĥ(y)=H0

(C10 − C00)

(C01 − C11)
. (2.18)

3Technically, we have to be careful about dividing by zero here. To simplify our exposition,
however, as we discuss in Section 2.1.2, we will generally restrict our attention to the case where
this does not happen.
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When we then substitute (2.17) into (2.18) and multiply both sides by P0/P1, we
obtain the decision rule in its final form, directly in terms of the measurement
densities:

L(y) ,
py|H(y|H1)

py|H(y|H0)

Ĥ(y)=H1

R
Ĥ(y)=H0

P0(C10 − C00)

P1(C01 − C11)
, η. (2.19)

The left side of (2.19) is a function of the observed data y referred to as the
likelihood ratio—which we denote using L(y)—and is constructed from the mea-
surement model. The right side of (2.19)—which we denote using η—is a precom-
putable threshold which is determined from the a priori probabilities and costs.
The overall decision rule then takes the form of what is referred to as a likelihood
ratio test (LRT).

2.1.2 Properties of the Likelihood Ratio Test

Several observations lend valuable insights into the optimum decision rule (2.19).
First, note that the likelihood ratio L(·) is a scalar-valued function, i.e., L : RK → R,
regardless of the dimension K of the data. In fact, L(y) is an example of what is
referred to as a sufficient statistic for the problem: it summarizes everything we
need to know about the observation vector in order to make a decision. Phrased
differently, in terms of our ability to make the optimum decision (in the Bayesian
sense in this case), knowledge of L(y) is as good as knowledge of the full data
vector y itself.

We will develop the notion of a sufficient statistic in more detail in subse-
quent chapters; however, at this point it suffices to make two observations with
respect to our detection problem. First, (2.19) tells us an explicit construction for a
scalar sufficient statistic for the Bayesian binary hypothesis testing problem. Sec-
ond, sufficient statistics are not unique. For example, the data y itself is a sufficient
statistic, albeit a trivial one. More importantly, any invertible function of L(y) is
also a sufficient statistic. In fact, for the purposes of implementation or analysis it
is often more convenient to rewrite the likelihood ratio test in the form

ℓ(y) = g(L(y))
Ĥ(y)=H1

R
Ĥ(y)=H0

g(η) = γ, (2.20)

where g(·) is some suitably chosen, monotonically increasing function. An impor-
tant example is the case corresponding to g(·) = ln(·), which simplifies many tests
involving densities with exponential factors, such as Gaussians.

It is also important to emphasize that while L(y) is a scalar, L = L(y) is a ran-
dom variable—i.e., it takes on a different value in each experiment. As such, we
will frequently be interested in its probability density function—or at least statis-
tics such as its mean and variance—under each of H0 and H1. Such densities can
be derived using the method of events discussed in Section 1.5.2 of the previous
chapter, and are often used in calculating system performance.
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It follows immediately from the definition in (2.19) that the likelihood ratio
is a nonnegative quantity. Furthermore, depending on the problem, some values
of y may lead to L(y) being zero or infinite. In particular, the former occurs when
py|H(y|H1) = 0 but py|H(y|H0) > 0, which is an indication that values in a neighbor-
hood of y effectively cannot occur under H1 but can under H0. In this case, there
will be values of y for which we’ll effectively know with certainty that the correct
hypothesis is H0. When the likelihood ratio is infinite, corresponding a division
by zero scenario, an analogous situation exists, but with the roles of H0 and H1

reversed. These cases where such perfect decisions are possible are referred to as
singular detection scenarios. In some practical problems, these scenarios do in fact
occur. However, in other cases they suggest a potential lack of robustness in the
data modeling, i.e., that some source of inherent uncertainty may be missing from
the model. In any event, to simplify our development for the remainder of the
chapter we will largely restrict our attention to the case where 0 < L(y) < ∞ for
all y.

While the likelihood ratio focuses the observed data into a single scalar for
the purpose of making an optimum decision, the threshold η for the test plays a
complementary role. In particular, from (2.19) we see that η focuses the relevant
features of the cost function and a priori probabilities into a single scalar. Further-
more, this information is combined in a manner that is intuitively satisfying. For
example, as (2.19) also reflects, an increase in P0 means that H0 is more likely, so
that η is increased to appropriately bias the test toward deciding H0 for any partic-
ular observation. Similarly, an increase in C10 means that deciding H1 when H0 is
true is more costly, so η is increased to appropriately bias the test toward deciding
H0 to offset this risk. Finally, note that adding a constant to the cost function (i.e.,
to all Cij) has, as we would anticipate, no effect on the threshold. Hence, without
loss of generality we may set at least one of the correct decision costs—i.e., C00 or
C11—to zero.

Finally, it is important to emphasize that the likelihood ratio test (2.19) indi-
rectly determines the decision regions (2.6). In particular, we have

Z0 = {y | Ĥ(y) = H0} = {y | L(y) < η}
Z1 = {y | Ĥ(y) = H1} = {y | L(y) > η}.

(2.21)

As Fig. 2.1 suggests, while a decision rule expressed in the measurement data
space {y} can be complicated,4 (2.19) tells us that the observations can be trans-
formed into a one-dimensional space defined via L = L(y) where the decision
regions have a particularly simple form: the decision Ĥ(L) = H0 is made when-
ever L lies to the left of some point on the line, and Ĥ(L) = H1 whenever L lies to
the right.

4Indeed, the respective sets Z0 and Z1 are not even connected in general, even for the case
K = 1.
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2.1.3 Maximum A Posteriori and Maximum Likelihood Detection

An important cost assignment for many problems is that given by (2.10), which as
we recall corresponds to a minimum probability-of-error (Pr(e)) criterion. Indeed,
in this case, we have

J(Ĥ) = Pr
[

Ĥ(y) = H0, H = H1

]

+ Pr
[

Ĥ(y) = H1, H = H0

]

= Pr(e).

The corresponding decision rule in this case can be obtained by simply specializ-
ing (2.19) to obtain

py|H(y|H1)

py|H(y|H0)

Ĥ(y)=H1

R
Ĥ(y)=H0

P0

P1
. (2.22)

Alternatively, we can obtain additional insight by specializing the equivalent
test (2.16), from which we obtain a form of the minimum probability-of-error test
expressed in terms of the a posteriori probabilities for the problem, viz.,

Pr [H = H1 | y = y]
Ĥ(y)=H1

R
Ĥ(y)=H0

Pr [H = H0 | y = y] . (2.23)

From (2.23) we see that to minimize the probability of a decision error, we should
choose the hypothesis corresponding to the largest a posteriori probability, i.e.,

Ĥ(y) = arg max
A∈{H0,H1}

Pr [H = A | y = y] . (2.24)

For this reason, we refer to the test associated with this cost assignment as the
maximum a posteriori (MAP) decision rule.

Still further simplification is possible when the hypotheses are equally likely
(P0 = P1 = 1/2). In this case, (2.22) becomes simply

py|H(y|H1)
Ĥ(y)=H1

R
Ĥ(y)=H0

py|H(y|H0),

and thus we see that our optimum decision rule chooses the hypothesis for which
the corresponding likelihood function is largest, i.e.,

Ĥ(y) = arg max
A∈{H0,H1}

py|H(y|A). (2.25)

This special case is referred to as the maximum likelihood (ML) decision rule. Max-
imum likelihood detection plays an important role in a large number of applica-
tions, and in particular is widely used in the design of receivers for digital com-
munication systems.
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Example 2.2

Continuing with Example 2.1, we can obtain from (2.5) that the likelihood ratio test
for this problem takes the form

L(y) =

1√
2πσ2

e−(y−s1)2/(2σ2)

1√
2πσ2

e−(y−s0)2/(2σ2)

Ĥ(y)=H1

R
Ĥ(y)=H0

η. (2.26)

As (2.26) suggests—and as is generally the case in Gaussian problems—the natural
logarithm of the likelihood ratio is a more convenient sufficient statistic to work with
in this example. In this case, taking logarithms of both sides of (2.26) yields

ℓ(y) =
1

2σ2

[

(y − s0)
2 − (y − s1)

2
]

Ĥ(y)=H1

R
Ĥ(y)=H0

ln η. (2.27)

Expanding the quadratics and cancelling terms in (2.27) we obtain the test in its
simplest form, which for s1 > s0 is given by

y
Ĥ(y)=H1

R
Ĥ(y)=H0

s1 + s0

2
+

σ2 ln η

s1 − s0
, γ. (2.28)

We also remark that with a minimum probability-of-error criterion, if P0 = P1

then ln η = 0 and we see immediately from (2.27) that the optimum test takes the
form

|y − s0|
Ĥ(y)=H1

R
Ĥ(y)=H0

|y − s1|,

which corresponds to a “minimum-distance” decision rule, i.e.,

Ĥ(y) = Hm̂, m̂ = arg min
m∈{0,1}

|y − sm|.

As we’ll see later in the chapter, this minimum-distance property holds in multidi-
mensional Gaussian problems as well.

Note too that in this problem the decisions regions on the y-axis have a partic-
ularly simple form; for example, for s1 > s0 we obtain

Z0 = {y | y < γ}
Z1 = {y | y > γ}. (2.29)

In other problems—even Gaussian ones—the decision regions can be more compli-
cated, as our next example illustrates.

Example 2.3

Suppose that a zero-mean Gaussian random variable has one of two possible vari-
ances, σ2

1 or σ2
0, where σ2

1 > σ2
0. Let the costs and prior probabilities be arbitrary.

Then the likelihood ratio test for this problem takes the form

L(y) =

1
√

2πσ2
1

e−y2/(2σ2
1)

1
√

2πσ2
0

e−y2/(2σ2
0)

Ĥ(y)=H1

R
Ĥ(y)=H0

η.
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In this problem, it is a straightforward exercise to show that the test simplifies to one
of the form

|y|
Ĥ(y)=H1

R
Ĥ(y)=H0

√

2
σ2

0σ
2
1

σ2
1 − σ2

0

ln

(

η
σ1

σ0

)

, γ.

Hence, the decision region Z1 is the union of two disconnected regions in this case,
i.e.,

Z1 = {y | y > γ} ∪ {y | y < −γ}.

2.1.4 The Operating Characteristic of the Likelihood Ratio Test

In this section, we develop some additional perspectives on likelihood ratio tests
that will provide us with further insight on Bayesian hypothesis testing. These
perspectives will also be important in our development of nonBayesian tests later
in the chapter.

We begin by observing that the performance of any decision rule5 Ĥ(·) may
be fully specified in terms of two quantities

PD = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H1

]

=

∫

Z1

py|H(y|H1) dy

PF = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H0

]

=

∫

Z1

py|H(y|H0) dy,

(2.30)

where Z0 and Z1 are the decision regions defined via (2.6). Using terminology
that originated in the radar community where H1 refers to the presence of a tar-
get and H0 the absence, the quantities PD and PF are generally referred to as the
“detection” and “false-alarm” probabilities, respectively (and, hence, the choice of
notation). In the statistics community, by contrast, PF is referred to as the size of
the test and PD as the power of the test.

It is worth emphasizing that the characterization in terms of (PD, PF ) is not
unique, however. For example, any invertible linear or affine transformation of
the pair (PD, PF ) is also complete. For instance, the pair of “probabilities of error
of the first and second kind” defined respectively via

P 1
E = Pr

[

Ĥ(y) = H1

∣

∣

∣
H = H0

]

= PF

P 2
E = Pr

[

Ĥ(y) = H0

∣

∣

∣
H = H1

]

= 1− PD , PM

(2.31)

constitute such a characterization, and are preferred in some communities that
make use of decision theory. As (2.31) indicates, from the radar perspective the

5Note that the arbitrary decision rule we consider here need not be optimized with respect
to any particular criterion—it might be, but it might also be a heuristically reasonable rule, or even
a bad rule.
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PD

PF0 1

1

0

η→0

η→ ∞

← increasin
g η

Figure 2.2. Operating characteristic
associated with a likelihood ratio test.

probability of error of the first kind is the probability of a false alarm, while prob-
ability of error of the second kind is the probability of a miss, which is denoted by
PM .

