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Transcription control reprogramming in genetic

backup circuits

Ran Kafri, Arren Bar-Even & Yitzhak Pilpel

A key question in molecular genetics is why severe mutations
often do not result in a detectably abnormal phenotype. This
robustness was partially ascribed to redundant paralogs'? that
may provide backup for one another in case of mutation.
Mining mutant viability and mRNA expression data in
Saccharomyces cerevisiae, we found that backup was provided
predominantly by paralogs that are expressed dissimilarly in
most growth conditions. We considered that this apparent
inconsistency might be resolved by a transcriptional
reprogramming mechanism that allows the intact paralog

to rescue the organism upon mutation of its counterpart.

We found that in wild-type cells, partial coregulation across
growth conditions predicted the ability of paralogs to alter
their transcription patterns and to provide backup for one
another. Notably, the sets of regulatory motifs that controlled
the paralogs with the most efficient backup activity
deliberately overlapped only partially; paralogs with highly
similar or dissimilar sets of motifs had suboptimal backup
activity. Such an arrangement of partially shared regulatory
motifs reconciles the differential expression of paralogs with
their ability to back each other up.

Functionally redundant gene duplicates are inherently evolutionarily
unstable; consequently, in many duplications, one of the duplicates is
silenced®?. Retention of duplicates over long evolutionary time scales
was therefore suggested to require either degenerative subfunctionaliz-
ing mutations or introduction of new functions>>-. We aim here to
understand both the relevance of transcription regulation to duplicate
retention in evolution and its role in controlling expression of genes
that provide backup in case of mutation.

Mining single gene—knockout phenotype data and annotations of
molecular functions of all yeast genes, we found high correlation
between the essentiality of genes and the similarity of molecular
function between themselves and their paralogs (Supplementary
Figs. 1 and 2 online). We also found that only 4% of the dispensable
paralogs did not colocalize® in the same organelles (Supplementary
Fig. 3 online). These observations corroborate the notion that ‘dis-
pensability’ may be explained by backup between paralogs.

A priori, it might seem that backup requires the paralogs’ mRNAs to
be coregulated. To examine this possibility, we calculated, for each pair

of paralogs, 40 correlation coefficients of mRNA expression corre-
sponding to 40 different experiments. We define the means and
standard deviations of such correlations, for each pair, as their mean
expression similarity and partial coregulation (PCoR) values, respec-
tively. We refer to the standard deviation of the correlations as PCoR
because its value is high for pairs that have interchangeably high and
low correlations across different conditions. Figure 1 shows the
proportion of dispensable genes in sets of gene pairs versus their
mean expression similarity and PCoR. We inspected close and remote
paralogous pairs separately and found markedly different trends.
Among remote paralogs, we found that the essentiality of coexpressed
pairs was very high, implying that there is little backup activity among
them. In remote pairs, backup was most efficient among transcrip-
tionally noncorrelated pairs, as their essentiality was substantially
lower than that of single genes. Supplementary Figures 4 and 5
online show the increase in protein-protein interaction among para-
logs and the decrease in similarity of Gene Ontology—annotated
molecular function between them, respectively, as a function of
coexpression. These results provide a potential explanation for the
observed decrease in backup capacity with increased coexpression. In
contrast to remote pairs, close pairs showed an almost opposite, more
intuitive trend, in which dispensability increased somewhat with
expression similarity (in agreement with refs. 1,10).

Backup among naturally dissimilarly expressed genes A and B may
suggest that, upon mutation in gene A, expression of gene B is
reprogrammed to acquire a profile that is similar to the wild-type
expression profile of gene A. Such reprogramming has been experi-
mentally verified for the Acsl and Acs2 isoenzymes. Wild-type Acsl is
subject to glucose repression'! (Fig. 1), but upon deletion of Acs2, the
repression of Acsl is relieved, and Acsl acquires an Acs2-like respon-
siveness to glucose'?. Despite dissimilar expression, the two genes
share a promoter motif (CSRE) and also have unique motifs'2. As
befits a genuine backup circuit, Acsl and Acs2 are synthetically
lethal!!. Additional examples of reprogramming in response to muta-
tions in prokaryotes, yeast and mammals are given in Supplementary
Note online.

In search for a mechanism that may regulate switching between
dissimilar and similar expression in response to mutation, we
examined the dependence of gene essentiality on PCoR. We asked
whether backup occurs among paralogs that show high PCoR in
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To exclude the possibility that the trend in a
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reflects a tendency for genes that belong to major expression clusters to be essential, we repeated the analysis using random pairing of genes and observed
a nonsignificant trend (blue). Examination of remnants of whole-genome duplication2® showed similar trends to that observed with all remote pairs,

but with marginal significance.

the wild type. We reasoned that because PCoR represents the ability
to switch between similar and dissimilar expression profiles in a
condition-dependent manner, it may be predictive of switching
between similar and dissimilar expression in response to mutation.
We found that PCoR was a very strong predictor of backup (Fig. 1b).

We next investigated the promoter architecture of backup-providing
paralogs. The possibility that the partial overlap in the sets of
regulatory motifs controlling Acsl and Acs2 accounts for their wild-
type differential expression and for reprogramming upon mutation
prompted us to inspect the similarity of motif content of all paralogs.
To quantify the extent to which promoters of paralogs are arranged to
obtain partial coexpression, we defined O, a normalized measure of the
overlap between the sets of promoter motifs that regulate two genes:

_ |m1 ﬂmz\
max(|m ], [my])’

where m; and m;, are the sets of motifs that regulate genes 1 and 2,
respectively, and |x| is the size of a set x. By plotting gene dispensability
versus motif-content overlap O, we found that maximal backup
coincided with intermediate levels of motif sharing (Fig. 2). Pairs
with high or low promoter similarity had suboptimal backup activity.
These observations confirm that optimal backup is obtained when two
paralogs share some, but not all, motifs. We propose that the unique
motifs of each paralog provide differential expression in the wild type
and that the shared motifs allow paralogs to respond to the same
conditions. This situation allows for reprogramming in response to
mutations. We plotted the number of shared transcription factor
binding sites against the rate of substitutions per synonymous posi-
tion, Ky (a rough duplication-age surrogate), and found nearly
identical average numbers of shared motifs across the entire range of
K, values (R = 0.025, P > 0.