In general, a good decision rule (detector) is one with a large PD and a small
PF (or equivalently, small P 1

E and P 2
E). However, ultimately these are competing

objectives. As an illustration of this behavior, let us examine the performance of a
likelihood ratio test (2.19) when the threshold η is varied. Note that each choice of η
completely specifies a decision rule, with which is associated a particular (PD, PF )
operating point. Hence, each value of η is associated with a single point in the PD–
PF plane. Moreover, as η is varied from 0 to∞, a curve is traced out in this plane
as illustrated in Fig. 2.2. This curve is referred to as the operating characteristic of
the likelihood ratio test.

As Fig. 2.2 suggests, good PD is generally obtained at the expense of high
PF , and so choosing a threshold η for a particular problem involves making an
acceptable tradeoff. Indeed, as η → 0 we have (PD, PF ) → (1, 1), while as η → ∞
we have (PD, PF ) → (0, 0). From this perspective, the Bayesian test represents a
particular tradeoff, and corresponds to a single point on this curve. To obtain this
tradeoff, we effectively selected as our objective function a linear combination of
PD and PF . More specifically, we performed the optimization (2.8) using

J(f) = αPF − βPD + γ,

where the choice of α and β is, in turn, determined by the cost assignment (Cij ’s)
and the a priori probabilities (Pm’s). In particular, rewriting (2.9) in the form

J(f) =
∑

i,j

Cij Pr
[

Ĥ(y) = Hi

∣

∣

∣
H = Hj

]

Pj
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we obtain

α = (C10 − C00)P0 β = (C01 − C11)P1 γ = (C00P0 + C01P1).

Let us explore a specific example to gain further insight.

Example 2.4

Let us consider the following special case of our simple scalar Gaussian detection
problem from Example 2.1:

H0 : y ∼ N(0, σ2)

H1 : y ∼ N(m,σ2), m ≥ 0,
(2.32)

which corresponds to choosing s0 = 0 and s1 = m. Specializing (2.28), we see that
the optimum decision rule takes the form

y
Ĥ(y)=H1

R
Ĥ(y)=H0

m

2
+

σ2 ln η

m
, γ,

so that

PD =

∫ ∞

γ
py |H(y|H1) dy (2.33a)

PF =

∫ ∞

γ
py |H(y|H0) dy. (2.33b)

The expressions (2.33a) and (2.33b) each correspond to tail probabilities in a
Gaussian distribution, which are useful to express in the “standard form” described
in Section 1.6.2. In particular, we have, in terms of Q-function notation,

PD = Pr [y > γ | H = H1] = Pr

[

y −m

σ
>

γ −m

σ

∣

∣

∣

∣

H = H1

]

= Q

(

γ −m

σ

)

(2.34a)

PF = Pr [y > γ | H = H0] = Pr
[y

σ
>

γ

σ

∣

∣

∣
H = H0

]

= Q

(γ

σ

)

. (2.34b)

From (2.34a) and (2.34b) we see that as γ is varied, a curve is traced out in the PD–PF

plane. Moreover, this curve is parameterized by d = m/σ. The quantity d2 can be
viewed as a “signal-to-noise ratio,” so that d is a normalized measure of “distance”
between the hypotheses. Several of these curves are plotted in Fig. 2.3. Note that
when m = 0 (d = 0), the hypotheses (2.32) are indistinguishable, and the curve
PD = PF is obtained. As d increases, better performance is obtained—e.g., for a
given PF , a larger PD is obtained.6 Finally, as d→ ∞, the PD–PF curve approaches
the ideal operating characteristic: PD = 1 for all PF > 0.

We will explore generalizations of these results in multidimensional Gaussian
problems later in the chapter.

6For any reasonable performance criterion, a curve above and to the left of another is always
preferable.



68 Detection Theory, Decision Theory, and Hypothesis Testing Chap. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 False−Alarm Probability PF

 D
et

ec
ti

o
n

 P
ro

b
ab

il
it

y
 P

D

Figure 2.3. Operating characteristic of
the likelihood ratio test for the scalar
Gaussian detection problem. The suc-
cessively higher curves correspond to
d = m/σ = 0, 1, . . . , 5.

One property of the operating characteristic of the likelihood ratio test is
that it is monotonically nondecreasing. This follows rather immediately from the
structure of these tests. In particular, let PD(η) and PF (η) be the detection and
false-alarm probabilities, respectively, for the deterministic test associated with a
generic threshold η. Then for any η1 and η2 such that η2 > η1 we have

PD(η2) ≤ PD(η1) (2.35a)

PF (η2) ≤ PF (η1). (2.35b)

Hence,
PD(η1)− PD(η2)

PF (η1)− PF (η2)
≥ 0.

Later in the chapter, we will explore additional properties of the operating
characteristic associated with the likelihood ratio test. For example, we’ll see that
the structure of the likelihood ratio imposes important constraints on the shape of
this operating characteristic. Furthermore, we’ll relate the operating characteristic
to the performance of other kinds of decision rules. For example, to every possi-
ble decision rule for a given problem there corresponds an operating point in the
PD–PF plane. We will develop ways of using the operating characteristic of the
likelihood ratio test to bound where the operating points of arbitrary rules may
lie. To obtain these results, we need to take a look at decision theory from some
additional perspectives. We begin by considering a variation on the Bayesian hy-
pothesis testing framework.

2.2 MIN-MAX HYPOTHESIS TESTING

As we have seen, the Bayesian approach to hypothesis testing is a natural one
when we can meaningfully assign not only costs Cij but a priori probabilities Pm
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as well. However, in a number of applications it may be difficult to determine
appropriate a priori probabilities. Moreover, we don’t want to choose these proba-
bilities arbitrarily—if we use incorrect values for the Pm in designing our optimum
decision rule, our performance will suffer.

In this section, we develop a method for making Bayesian hypothesis testing
robust with respect to uncertainty in the a priori probabilities. Our approach is to
construct a decision rule that yields the best possible worst-case performance. As
we will see, this corresponds to an optimization based on what is referred to as a
“min-max” criterion, which is a powerful and practical strategy for a wide range
of detection and estimation problems.

Example 2.5

As motivation, let us reconsider our simple radar or communications scenario (2.32)
of Example 2.4. For this problem we showed that the decision rule that minimizes
the Bayes risk for a cost assignment {Cij} and a set of a priori probabilities {Pm}
reduces to

y
Ĥ(y)=H1

R
Ĥ(y)=H0

m

2
+

σ2

m
ln

[

(C10 −C00)P0

(C01 −C11)P1

]

. (2.36)

In a communication scenario the prior probabilities P0, P1 may depend on the char-
acteristics of the information source and may not be under the control of the en-
gineer who is designing the receiver. In the radar problem, it may be difficult to
accurately determine the a priori probability P1 of target presence.

For scenarios such as that in Example 2.5, let us assess the impact on per-
formance of using a test optimized for the a priori probabilities {1−p, p} when
the corresponding true a priori probabilities are {P0, P1}. The Bayes risk for this
“mismatched” system is

J(p, P1) = C00(1−P1)+C01P1+(C10−C00)(1−P1)PF (p)−(C01−C11)P1PD(p), (2.37)

where we have explicitly included the dependence of PF and PD on p to empha-
size that these conditional probabilities are determined from a likelihood ratio test
whose threshold is computed using the incorrect prior p.

The system performance in this situation has a convenient geometrical inter-
pretation, as we now develop. With the notation (2.37), J(P1, P1) denotes the Bayes
risk when the likelihood ratio test corresponding to the correct priors is used. By
the optimality properties of this latter test, we know that

J(p, P1) ≥ J(P1, P1). (2.38)

with, of course, equality if p = P1. Moreover, for a fixed p, the mismatch Bayes
risk J(p, P1) is a linear function of the true prior P1. Hence, we can conclude, as
depicted in Fig. 2.4, that when plotted as functions of P1 for a particular p, the
mismatch risk J(p, P1) is a line tangent to J(P1, P1) at P1 = p. Furthermore, since
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Figure 2.4. Bayes risk objective func-
tions for min-max tests. The solid
curve indicates the objective function
as a function of the true prior probabil-
ity for a correctly matched detector—
i.e., the detector has correct knowl-
edge of the prior probabilities. The
dashed curve indicates the objective
function with mismatched detector; for
this curve the assumed prior is p.

this must be true for all choices of p, we can further conclude that the optimum
risk J(P1, P1) must be a concave function of P1 as Fig. 2.4 also reflects.

From the geometric picture of Fig. 2.4, it is clear that the performance J(p, P1)
obtained using a fixed assumed prior p when the correct prior is P1, depends on
the value of P1. Moreover, because the mismatch risk is a linear function, we see
that the poorest performance, corresponding to worst case mismatch, is obtained
either when P1 = 0 or P1 = 1, depending on the sign of the slope of the mismatch
risk function. For example, for the p shown in Fig. 2.4, this worst case performance
takes place when the true prior is P1 = 1.

Given this behavior, a conservative design strategy is to use a likelihood ratio
test based on an assumed prior p chosen so that the worst-case performance is as
good as possible. Mathematically, this corresponds to choosing the assumed prior
according to a “min-max” criterion: the prior P̂1 obtained in this manner is given
by

P̂1 = arg min
p

{

max
P1

J(p, P1)
}

. (2.39)

This minimizes the sensitivity of J(p, P1) to variations in P1, and hence leads to a
decision rule that is robust with respect to uncertainty in the prior P1.

The solution to this min-max problem follows readily from the geometrical
picture of Fig. 2.4. Our solution depends on on the details of the shape of J(P1, P1)
over the range 0 ≤ P1 ≤ 1. There are three cases, which we consider separately.

Case 1: J(P1, P1) Monotonically Nonincreasing

An example of this case is depicted in Fig. 2.5(a). In this case, the slope of any
line tangent to J(P1, P1) is nonpositive, so for any p the maximum of J(p, P1) lies
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at P1 = 0. Hence, as the solution to (2.39) we obtain P̂1 = 0. This corresponds to
using a likelihood ratio test with threshold

η̂ =
1− P̂1

P̂1

(C10 − C00)

(C01 − C11)
=∞.

This detector makes the decision Ĥ = H0 regardless of the observed data, and
therefore corresponds to the operating point (PD, PF ) = (0, 0).

Case 2: J(P1, P1) Monotonically Nondecreasing

An example of this case is depicted in Fig. 2.5(b). In this case, the slope of any line
tangent to J(P1, P1) is nonnegative, so for any p the maximum of J(p, P1) lies at
P1 = 1. Hence, as the solution to (2.39) we obtain P̂1 = 1. This corresponds to
using a likelihood ratio test with threshold

η̂ =
1− P̂1

P̂1

(C10 − C00)

(C01 − C11)
= 0.

This detector makes the decision Ĥ = H1 regardless of the observed data, and
therefore corresponds to the operating point (PD, PF ) = (1, 1).

Case 3: J(P1, P1) Nonmonotonic

An example of this case is depicted in our original Fig. 2.4. In this case, J(P1, P1)
has a point of zero slope (and hence a maximum) at an interior point (0 < P1 < 1),
so that P̂1 is the value of p for which the slope of J(p, P1) is zero.

The corresponding point on the operating characteristic (and in turn, implic-
itly, the threshold η̂) can be determined geometrically. In particular, substituting
(2.37) with our zero-slope condition, it follows that P̂1 satisfies

d

dP1

J(p, P1)

∣

∣

∣

∣

p=P̂1

= (C01−C00)−(C10−C00)PF (P̂1)−(C01−C11)PD(P̂1) = 0. (2.40)

Then (2.40) describes the following line in the PD–PF plane

PD =
C01 − C00

C01 − C11

− C10 − C00

C01 − C11

PF , (2.41)

which has negative slope as we would expect provided correct decisions are al-
ways preferable to incorrect ones, i.e., Cij > Cii for all i 6= j,

Hence, its intersection with the operating characteristic for likelihood ratio
tests then determines the desired (P̂D, P̂F ) operating point, and implicitly the cor-
responding threshold η̂. Note that to implement the test we never need to explic-
itly calculate P̂1, just η̂. Furthermore, that a unique intersection (and hence operat-
ing point) exists for such problems follows from the monotonicity of the operating
characteristic which we established at the end of Section 2.1.4.
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As a final comment, examining the endpoints of the curve in Fig. 2.4 we see
that for some cost assignments we can guarantee that this Case 3 will apply. For
example, this happens when C00 = C11 = 0. In this case, we see that the particular
operating point on the likelihood ratio test operating characteristic is defined as
the point for which the cost of a miss is the same as the cost of a false alarm, i.e.,

C01(1− PD) = C10PF . (2.42)

As C01 and C10 are varied relative to one another, the likelihood ratio test threshold
η̂ is varied accordingly.

2.3 NEYMAN-PEARSON BINARY HYPOTHESIS TESTING

Both our basic Bayesian and min-max hypothesis testing formulations require that
we choose suitable cost assignments Cij. As we saw, these cost assignments di-
rectly influence the (PD, PF ) operating point of the optimum decision rule. How-
ever, in many applications there is no obvious set of cost assignments.

In this kind of situation, an optimization criterion that is frequently more
natural is to choose the decision rule so as to maximize PD subject to a constraint
on the maximum allowable PF , i.e.,

max
Ĥ(·)

PD such that PF ≤ α.

This is referred to as the Neyman-Pearson criterion. Interestingly, as we will see
the likelihood ratio test also plays a key role in the solution for Neyman-Pearson
problems. For example, for problems involving continuous-valued data, the opti-
mum decision rule is again a likelihood ratio test with the threshold chosen so that
PF = α.

This result can be obtained via the following straightforward Lagrange mul-
tiplier approach. As in the Bayesian case, we restrict our attention to deterministic
decision rules for the time being. To begin, let PF = α′ ≤ α, and let us consider
minimizing

J(Ĥ) = (1− PD) + λ(PF − α′)

with respect to the choice of Ĥ(·), where λ is the Lagrange multiplier. To obtain
our solution, it is convenient to expand J(Ĥ) in the following form

J(Ĥ) =

∫

Z0

py|H(y|H1) dy + λ

[
∫

Z1

py|H(y|H0) dy− α′

]

=

∫

Z0

py|H(y|H1) dy + λ

[

1−
∫

Z0

py|H(y|H0) dy− α′

]

= λ(1− α′) +

∫

Z0

[

py|H(y|H1)− λpy|H(y|H0)
]

dy. (2.43)
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Now recall from our earlier discussion that specifying Z0 fully determines
Ĥ(·), so we can view our problem as one of determining the optimum Z0. From
this perspective it is clear we want to choose Z0 so that it contains precisely those
values of y for which the term in brackets inside the integral in (2.43) is negative,
since this choice makes J(Ĥ) smallest. This statement can be expressed in the form

py|H(y|H1)− λpy|H(y|H0)
Ĥ(y)=H1

R
Ĥ(y)=H0

0,

which, in turn, corresponds to a likelihood ratio test; specifically,

py|H(y|H1)

py|H(y|H0)

Ĥ(y)=H1

R
Ĥ(y)=H0

λ (2.44)

where λ is chosen so that PF = α′. It remains only to determine α′. However,
since the operating characteristic of the likelihood ratio test PD is a monotonically
increasing function of PF , the best possible PD is obtained when we let α′ = α.

In summary, we have seen that the optimum deterministic decision rules for
Bayesian, Min-max, and Neyman-Pearson hypothesis testing all take the form of
likelihood ratio tests with suitably chosen thresholds. Because such tests arise as
the solution to problems with such different criteria, a popular folk theorem is that
all reasonable optimization criteria lead to decision rules that can be described
in terms of likelihood ratio tests. While this statement is a difficult one to make
precise, for most criteria that have been of interest in practice this statement has
been true.

And although we have restricted our attention to the case of continuous-
valued data, the likelihood ratio test also plays a central role in problems involving
discrete-valued data as we will see beginning in Section 2.5. Moreover, for M-ary
hypothesis testing problems with M > 2, the solutions can be described in terms
of natural generalizations of our likelihood ratio tests. Before we proceed explore
these topics, however, let us examine the structure of likelihood ratio tests for a
number of basic detection problems involving Gaussian data.

2.4 GAUSSIAN HYPOTHESIS TESTING

A large number of detection and decision problems take the form of binary hy-
pothesis tests in which the data are jointly Gaussian under each hypothesis. In
this section, we explore some of the particular properties of likelihood ratio tests
for these problems. The general scenario we consider takes the form

H0 : y ∼ N(m0,Λ0)

H1 : y ∼ N(m1,Λ1).
(2.45)
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Note that y could be a random vector obtained from some array of sensors, or it
could be a collection of samples obtained from a random discrete-time signal y [n],
e.g.,

y =
[

y [0] y [1] · · · y [N − 1]
]T

. (2.46)

For the hypotheses (2.45), and provided Λ0 and Λ1 are nonsingular, the like-
lihood ratio test takes the form

L(y) =

1
(2π)N/2|Λ1|1/2 exp

[

−1
2
(y −m1)

TΛ−1
1 (y −m1)

]

1
(2π)N/2|Λ0|1/2 exp

[

−1
2
(y −m0)TΛ−1

0 (y −m0)
]

Ĥ(y)=H1

R
Ĥ(y)=H0

η. (2.47)

Some algebraic manipulation allows a simpler sufficient statistic to be ob-
tained for the problem, which corresponds to the test

1

2
yT
[

Λ−1
0 −Λ−1

1

]

y

+ yT
[

Λ−1
1 m1 −Λ−1

0 m0

]

Ĥ(y)=H1

R
Ĥ(y)=H0

lnη +
1

2
ln (|Λ1|/|Λ0|)

+
1

2

[

mT
1 Λ−1

1 m1 −mT
0 Λ−1

0 m0

]

.

(2.48)

Further simplification of (2.48) can be obtained in various important special
cases. We illustrate two of these via examples.

Example 2.6

Suppose in a spread-spectrum binary communication system, each bit is repre-
sented by a code sequence of length K for transmission. Specifically, a 1-bit is
signaled via the sequence m1[n], and a 0-bit via m0[n], where n = 0, 1, . . . ,K − 1.
At the detector we obtain the following noise corrupted version of the transmitted
sequence

H0 : y [n] = m0[n] + w [n]

H1 : y [n] = m1[n] + w [n],
(2.49)

where under each hypothesis the noise w [n] is a sequence of independent, identi-
cally distributed (IID) Gaussian random variables with mean zero and variance σ2.
Collecting the observed data y [n] for n = 0, 1, . . . ,N − 1 into a vector y according to
(2.46), we obtain

H0 : y ∼ N(m0, σ
2I)

H1 : y ∼ N(m1, σ
2I),

(2.50)

where

m0 ,
[

m0[0] m0[1] · · · m0[K − 1]
]T

m1 ,
[

m1[0] m1[1] · · · m1[K − 1]
]T

.
(2.51)

Defining
∆m =

[

∆m[0] ∆m[1] · · · ∆m[K − 1]
]T

= m1 −m0, (2.52)

we see from simplifying (2.48) that a sufficient statistic for making the optimum
Bayesian decision at the detector (regardless of the cost and a priori probability as-
signments) is

ℓ(y) = yT ∆m =

K−1
∑

n=0

y[n]∆m[n], (2.53)
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and the test is

ℓ(y)
Ĥ(y)=H1

R
Ĥ(y)=H0

η′ , σ2 ln η +
1

2

[

mT
1 m1 −mT

0 m0

]

. (2.54)

Note that the correlation computation (2.53) that defines ℓ(y) is equivalent to
a “convolution and sample” operation. Specifically, it is a straightforward exercise
to verify that ℓ can be expressed in the form

ℓ = (y[n] ∗ h[n])
∣

∣

∣

n=K−1
, (2.55)

where the filter unit-sample response is defined via

h[n] =











0 n ≥ K

∆m[K − 1− n] 0 ≤ n ≤ K − 1

0 n ≤ −1.

(2.56)

This detector is an example of a matched filter, a concept we will explore in detail
in Chapter 6. Whether the direct computation of ℓ as the correlation (2.53) or its
computation via (2.55) is more efficient depends on the particular implementation.
It is also straightforward to obtain expressions for the performance of this detector;
we leave these as an exercise.

To develop further insight, let us consider the generalization of Example 2.6
to the case of an arbitrary noise covariance, so our hypotheses are

H0 : y ∼ N(m0,Λ)

H1 : y ∼ N(m1,Λ),
(2.57)

where Λ = Λ1 = Λ0 is the covariance matrix. In this case the likelihood ratio test
simplifies to

(y −m0)
TΛ−1(y −m0)

Ĥ(y)=H1

R
Ĥ(y)=H0

(y −m1)
TΛ−1(y −m1) + 2 ln η (2.58)

or

ℓ′(y) , (m1−m0)
TΛ−1y

Ĥ(y)=H1

R
Ĥ(y)=H0

1

2

(

2 ln η + mT
1 Λ−1m1 −mT

0 Λ−1m0

)

, η′. (2.59)

Useful insights are obtained from a geometrical interpretation of our results.
To develop this geometry, we begin by defining an inner product7

〈x,y〉 = xTΛ−1y (2.60)

and the associated induced norm

‖y‖ =
√

〈y,y〉 =

√

yTΛ−1y. (2.61)

7We leave it as an exercise for you to verify that we have defined a valid inner product.
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Then, our optimum decision rule (2.59) corresponds to comparing a projection

ℓ′(y) = 〈y, ∆m〉 (2.62)

against a threshold, where, again, ∆m = m1 −m0.

Specializing further, note that in the case of a minimum probability of error
cost assignment and equally likely hypotheses, it is clear from using (2.61) with
(2.58) that the maximum likelihood decision rule is equivalent to a minimum dis-
tance rule, i.e.,

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1}

‖y −mm‖,

where our distance metric is defined via our norm (2.61). In addition, via (2.59),
when ‖m0‖ = ‖m1‖, solving for the minimum distance is equivalent to solving for
the maximum projection; in particular, specializing (2.59) we obtain

Ĥ(y) = Hm̂ where m̂ = arg max
m∈{0,1}

〈y,mm〉 ,

where our inner product is that defined in (2.62). In our vector space {y}, the
corresponding decisions regions are separated by a hyperplane equidistant from
m0 and m1 and perpendicular to the line connecting them.

The performance of these likelihood ratio tests can be readily calculated since
ℓ′(y) is a linear function of the Gaussian random vector y under each hypothesis.
As a result, ℓ′(y) is Gaussian under each hypothesis. Specifically,

H0 : ℓ′ ∼ N(m′
0, σ

2
ℓ′)

H1 : ℓ′ ∼ N(m′
1, σ

2
ℓ′),

(2.63)

where

m′
m = 〈∆m,mm〉 (2.64)

σℓ′ = ‖m1 −m0‖. (2.65)

From here our performance evaluation is identical to the scalar case. In particular,
we have

PD = Pr [ℓ′ ≥ η′ | H = H1]

= Pr

[

ℓ′ −m′
1

σℓ′
≥ η′ −m′

1

σℓ′

∣

∣

∣

∣

H = H1

]

= Q

(

η′ −m′
1

σℓ′

)

(2.66a)

PF = Pr [ℓ′ ≥ η′ | H = H0]

= Pr

[

ℓ′ −m′
0

σℓ′
≥ η′ −m′

0

σℓ′

∣

∣

∣

∣

H = H0

]

= Q

(

η′ −m′
0

σℓ′

)

. (2.66b)

While computing actual values of PD and PF requires that we evaluate the Q (·)
function numerically, we can obtain bounds on these quantities that are explic-
itly computable. For example, using (1.129) and (1.128) with (2.66) we obtain, for
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thresholds in the range m′
0 < η′ < m′

1,

PD ≥ 1− 1

2
exp

[

−1

2

(

η′ −m′
1

σℓ′

)2
]

(2.67a)

PF ≤
1

2
exp

[

−1

2

(

η′ −m′
0

σℓ′

)2
]

. (2.67b)

As in Example 2.6, the sufficient statistic for this problem can be imple-
mented either directly as a correlator, or as a matched filter. In the latter case, the
filter h[n] captures the relevant information about the signal and the noise, taking
the form

h[n] =











0 n ≥ K

∆m′[K − 1− n] 0 ≤ n ≤ K − 1

0 n ≤ −1,

(2.68)

where

∆m′ =
[

∆m′[0] ∆m′[1] · · · ∆m′[K − 1]
]T

= Λ−1(m1 −m0). (2.69)

Let us next consider an example of a different class of Gaussian detection
problems.

Example 2.7

Suppose that we are trying to detect a random signal x [n] at an antenna based on
observations of the samples n = 0, 1, . . . K − 1. Depending on whether the signal is
absent or present, the noisy observations y [n] take the form

H0 : y [n] = w [n]

H1 : y [n] = x [n] + w [n],
(2.70)

where under both hypotheses w [n] is an IID sequence of N(0, σ2) random variables
that is independent of the sequence x [n].

If x [n] was a known signal x[n], then our optimum detector would be that de-
termined in Example 2.6 with ∆m[n] = x[n]; i.e., our sufficient statistic is obtained
by correlating our received signal y[n] with x[n]. However, in this example we as-
sume we know only the statistics of x [n]—specifically, we know that

x =
[

x [0] x [1] · · · x [K − 1]
]T ∼ N(0,Λx)

where Λx is the signal covariance matrix.
In this case, we have that the likelihood ratio test (2.48) simplifies to the test

ℓ(y) , yTx̂(y)
Ĥ(y)=H1

R
Ĥ(y)=H0

2σ2 ln

(

η
|σ2I + Λx|1/2

σK

)

, γ (2.71)

where
x̂(y) = Λx

[

σ2I + Λx

]−1
y =

[

x̂[0] x̂[1] · · · x̂[K − 1]
]T

. (2.72)
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This detector has a special interpretation as our notation suggests. In partic-
ular, as will become apparent in Chapter 3, (2.72) is, in fact, what will be referred
to as the Bayes least-squares estimate of x based on an observation of y. Hence, in
this example the sufficient statistic is obtained by correlating the received signal y[n]
with an estimate x̂[n] of the unknown signal x[n]. Note, however, that the threshold
γ in (2.71) is different from that in the known signal case. Furthermore, it should
be emphasized that sufficient statistics for more general detection problems involv-
ing unknown or partially known signals do not always have such interpretations.
We explore such issues further in Chapter 6 in the context of joint detection and
estimation.

Note that evaluation of the performance of the optimum decision rule is less
straightforward than was the case in Example 2.6. As is apparent from (2.71) and
(2.72), the sufficient statistic in this problem is no longer has a Gaussian distribution
but rather a chi-squared distribution of degree K, i.e., ℓ ∼ χ2

K . As a result, we cannot
get simple expressions for PD and PF in terms of the Q (·) function. It is tempting to
obtain approximations to PD and PF by directly exploiting a central limit theorem
argument to approximate ℓ as Gaussian when K is reasonably large. However, a
problem with this strategy is that the resulting Gaussian approximations are poorest
in the tails of the distribution, yet this is typically the regime of interest for PF and
PD calculations. However, useful bounds and approximations for these quantities
are obtained via a technique referred to as the Chernoff bound. Such bounds have
proven useful in a wide range of engineering problems over the last several decades.

2.5 TESTS WITH DISCRETE-VALUED OBSERVATIONS

Thus far we have focussed in this chapter on the case of observation vectors y
that are specifically continuous-valued. However, there are many important deci-
sion and detection problems that involve inherently discrete-valued observations.
Conveniently, the preceding theory carries over to the discrete case in a largely
straightforward manner, with the likelihood ratio test continuing to play a central
role, as we now develop. However, there are at least some important differences,
which we will emphasize.

2.5.1 Bayesian Tests

With the notation (2.4), the optimum Bayesian decision rule takes a form analo-
gous to that for the case of continuous-valued data; specifically,

L(y) ,
py|H [y|H1]

py|H [y|H0]

Ĥ(y)=H1

R
Ĥ(y)=H0

P0(C10 − C00)

P1(C01 − C11)
, η. (2.73)

The derivation of this result closely mimics that for the case of continuous-valued
data, the verification of which we leave as an exercise for the reader.
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A couple of special issues arise in the case of likelihood ratio tests of the
form (2.73). In particular, when the observations are discrete-valued, the like-
lihood function L(y) is also discrete-valued; for future convenience, we denote
these values by 0 ≤ η0 < η1 < η2 < · · · . This property has some significant
consequences. First, it means that for many sets of costs and a priori probability
assignments, the resulting η formed in (2.73) will often not coincide with one of
the possible values of L = L(y), i.e., we will often have η 6= ηi for all i. In such
cases, the case of equality in the likelihood ratio test will not arise, and the min-
imum Bayes risk is achieved by a likelihood ratio test that corresponds, as usual,
to a unique (PD, PF ) point on the associated operating characteristic.

However, for some choices of the costs and a priori probabilities, the resulting
threshold η will satisfy η = ηi for some particular i. This means that, unlike with
continuous-valued data, in this case equality in the likelihood ratio test will occur
with nonzero probability. Nevertheless, it can be readily verified that the Bayes
risk is the same no matter how a decision is made in this event. Hence, when
equality occurs, the decision can still be made arbitrarily, but these choices will
correspond to different points on the operating characteristic.

2.5.2 The Operating Characteristic of the Likelihood Ratio Test, and Neyman-
Pearson Tests

Let us more generally examine the form of the operating characteristic associated
with the likelihood ratio test in the case of discrete-valued observations. In partic-
ular, let us begin by sweeping the threshold η in (2.73) from 0 to∞ and examining
the (PD, PF ) values that are obtained. As our development in the last section re-
vealed, in order to ensure that each threshold η maps to a unique (PD, PF ), we
need to choose an arbitrary but fixed convention for handling the case of equality
in (2.73). For this purpose let us associate equality with the decision Ĥ(y) = H1,
expressing the likelihood ratio test in the form

L(y) =
py|H [y|H1]

py|H [y|H0]

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

η. (2.74)

Before developing further results, let’s explore a specific example to illustrate
some of the key ideas.

Example 2.8

Suppose in an optical communication system bits are signaled by turning on and
off a laser. At the detector, the measured photon arrival rate is used to determine
whether the laser is on or off. When the laser is off (0-bit), the photons arrive accord-
ing to a Poisson process with average arrival rate m0; when the laser is on (1-bit),
the rate is m1 with m1 > m0. Suppose during a bit period we count the number
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of photons y that arrive and use this observed data to make a decision. Then the
likelihood functions for this decision problem are

py |H [y|Hi] = Pr [y = y | H = Hi] =







my
i e

−mi

y!
y = 0, 1, . . .

0 otherwise
.

In this example the likelihood ratio (2.74) leads to the test

L(y) =

(

m1

m0

)y

e−(m1−m0)

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

η,

which further simplifies to

y

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

ln η + (m1 −m0)

ln(m1/m0)
, γ. (2.75)

The discrete nature of the this hypothesis testing problem means that the op-
erating characteristic associated with the likelihood ratio test (2.75) is a discrete col-
lection of points rather than a continuous curve of the type we encountered in an
earlier example involving Gaussian data. Indeed, while the left-hand side of (2.75)
is integer-valued, the right side is not in general. As a result, we have that PD and
PF are given in terms of γ by the expressions

PD = Pr [y ≥ γ | H = H1] = Pr [y ≥ ⌈γ⌉ | H = H1] =
∑

y≥⌈γ⌉

my
1e

−m1

y!
(2.76a)

PF = Pr [y ≥ γ | H = H0] = Pr [y ≥ ⌈γ⌉ | H = H0] =
∑

y≥⌈γ⌉

my
0e

−m0

y!
. (2.76b)

The resulting operating characteristic is depicted in Fig. 2.6. In Figure 2.6, only
the isolated (PD, PF ) points indicated by circles are achievable by simple likelihood
ratio tests. For example, the uppermost point is achieved for all γ ≤ 0, the next
highest point for all 0 < γ ≤ 1, the next for 1 < γ ≤ 2, and so on. This behavior is
representative of such discrete decision problems.

As we discussed in Section 2.5.1, for Bayesian problems the specific cost and
a priori probability assignments determine a threshold η in (2.74), which in turn
corresponds to one of the isolated points comprising the operating characteristic.

For Neyman-Pearson problems with discrete observations, it is also straight-
forward to show that a likelihood ratio test of the form (2.74) is the optimum de-
terministic decision rule. Moreover, as we might expect, for this rule the threshold
η is chosen so as to achieve the largest PD subject to our contraint on the maximum
allowable PF (i.e., α). When α corresponds to at least one of the discrete points of
the operating characteristic, then the corresponding PD indicates the achievable
detection probability. More typically, however, α will lie strictly between the PF
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Figure 2.6. Operating characteristic
associated with the likelihood ratio test
for the Poisson detection problem. The
photon arrival rates under H0 and H1

are m0 = 2 and m1 = 4, respectively.
The circles mark points achievable by
likelihood ratio tests.

values of points on the operating characteristic. In this case, the appropriate oper-
ating point corresponds to the (PD, PF ) whose PF is the largest PF that is smaller
than α. This operating point then uniquely specifies the decision rule.

While this decision rule is a straightforward extension of the result for conti-
nuous-valued observations, it is possible to develop a more sophisticated decision
rule that typically yields at least somewhat better performance as measured by
the Neyman-Pearson criterion. To see this, we first note that the straightforward
likelihood ratio test defined above was obtained as the optimum decision rule
among all possible deterministic tests. Specifically, the likelihood ratio test was the
best decision rule of the form

Ĥ(y) =

{

H0 y ∈ Z0

H1 y ∈ Z1

where Z0 and Z1 are mutually exclusive, collectively exhaustive sets in the obser-
vation space {y}. For these rules, each observation y maps to a unique decision
Ĥ(y).

When the regular likelihood ratio test cannot meet the false-alarm constraint
with equality, better performance can be achieved by employing a decision rule
chosen from outside the class of deterministic rules. In particular, if we allow for
some randomness in the decision process, so that a particular observation does not
always produce the same decision, we can obtain improved detection performance
while meeting our false-alarm constraint. This can be accomplished as follows.
Consider the sequence of thresholds η0, η1, . . . that correspond to values that the
likelihood ratio can take on, and denote the corresponding operating points by
(PD(ηi), PF (ηi)) for i = 0, 1, . . . . Determine ı̂ such that ηı̂ is the threshold value that
results in the likelihood ratio test with the smallest false-alarm probability that is
greater than α. Then as illustrated in Fig. 2.7, PF (ηı̂) and PF (ηı̂+1) “bracket” α:
using ηı̂+1 results in test with the largest false-alarm probability that is less than α.
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Figure 2.7. Achievable operating
points for a randomization between
two likelihood ratio tests, one with
threshold ηı̂ and the other with
threshold ηı̂+1.

Now consider the following randomized decision rule. We flip a biased coin for
which the probability of “heads” is p and that of “tails” is 1−p. If “heads” turns
up, we use the likelihood ratio test with threshold ηı̂; if “tails” turns up, we use
the likelihood ratio test with threshold ηı̂+1. Then the resulting test achieves

PD = pPD(ηı̂) + (1− p)PD(ηı̂+1)

PF = pPF (ηı̂) + (1− p)PF (ηı̂+1),
(2.77)

and corresponds to a point on the line segment connecting (PD(ηı̂), PF (ηı̂)) and
(PD(ηı̂+1), PF (ηı̂+1)). This line segment is indicated with the dashed line segment
in Fig. 2.7. In particular, as p is varied from 0 to 1, the operating point moves from
(PD(ηı̂+1), PF (ηı̂+1)) to (PD(ηı̂), PF (ηı̂)). Hence, by choosing p appropriately, we
can achieve the false-alarm probability constraint with equality, i.e., there exists a
p̂ such that

PF = p̂PF (ηı̂) + (1− p̂)PF (ηı̂+1) = α.

Since the operating characteristic is a monotonically increasing function, it follows
that PD(ηı̂) > PD(ηı̂+1), which in turn implies that p̂ is the value of p yielding the
largest possible PD.

Our randomization argument allows us to conclude that all points on the
operating characteristic as well as all points on the line segments connecting oper-
ating characteristic points (adjacent or not) can be achieved via randomized likeli-
hood ratio tests. Referring to Example 2.8 in particular, this means that all operat-
ing points on the piecewise linear dashed line in Fig. 2.6 can be achieved, allowing
any false alarm probability constraint α to be met with equality.
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While we have developed randomized likelihood ratio tests as a random
choice among a pair of likelihood ratio tests, they can be implemented in other
ways that can sometimes be more convenient. To see this, note that for the ran-
domized rule above, both likelihood ratio tests lead to the decision H1 when L(y) ≥
ηı̂+1. Hence, regardless of the outcome of the coin flip, the decision will be H1 for
the associated values of y. Similarly, if L(y) ≤ ηı̂−1 then both tests lead to the
decision H0, so the randomized rule will decide H0 regardless of the outcome of
the coin flip. Hence, only when L(y) = ηı̂ does the randomization play a role. In
this case, if “heads” comes up, the decision will be H1, while if “tails” comes up,
the decision will be H0. We can summarize this implementation of the test in the
following form:

Pr
[

Ĥ(y) = H1

∣

∣

∣
y = y

]

=











1 L(y) ≥ ηı̂+1

p̂ L(y) = ηı̂

0 L(y) ≤ ηı̂−1

. (2.78)

Our results in this section have suggested that at least in some problems
involving discrete-valued data and the Neyman-Pearson criterion a randomized
test can lead to better performance than a deterministic test. This observation, in
turn, raises several natural and important questions. For example, we considered
a very particular class of randomized tests—specifically, a simple random choice
between the outcomes of two (deterministic) likelihood ratio tests. Would some
other type of randomized test be able to perform better still? And could some
more general form of randomized test be able to improve performance in the case
of continuous-valued data with Bayesian or Neyman-Pearson criteria? To answer
these questions, in the next section we develop decision rules optimized over of a
broad class of randomized tests.

2.6 RANDOMIZED TESTS

For a randomized test, the decision rule is a random function of the data, which
we denote using Ĥ(·). Hence, even for a deterministic argument y, the decision
Ĥ(y) is a random quantity. However, Ĥ(y) has the property that conditioned on
knowledge of y, the function is independent of the hypothesis H . Such a test is
fully described by the probabilities

Q0(y) = Pr
[

Ĥ(y) = H0

∣

∣

∣
y = y

]

= Pr
[

Ĥ(y) = H0

∣

∣

∣
y = y, H = Hi

]

Q1(y) = Pr
[

Ĥ(y) = H1

∣

∣

∣
y = y

]

= Pr
[

Ĥ(y) = H1

∣

∣

∣
y = y, H = Hi

]

,
(2.79)

where, of course, Q0(y) + Q1(y) = 1.
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With this notation, we see that deterministic rules are a special case, corre-
sponding to

Q1(y) =

{

1 y ∈ Z1

0 y ∈ Z0

. (2.80)

Moreover, it also follows immediately that tests formed by a random choice among
two likelihood ratio tests, such as were considered in Section 2.5.2 are also special
cases. For example, the test described via (2.78) corresponds to

Q1(y) =











1 L(y) ≥ ηı̂+1

p̂ L(y) = ηı̂

0 L(y) ≤ ηı̂−1.

(2.81)

More generally, for a randomized test that corresponds to the random choice be-
tween two likelihood ratio tests with respective thresholds η1 and η2 such that
η2 > η1, and where the probability of selecting the first test is p, it is straightfor-
ward to verify that

Q1(y) =











1 L(y) ≥ η2

p η1 ≤ L(y) < η2

0 L(y) < η1.

(2.82)

From our general characterization (2.79), we see that specifying a random-
ized decision rule is equivalent to specifying Q0(·)—or Q1(·). Hence, determining
the optimum randomized test for a given performance criterion involves solving
for the optimum mapping Q0(·). Using this approach, we develop the optimum
randomized tests for Bayesian and Neyman-Pearson hypothesis testing problems
in the next two sections, respectively. As we will see this allows us to draw some
important conclusions about when randomized tests are—and are not—needed.

2.6.1 Bayesian Case

We begin by establishing a more general version of our Bayesian result for the
case of randomized tests. We consider the case of continuous-valued data; the
derivation in the discrete case is analogous. We begin by writing our Bayes risk in
the form

J(Q0) =

∫

J̃(y) py(y) dy,

where

J̃(y) = E
[

C(H, Ĥ(y))
∣

∣

∣
y = y

]

.
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Again we see it suffices to minimize J̃(y) for each y. Applying, in turn, (2.79) and
Bayes’ Rule, we can write J̃(y) in the form

J̃(y) =
∑

i,j

Cij Pr
[

H = Hj , Ĥ(y) = Hi

∣

∣

∣
y = y

]

=
∑

i,j

Cij Pr [H = Hj | y = y] Pr
[

Ĥ = Hi

∣

∣

∣
y = y

]

=
∑

i,j

Cij Qi(y)
Pj py|H(y|Hj)

py(y)
, (2.83)

from which, with

∆(y) , C10

P0py|H(y|H0)

py(y)
+ C11

P1py|H(y|H1)

py(y)
, (2.84)

we obtain

J̃(y) = ∆(y) + Q0(y)
py|H(y|H0)

py(y)
P1(C01 − C11)

[

py|H(y|H1)

py|H(y|H0)
− P0(C10 − C00)

P1(C01 − C11)
−
]

= ∆(y) + Q0(y)
py|H(y|H0)

py(y)
P1(C01 − C11) [L(y)− η]

(2.85)

using the notation defined in (2.19). From (2.85) we can immediately conclude
that J̃(y) is minimized over 0 ≤ Q0(y) ≤ 1 by choosing Q0(y) = 0 when the
term in brackets is positive and Q0(y) = 1 when the term in brackets is negative.
But this is precisely the (deterministic) likelihood ratio test (2.19) we developed
earlier! Hence, for Bayesian problems, we can conclude that a deterministic test
will always suffice. Furthermore, although our derivation has been for the case of
continuous-valued data, the same conclusion is reached in the discrete case.

2.6.2 Neyman-Pearson Case

We next establish a more general version of our Neyman-Pearson result for the
case of randomized tests. We begin with the case of continuous-valued data. As in
the deterministic case, we follow a Lagrange multiplier approach, expressing our
objective function as

J(Q0) = 1− PD + λ(PF − α′)

= λ(1− α′) + Pr
[

Ĥ(y) = H0

∣

∣

∣
H = H1

]

− λ Pr
[

Ĥ(y) = H0

∣

∣

∣
H = H0

]

(2.86)

for some α′ ≤ α. This time, though, (2.86) expands as

J(Q0) = λ(1− α′) +

∫

Pr
[

Ĥ(y) = H0

∣

∣

∣
y = y

]

[

py|H(y|H1)− λpy|H(y|H0)
]

dy
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from which we obtain, using the definition of L(y),

J(Q0) = λ(1− α′) +

∫

Q0(y)
[

py|H(y|H1)− λpy|H(y|H0)
]

dy

= λ(1− α′) +

∫

Q0(y)
[

L(y)− λ
]

py|H(y|H0) dy. (2.87)

Since 0 ≤ Q0(y) ≤ 1, the objective function (2.87) is minimized by setting Q0(y) =
0 for all values of y such that the term in braces is positive, and Q0(y) = 1 for all
values of y such that the term in braces is negative; i.e.,

Q0(y) =

{

0 L(y) > λ

1 L(y) < λ.
(2.88)

Hence, we can conclude that our optimum rule is almost a simple (deterministic)
likelihood ratio test. In particular, at least except when L(y) = λ we have that

Ĥ(y) =

{

H1 L(y) > λ

H0 L(y) < λ.
(2.89)

It remains only to determine what the nature of the decision (i.e., Q0(y))
when L(y) = λ and the choice of λ. These quantities are determined by meet-
ing the constraint PF = α′. Specifically,

PF =

∫

[1−Q0(y)] py|H(y|H0) dy

=

∫

{y|L(y)>λ}

py|H(y|H0) dy +

∫

{y|L(y)=λ}

[1−Q0(y)] py|H(y|H0) dy

= Pr [L(y) > λ | H = H0] +

∫

{y|L(y)=λ}

[1−Q0(y)] py|H(y|H0) dy, (2.90)

where the second equality follows from substituting for Q0(y) using (2.88). Ob-
serve that PF = 1 if λ < 0, so it suffices to restrict our attention to λ ≥ 0. Further-
more, note that the first term in (2.90) is a nonincreasing function of λ.

Now since y is a continuous-valued random variable, then the second term in
(2.90) is zero and the remaining term, which is a continuous of λ, can be chosen so
that it equals α′. In this case, it does not matter how we choose Q0(y) when L(y) =
λ, so the optimum randomized rule degenerates to a deterministic likelihood ratio
test again. It remains only to show that for optimum PD we want α′ = α. Given
our preceding results, it suffices to exploit the fact that for likelihood ratio tests PD

is a monotonically nondecreasing function of PF .
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Discrete Case

When the data is discrete, some important differences arise, which we now ex-
plore. Proceeding as we did at the outset of Section 2.6.2, we obtain

J(Q0) = λ(1− α′) +
∑

y

Q0(y)
[

py|H [y|H1]− λpy|H [y|H0]
]

= λ(1− α′) +
∑

y

Q0(y)
[

L(y)− λ
]

py|H [y|H0]. (2.91)

from which we analogously conclude that for L(y) 6= λ we have (2.88). Hence, it
remains only to determine λ and the decision when L(y) = λ from the false alarm
constraint.

An important difference from the continuous case is that when y is discrete-
valued, so that L(y) is also discrete-valued, the first term in (2.90) is not a continu-
ous function of λ, but is piecewise constant.

As before, let us denote the values that L(y) takes on by η0, η1, η2, . . . , where
0 < η0 < η1 < η2 < · · · . And let us choose ı̂ so that λ = ηı̂ is the smallest threshold
such that

Pr [L(y) > λ | H = H0] = Pr [L(y) ≥ ηı̂+1 | H = H0] ≤ α′.

Then we can obtain PF = α′ by choosing

Q1(y) = 1−Q0(y)

appropriately for all y such that L(y) = ηı̂. In particular, 0 < Q1(·) < 1 in this
range must be chosen so that

α′ − Pr [L(y) ≥ ηı̂+1 | H = H0] =
∑

{y|L(y)=ηı̂}

Q1(y) py|H [y|H0]

= q Pr [L(y) = ηı̂ | H = H0] (2.92)

where
q , E [Q1(y) | L(y) = ηı̂] . (2.93)

As we would expect, our decision probabilities Q1(·) when L(y) = ηı̂ appear in
(2.92) only through q, so it suffices to appropriately select the latter.

For q = 0, the resulting decision rule is the deterministic test

L(y)

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

ηı̂+1. (2.94)

More generally, when q > 0, we have that the decision rule involves a random
choice between the decision rule (2.94) and

L(y)

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

ηı̂. (2.95)
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In particular, the test (2.95) is chosen with probability q, and the test (2.94) with
probability 1− q. In terms of the operating characteristic of the likelihood ratio
test, this is a point on the line segment connecting the points corresponding to the
two deterministic tests (2.94) and (2.95). This, of course, is precisely the form of
the heuristically designed randomized test we explored at the end of Section 2.5.2,
which we now see is optimal. As a result, when we include randomized tests,
it makes sense to redefine the operating characteristic for the discrete case as the
isolate likelihood ratio test operating points together with the line segments that
connect these discrete points.

It remains only to verify that for optimum PD we want α′ = α in the discrete
case as well. However, for likelihood ratio tests involving discrete data, the PD

values form a nondecreasing sequence as a function of PF . Then since the perfor-
mance of randomized tests corresponds to points on the line segments connecting
the performance points associated with deterministic tests, PD is a nondecreasing
function of PF for our more general class of randomized tests as well.

In summary, optimum Neyman-Pearson decision rules always take the form
of either a deterministic rule in the form of a likelihood ratio test or a randomized
rule in the form of a simple randomization between two likelihood ratio tests. In
both cases, the likelihood ratio test and its associated operating characteristic play
a central role. Accordingly, we explore their properties further.

2.7 PROPERTIES OF THE LIKELIHOOD RATIO TEST OPERATING CHARACTERISTIC

By exploiting the special role that the likelihood ratio test plays in both determin-
istic and randomized optimum decisions rules, we can develop a number of key
properties of the PD–PF operating characteristic associated with the likelihood ra-
tio test. For future reference, recall that for continuous-valued data the test takes
the form

L(y) =
py|H(y|H1)

py|H(y|H0)

Ĥ(y)=H1

R
Ĥ(y)=H0

η, (2.96)

while for discrete-valued data the form is

L(y) =
py|H [y|H1]

py|H [y|H0]

Ĥ(y)=H1

≥
<

Ĥ(y)=H0

η. (2.97)

We emphasize at the outset that the detailed shape of the operating charac-
teristic is determined by the measurement model for the data—for example, by
py|H(y|H0) and py|H(y|H1) in the continuous-case—since it is this information that
is used to construct the likelihood ratio L(y). However, all operating character-
istics share some important characteristics in common, and it is these that we ex-
plore in this section. As a simple example, which was mentioned earlier, we have
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that the (PD, PF ) points (0, 0) and (1, 1) always lie on the operating characteristic,
and correspond to η →∞ and η → 0, respectively.

It is also straightforward to verify that PD ≥ PF , i.e., that the operating char-
acteristic always lies above the diagonal in the PD–PF plane. This can be verified
using a randomization argument. In particular, suppose our decision rule ignores
the data y and bases its decision solely on the outcome of a biased coin flip, where
the probability of “heads” is p. If the coin comes up “heads” we make the decision
Ĥ(y) = H1, while if it comes up “tails” we make the decision Ĥ(y) = H0. Then for
this rule we have

PD = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H1

]

= Pr
[

Ĥ(y) = H1

]

= p

PF = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H0

]

= Pr
[

Ĥ(y) = H1

]

= p,

which corresponds to a point on the diagonal in the PD–PF plane. Hence, we
can achieve all points on the diagonal by varying the bias p in the coin. How-
ever, for a given PF this decision rule cannot provide a better PD than the cor-
responding point on the operating characteristic; otherwise, this would contra-
dict our Neyman-Pearson result that this operating characteristic defines the best
achievable PD for a given PF .8 Hence, we conclude PD ≥ PF .

Randomization arguments play an important role in establishing other prop-
erties of likelihood ratio test operating characteristics as well. For example, we
can also use such an argument to establish that the operating characteristic is a
concave function. To see this, let (PD(η1), PF (η1)) and (PD(η2), PF (η2)) be points
on the operating characteristic corresponding to two arbitrary thresholds η1 and
η2, respectively. Then the operating characteristic is concave if the points on the
straight line segment joining these two points invariably lie below (or on) the op-
erating characteristic. However, the points on this straight line segment can be
parameterized according to

(PD, PF ) = (pPD(η1) + (1− p)PD(η2), pPF (η1) + (1− p)PF (η2)), (2.98)

where 0 ≤ p ≤ 1 is the parameter. Moreover, the points (2.98) can be achieved via
the following randomized test: a biased coin is flipped, and if it turns up “heads,”
the likelihood ratio test with threshold η1 is used; otherwise, the likelihood ratio
test with threshold η2 is used. Again by varying the bias p in our coin, we can
achieve all the points on the line segment. Hence, from our Neyman-Pearson re-
sult, no part of the likelihood ratio test operating characteristic between PF (η1) and
PF (η2) can lie below this line segment. Thus, since the endpoints were arbitrary,
we conclude that the operating characteristic is concave.

Let’s consider one final property, which applies to likelihood ratio test op-
erating characteristics associated with continuous-valued data. In particular, we

8Indeed, we wouldn’t expect to obtain better performance by ignoring the data y!



Sec. 2.7 Properties of the Likelihood Ratio Test Operating Characteristic 91

show that at those points where it is defined, the slope of the operating character-
istic is numerically equal to the corresponding threshold η, i.e.,

dPD

dPF
= η. (2.99)

Note that since η ≥ 0, this is another way of verifying that the operating charac-
teristic is nondecreasing. A proof is as follows. With

Z1(η) = {y | L(y) > η} (2.100)

we have

PD(η) =

∫

Z1(η)

py|H(y|H1) dy,

which after applying the definition of the likelihood function (2.96) yields

PD(η) =

∫

Z1(η)

L(y) py|H(y|H0) dy. (2.101)

Next, note that with u(·) denoting the unit step function, i.e.,

u(x) =

{

1 x > 0

0 otherwise
,

we have

u(L(y)− η) =

{

1 y ∈ Z1(η)

0 otherwise
. (2.102)

In turn, using the result (2.102) in (2.101) we obtain

PD(η) = E [u(L(y)− η) L(y) | H = H0] = E [u(L− η) L | H = H0] =

∫ ∞

η

L pL|H(L|H0) dL

(2.103)

Finally, differentiating (2.103) with respect to η then yields

dPD

dη
= −η pL|H(η|H0). (2.104)

However, since

PF =

∫ ∞

η

pL|H(L|H0) dL

we know
dPF

dη
= −pL|H(η|H0). (2.105)

Hence, dividing (2.104) by (2.105) we obtain (2.99).
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2.7.1 Achievable Operating Points

Having determined some of the structure of the operating characteristic, let us
next explore more generally how to use this characteristic to define what oper-
ating points can be achieved by any test—deterministic or randomized—in the
PD–PF plane. First, we note that every point between the operating characteristic
and the diagonal (PD = PF ) can be achieved by a simple randomized test. To see
this it suffices to recognize that every point in this region lies on some line con-
necting two points on the operating characteristic. Hence, every such point can be
achieved by a simple randomization between two likelihood ratio tests having the
corresponding thresholds, using a coin with suitable bias p.

The test that achieves a given operating point in this region need not be
unique, however. To illustrate this, let η0 be the threshold corresponding to a par-
ticular point on the operating characteristic. Then if for our decision rule we use
a random choice (using a coin with bias p) between the outcome of this likelihood
ratio test and that of the “guessing rule” that achieves an arbitrary point on the
diagonal (using a different coin with bias q). Hence, by choosing η0 > 0, 0 ≤ p ≤ 1,
and 0 ≤ q ≤ 1, appropriately, our “doubly-randomized” test can also achieve any
desired point in the region of interest.

Let us next consider which points below the diagonal are achievable. This
can be addressed via a simple “rule-reversal” argument. For this we require the
following notion of a reversed test. If Ĥ(·) describes a deterministic decision rule,

then the corresponding reversed rule, which we denote using Ĥ(·), is simply one
whose decisions are made as follows:

Ĥ(y) =

{

H0 Ĥ(y) = H1

H1 Ĥ(y) = H0

.

More generally, if Q0(·) describes a randomized decision rule, then the correspond-
ing decision rule, which we denote using Q0(·), is defined via

Q0(y) = Q1(y) = 1−Q0(y).

If a deterministic or randomized test achieves the operating point (PD, PF ) =
(β, α), then it is easy to verify that the corresponding reversed test achieves the
operating point (PD, PF ) = (1− β, 1− α), i.e.,

Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H1

]

= Pr
[

Ĥ(y) = H0

∣

∣

∣
H = H1

]

= 1− β

Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H0

]

= Pr
[

Ĥ(y) = H0

∣

∣

∣
H = H0

]

= 1− α.

Using this property, it follows that those points lying on the curve correspond-
ing to the operating characteristic reflected across the PD = 1/2 and PF = 1/2
lines are achievable by likelihood ratio tests whose decisions are reversed. In turn,
all points between the diagonal and this “reflected operating characteristic” are
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PD

PF0 1

1

0
Figure 2.8. Achievable region in the
PD–PF plane.

achievable using a suitably designed randomized test. Hence, as illustrated in
Fig. 2.8 we can conclude that all points within the region bounded by the oper-
ating characteristic and reversed operating characteristic curves can be achieved
using a suitably designed decision rule.

We can also establish the converse result: that no decision rule—deterministic
or randomized—can achieve points outside this region. That no (PD, PF ) point
above the operating characteristic can be achieved follows from our Neyman-
Pearson results. That no point below the reflected operating characteristic can be
achieved (including (PD, PF ) = (0, 1)!) follows as well, using a “proof-by-contra-
diction” argument. In particular, if such a point could be achieved, then so could
its reflection via a reversed test. However, this reflection would then lie above the
operating characteristic, which would contradict the Neyman-Pearson optimality
of the likelihood ratio test.

2.8 M-ARY HYPOTHESIS TESTING

Thus far we have focussed on the case of binary hypothesis testing in this chap-
ter. From this investigation, we have developed important insights that apply to
decision problems involving multiple hypotheses more generally. However, some
special considerations and issues arise in the more general M-ary hypothesis test-
ing problem. We explore a few of these issues in this section, but emphasize that
our treatment is an especially introductory one.
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To simplify our discussion, we restrict our attention to the Bayesian problem
formulation with continuous-valued data and deterministic decision rules. Ac-
cordingly, the scenario we consider is as follows:

1. There are M hypotheses H0, H1, ..., HM−1 with associated a priori probabilities
Pi = Pr [H = Hi].

2. We have a set of costs of the form Cij, which corresponds to the cost of de-
ciding Ĥ = Hi when H = Hj is true.

3. Our (generally vector) measurements y are characterized by the set of densi-
ties py|H(y|Hi).

For this problem, we explore a procedure for choosing one of the M hy-
potheses based on the observed data y so as to minimize the associated expected
cost. This corresponds to designing an M-valued decision rule Ĥ(·) : RK →
{H0, H1, . . . , HM−1}. By analogy to the binary case, we begin by noting that if
y = y and Ĥ(y) = Hm̂, then the expected cost is

J̃(Hm̂,y) =

M−1
∑

m=0

Cm̂m Pr [H = Hm | y = y] . (2.106)

Consequently, given the observation y = y we want to choose m̂ to minimize
(2.106), i.e.,

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1,...,M−1}

M−1
∑

j=0

Cmj Pr [H = Hj | y = y] . (2.107)

Let’s explore several aspects of this decision rule. We begin by considering a
special case.

2.8.1 Special Case: Minimum Probability-of-Error Decisions

If all possible errors are penalized equally, i.e.,

Cij =

{

0 i = j

1 i 6= j
, (2.108)

then (2.107) becomes

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1,...,M−1}

∑

j 6=m

Pr [H = Hj | y = y] , (2.109)

Exploiting the fact that
∑

j 6=m

Pr [H = Hj | y = y] = 1− Pr [H = Hm | y = y]
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we obtain that (2.109) can be equivalently described in the form

Ĥ(y) = Hm̂ where m̂ = arg max
m∈{0,1,...,M−1}

Pr [H = Hm | y = y] . (2.110)

Hence, as in the binary (M = 2) case, the minimum probability-of-error decision
rule (2.110) chooses the hypothesis having the largest a posteriori probability. As a
result, for arbitrary M this is referred to as the maximum a posteriori (MAP) rule.

Also as in the binary case, rules such as this can typically be manipulated
into simpler forms for actual implementation. For example, from Bayes’ rule we
have that

Pr [H = Hm | y = y] =
py|H(y|Hm) Pm

M−1
∑

j=0

py|H(y|Hj) Pj

. (2.111)

Since the denominator is, as always, a normalization constant independent of m,
we can multiply (2.110) by this constant, yielding

Ĥ(y) = Hm̂ where m̂ = arg max
m∈{0,1,...,M−1}

py|H(y|Hm) Pm. (2.112)

If the Pm are all equal, it follows immediately that (2.112) can be simplified to the
maximum likelihood (ML) rule

Ĥ(y) = Hm̂ where m̂ = arg max
m∈{0,1,...,M−1}

py|H(y|Hm). (2.113)

To illustrate the application of these results, let’s explore a minimum probability-
of-error rule in the context of simple Gaussian example.

Example 2.9

Suppose that y is a K-dimensional Gaussian vector under each of the M hypotheses,
with

py|H(y|Hm) = N(y;mm, I). (2.114)

In this case, applying (2.112)—and recognizing that we may work with the loga-
rithm of the quantity we are maximizing—yields

m̂ = arg max
m∈{0,1,...,M−1}

[

−K

2
log(2π) − 1

2
(y −mm)T(y −mm) + log Pm

]

. (2.115)

This can be simplified to

m̂ = arg max
m∈{0,1,...,M−1}

[

ℓm(y)− 1

2
mT

mmm + log Pm

]

(2.116)

where
ℓm(y) = 〈mm,y〉 , i = 0, 1, . . . ,M − 1, (2.117)

with the inner product and associated norm defined by

〈x,y〉 = xTy
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and

‖y‖ =
√

〈y,y〉 =
√

yTy.

Consequently, the required data processing consists of the correlation compu-
tations in (2.117) followed by the comparisons in (2.116). Note that if, in addition, the
hypotheses are equally likely and have equal signal energy—i.e., ‖mm‖2 is the same
for all hypotheses—(2.115) and (2.116) simplify further to the minimum-distance
rule

Ĥ(y) = Hm̂ where m̂ = arg max
m∈{0,1,...,M−1}

ℓm(y)

= arg min
m∈{0,1,...,M−1}

‖y −mm‖. (2.118)

2.8.2 Structure of the General Bayesian Decision Rule

The Bayesian decision rule in the M-ary case is a natural generalization of the
corresponding binary rule. To see this, we substitute Bayes’ rule (2.111) into the
general rule (2.107) and multiply through by the denominator in (2.111) to obtain
the following rule

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1,...,M−1}

M−1
∑

j=0

Cmj Pjpy|H(y|Hj). (2.119)

Simplifying further by dividing by py|H(y|H0) and defining likelihood ratios

Lj(y) =
py|H(y|Hj)

py|H(y|H0)
, j = 1, 2, . . . , M − 1, (2.120)

we obtain the rule

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1,...,M−1}

[

Cm0P0 +
M−1
∑

j=1

CmjPjLj(y)

]

. (2.121)

Let us illustrate the resulting structure of the rule for the case of three hy-
potheses. In this case, minimization inherent in the rule (2.121) requires access
to a subset of the results from three comparisons, each of which eliminates one
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H(y)=Hˆ
1

H(y)=Hˆ
0

H(y)=Hˆ
2

L  (y)2

L  (y)1

Figure 2.9. Decision Regions for the
M -ary Bayesian hypothesis tests. The
line segment separating the decision
H0 from H1 (including its dashed
extension) corresponds to the test
(2.122a); that separating the decision
H1 from H2 corresponds to the test
(2.122b); and that separating the deci-
sion H0 from H2 corresponds to the test
(2.122c)

hypothesis. Rearranging terms in each of these comparisons yields the following:

P1(C01 − C11)L1(y)

Ĥ(y) = H1 or H2

(i.e., Ĥ(y)6=H0)

R
Ĥ(y) = H0 or H2

(i.e., Ĥ(y)6=H1)

P0(C10 − C00) + P2(C12 − C02)L2(y) (2.122a)

P1(C11 − C21)L1(y)

Ĥ(y) = H2 or H0

(i.e., Ĥ(y)6=H1)

R
Ĥ(y) = H1 or H0

(i.e., Ĥ(y)6=H2)

P0(C20 − C10) + P2(C22 − C12)L2(y) (2.122b)

P1(C21 − C01)L1(y)

Ĥ(y) = H0 or H1

(i.e., Ĥ(y)6=H2)

R
Ĥ(y) = H2 or H1

(i.e., Ĥ(y)6=H0)

P0(C00 − C20) + P2(C02 − C22)L2(y) (2.122c)

The decision rule corresponding to (2.122) has the graphical interpretation
depicted in Fig. 2.9. In particular, equality in each of the three relationships (2.122)
determines a linear (affine) relationship between L1(y) and L2(y). If we plot these
lines in the L1–L2 plane, values on one side correspond to one inequality direction,
and values on the other side to the other inequality. Furthermore, it is straightfor-
ward to verify that the three straight lines intersect at a single point—it suffices to
sum the three left-hand and right-hand sides of (2.122).

In this three hypothesis case, we have seen that the optimum decision rule
(2.121) can be can be reduced to a set of three comparisons (2.122) involving linear
combinations of two statistics, L1(y) and L2(y), which are computed from the data.
More generally, examining (2.121) we can conclude that for M hypotheses with
M > 3, the minimization involves access to a subset of

(

M
2

)

= M(M − 1)/2 com-



98 Detection Theory, Decision Theory, and Hypothesis Testing Chap. 2

parisons of linear combinations of the M−1 statistics L1(y), L2(y), . . . , LM−1(y).
Each of these comparisons looks at the relative merits of choosing one particu-
lar hypothesis over a second specific hypothesis. For example, in the three hy-
pothesis case, (2.122a) compares H0 and H1 (see Fig. 2.9). This comparison estab-
lishes whether the point (L1(y), L2(y)) lies above or below the line corresponding
to (2.122a) including its extension indicated by a dashed line in the figure. Once
this determination is made, one of the other comparisons yields the final decision.
For example, if comparison (2.122a) tells us that (L1(y), L2(y)) lies above the asso-
ciated line, we would then use (2.122b) to decide between H1 and H2.

It is important to emphasize that the structure of the decision rule can be
viewed as a process of eliminating one hypothesis at a time. Since we need only
eliminate M − 1 of the hypotheses, only M − 1 of the comparisons need be used.
However, we need to have all comparisons available, since the set of M − 1 com-
parisons that get used depends upon the actual value of the observation. For ex-
ample, if (2.122a) tells us that (L1(y), L2(y)) lies below the line, we would then use
(2.122c) to decide between H0 and H2. Finally, each of these two-way comparisons
has something of the flavor of a binary hypothesis testing problem. An important
difference, however, is that in deciding between, say, H0 and H1, we need to take
into account the possibility that the actual hypothesis is H2. For example, if the
cost C02 of deciding H0 when H2 is correct is much greater than the cost C12 of
deciding H1 when H2 is correct, the decision rule accounts for this through a term
(namely the last one in (2.122a)) in the comparison of H0 and H1 that favors H1

over H0. To be more specific, let us rewrite (2.122a) as

L1(y)
Ĥ(y) = H1 or H2

R
Ĥ(y) = H0 or H2

P0(C10 − C00)

P1(C01 − C11)
+

P2(C12 − C02)

P1(C01 − C11)
L2(y), (2.123)

and note that if the last term in (2.123) were not present, this would be exactly
the binary hypothesis test for deciding between H0 and H1. Assuming that C01 >
C11 (i.e., that it is always more costly to make a mistake than to be correct) and
that C12 < C02, we see that the last term is negative, biasing the comparison in
favor of H1. Furthermore, this bias increases as L2(y) increases, i.e., when the data
indicates H2 to be more and more likely.

2.8.3 Performance Analysis

Let us next explore some aspects of the performance of the optimum decision rule
for M-ary Bayesian hypothesis testing problems. Generalizing our approach from
the binary case, we begin with an expression for the expected cost obtained by
enumerating all the possible scenarios (i.e., deciding Ĥ(y) = Hi when H = Hj is
correct for all possible values of i and j):

E [C] =
M−1
∑

i=0

M−1
∑

j=0

Cij Pr
[

Ĥ(y) = Hi

∣

∣

∣
H = Hj

]

Pj. (2.124)
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Hence, the key quantities to be computed are the decision probabilities

Pr
[

Ĥ(y) = Hi

∣

∣

∣
H = Hj

]

. (2.125)

However, since these probabilities must sum over i to unity, only M − 1 probabil-
ities to be calculated for each j. Thus, in total, M(M − 1) of these quantities need
to be calculated. Note that this is consistent with the binary case (M = 2) in which
only two quantities need to be calculated, viz.,

PF = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H0

]

and PD = Pr
[

Ĥ(y) = H1

∣

∣

∣
H = H1

]

.

In the more general case, however, not only does the number of quantities
to be computed increase with M , but also the complexity of each such calculation
as well. Specifically, as we have seen, reaching the decision Ĥ(y) = Hi involves a
set of comparisons among M − 1 statistics. For example, in the 3-hypothesis case
Pr[Ĥ(y) = Hm | H = H0] equals the integral over the region marked “Ĥ(y) = Hm”
in Fig. 2.9 of the joint distribution for L1(y) and L2(y) conditioned on H = H0.
Unfortunately, calculating these kinds of multidimensional integrals over such re-
gions are cumbersome and can generally only be accomplished numerically. In-
deed, there are few simplifications even in the Gaussian case.

Example 2.10

Let us return to Example 2.9 where the densities of y under the various hypotheses
are given by (2.114). For simplicity, let us assume that the hypotheses are equally
likely and the signals have equal energy so that the optimum decision rule is given
by (2.118). Let

ℓ(y) =











ℓ0(y)
ℓ1(y)

...
ℓM−1(y)











= My (2.126)

where
M =

[

m0 m1 · · · mM−1

]T
. (2.127)

Then, since y is Gaussian under each hypothesis, so is ℓ(y). In fact, from (2.113)
we see that the second-moment statistics of the log likelihood ratio are

E [ℓ | H = Hj] = Mmj =











mT
0 mj

mT
1 mj
...

mT
M−1mj











(2.128)

and

Λℓ|H=Hj
= E

[

(ℓ− E [ℓ | H = Hj]) (ℓ− E [ℓ | H = Hj])
T
]

= MMT

=











mT
0 m0 mT

0 m1 · · · mT
0 mM−1

mT
1 m0 mT

1 m1 · · · mT
1 mM−1

...
...

. . .
...

mT
M−1m0 mT

M−1m1 · · · mT
M−1mM−1











(2.129)
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so that
pℓ|H(l|Hj) = N(l;Mmj ,MMT) (2.130)

In this case

Pr
[

Ĥ(y) = Hi

∣

∣

∣
H = Hj

]

= Pr [ℓi ≥ ℓm, m = 0, 1, . . . ,M − 1 | H = Hj] (2.131)

which is an M -dimensional integral of the distribution in (2.130) over the set in
which the ith coordinate is at least as large as all of the others.

Since exact calculation of performance quantities such as those in Exam-
ple 2.10 is generally impractical, approximation techniques are often employed.
We next consider a class of approximation techniques, based on the union bound
mentioned in Section 1.2 and its generalizations, that are frequently useful in such
problems.

The Union Bound in Performance Calculations

In order to simply our development, let us restrict our attention to the costs asso-
ciated with the minimum probability-of-error criterion. Specifically, suppose that
the Cij are given by (2.108), and in addition that the hypotheses are equally likely.
In this case (2.124) becomes

E [C] = Pr(e) =
1

M

M−1
∑

j=0

Pr
[

Ĥ(y) 6= Hj

∣

∣

∣
H = Hj

]

(2.132)

Furthermore, from (2.110) we see that the event

Ej = {Ĥ(y) 6= Hj}
is a union, for k 6= j, of the events

Ekj = {Pr [H = Hk | y] > Pr [H = Hj | y]}. (2.133)

Therefore

Pr
[

Ĥ(y) 6= Hj

∣

∣

∣
H = Hj

]

= Pr [Ej | H = Hj]

= Pr

[

⋃

k 6=j

Ekj

∣

∣

∣

∣

∣

H = Hj

]

=
∑

k 6=j

Pr [Ekj | H = Hj]

−
∑

k 6=j
i6=j
i6=k

Pr [Ekj ∩ Eij | H = Hj]

+
∑

k 6=j, i6=j, n 6=j
k 6=i, k 6=n, i6=n

Pr [Ekj ∩ Eij ∩ Enj | H = Hj]

− · · · (2.134)
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where to obtain the last equality in (2.134) we have used the natural generalization
of the equality (1.5).9

Eq. (2.134) leads us to a natural approximation strategy. Specifically, it fol-
lows that

Pr

[

⋃

k 6=j

Ekj

∣

∣

∣

∣

∣

H = Hj

]

≤
∑

k 6=j

Pr [Ekj | H = Hj] (2.135)

since the sum on the right-hand side adds in more than once the probabilities of
intersection of the Ekj.

The bound (2.135) is referred to as the union bound and is in fact the simplest
(and loosest) of a sequence of possible bounds. Specifically, while (2.135) tells us
that the first term on the right of (2.134) is an upper bound to the desired proba-
bility, the first two terms together are a lower bound10, the first three terms again
form another (somewhat tighter) upper bound, etc. It is the first of these bounds,
however, that leads to the simplest computations and is of primary interest, yield-
ing

Pr(e) ≤ 1

M

M−1
∑

j=0

∑

k 6=j

Pr [Ekj | H = Hj] . (2.136)

The union bound is widely used in bit error rate calculations for communications
applications.

We conclude this section by illustrating the application of this bound in the
context of an example.

Example 2.11

Again, we return to Example 2.9 and its continuation 2.10. In this case, via (2.118)
or, equivalently, (2.131)), we have

Ekj = {ℓk > ℓj} = {ℓk − ℓj > 0}
so that

Pr(e) ≤ 1

M

M−1
∑

j=0

∑

k 6=j

Pr [ℓk − ℓj > 0 | H = Hj] (2.137)

From our earlier calculations we see that

pℓk−ℓj |H(l|Hj) = N
(

l; (mk −mj)
Tmj , (mk −mj)

T(mk −mj)
)

, (2.138)

so that Pr [ℓk − ℓj > 0 | H = Hj] is a single error function calculation.

9For example, we have

Pr(A ∪B ∪ C) = Pr(A) + Pr(B) + Pr(C)− Pr(A ∩B)− Pr(A ∩ C)− Pr(B ∩ C) + Pr(A ∩B ∩C).

10To see this, note that we’ve subtracted out probabilities of intersections of pairs of the Ekj

but in the process have now missed probabilities of intersections of three of the Ekj together.
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As a specific numerical example, suppose that there are three hypotheses and

m1 =





1
0
0



 , m2 =





0
1
0



 , m3 =





0
0
1





In this case, for any k 6= j we have

pℓk−ℓj |H(l|Hj) = N(l;−1, 2) (2.139)

so that

Pr(e) ≤ 2

∫ ∞

0

1√
4π

e−(l+1)2/4 dl = 2Q

(

1√
2

)

(2.140)

2.8.4 Alternative Geometrical Interpretations

It is also possible to develop alternative geometrical interpretations of the opti-
mum Bayesian decision rule (2.107). These interpretations lend additional insight
into the structure of these tests. In this section, we explore one such alternative
interpretation. To begin, we define the conditional probability vector

π(y) =











Pr [H = H0 | y = y]
Pr [H = H1 | y = y]

...
Pr [H = HM−1 | y = y]











, (2.141)

and note that all of the components of π(y) are nonnegative and sum to unity.
As depicted in Fig. 2.10, the sets of all such probability vectors form a line when
M = 2 and a plane when M = 3. Let us also define a set of cost vectors ci, each
of which consists of the set of possible costs associated with making a particular
decision, viz.,

ci =











Ci0

Ci1
...

Ci,M−1











. (2.142)

With this new notation, the optimal decision rule (2.107) can be expressed in the
form

Ĥ(y) = Hm̂ where m̂ = arg min
m∈{0,1,...,M−1}

cT
mπ(y), (2.143)

or, equivalently,

Ĥ(y) = Hm̂ if for all m we have (cm̂ − cm)Tπ(y) ≤ 0 (2.144)

As before, this rule takes the form of a set of comparisons: for each i and k
we have

(ck − ci)
Tπ(y) < 0 =⇒ Ĥ(y) 6= Hi (2.145a)

(ck − ci)
Tπ(y) > 0 =⇒ Ĥ(y) 6= Hk (2.145b)
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π2

π1

π  +π  = 11 2

(0,1)

(1,0)
(a)

π3

π1

(0,0,1)

(1,0,0)
π2

(0,1,0)

π  +π  +π  = 11 2 3

(b)
Figure 2.10. Geometry optimum M -
ary Bayesian decision rules in π-space.
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H(y)=Hˆ
1

H(y)=Hˆ
3

H(y)=Hˆ
2

(0,0,1)

(1,0,0) (0,1,0)
Figure 2.11. Optimum decision re-
gions with triangle of Fig. 2.10(b).

From the vector space geometry developed in Section 1.7, we see that each of the
equations (ck − ci)

Tπ(y) = 0 defines a subspace that separates the space into two
half-spaces corresponding to (2.145a) and (2.145b). By incorporating all of these
comparisons, the set of subspaces (ck − ci)

Tπ(y) = 0 for all choices of k and i
partition the space into the optimum decision regions. The set of possible proba-
bility vectors, which is a subset of the space, is therefore partitioned into decision
regions. For example, for M = 3, there are three planes through the origin in
Fig. 2.10(b) that partition the space. In Fig. 2.11 we illustrate what this partitioning
looks like restricted to the triangle in Fig. 2.10(b) of possible probability vectors.

2.9 RANDOM AND NONRANDOM HYPOTHESES, AND SELECTING TESTS

Throughout this chapter, recall that we have assumed that the hypotheses Hm were
inherently outcomes of a random variable H . Indeed, we described the probabil-
ity density for the data y under each hypothesis Hm as conditional densities of
the form py|H(y|Hm). And, in addition, with each Hm we associated an a priori
probability Pm for the hypothesis.

However, it is important to reemphasize that in many problems it may not be
appropriate to view the hypotheses as random—the notion of a priori probabilities
may be rather unnatural. Rather, as we discussed at the outset of the chapter, the
true hypothesis H may be a completely deterministic but unknown quantity. In
these situations, it often makes more sense to view the density for the observed
data not as being conditioned on the unknown hypothesis but rather as being
parameterized by the unknown hypothesis. For such tests it is then appropriate to
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use the notation
H0 : y ∼ py(y; H0)

H1 : y ∼ py(y; H1),
(2.146)

which makes this parameterization explicit.

Hence, we can distinguish between three different classes of hypothesis test-
ing problems:

1. The true hypothesis is random, and the a priori probabilities for the possibil-
ities are known.

2. The true hypothesis is random, but the a priori probabilities for the possibili-
ties are unknown.

3. The true hypothesis is nonrandom, but unknown.

For the first case, we can reasonably apply the Bayesian method provided we
have a suitable means for assigning costs to the various kinds of decision errors.
When we cannot meaningfully assign costs, it is often more appropriate to apply
a Neyman-Pearson formulation for the problem.

In the second case, we cannot apply the Bayesian method directly. How-
ever, provided suitable cost assignments can be made, we can apply the min-max
method to obtain a decision rule that is robust with respect to the unknown prior
probabilities. When suitable cost assignments cannot be made, we can use the
Neyman-Pearson approach in this case as well.

Finally, in the third case, corresponding to hypothesis being nonrandom, the
Neyman-Pearson is natural approach. Our development in this case proceeds ex-
actly as it does in the random hypothesis case, except for our modified notation
for the densities. As a result, the optimum decision rule is a likelihood ratio test,
possibly randomized in the case of discrete data, where the likelihood ratio is now
defined in terms of the modified notion, i.e.,

L(y) =
py(y; H1)

py(y; H0)
(2.147)

in the continuous-valued observation case, or

L(y) =
py[y; H1]

py[y; H0]
(2.148)

in the case of discrete-valued observations.

The distinction between random and nonrandom hypotheses may seem pri-
marily a philosophical one at this juncture in our development. However, making
distinctions between random quantities and nonrandom but unknown quantities—
and keeping track of the consequences of such distinctions—will make our devel-
opment in subsequent chapters much easier to follow and provide some important
perspectives. With this approach, it will also be easier to understand the practical
implications of these distinctions as well as the connections between the various
approaches to detection and estimation we develop.




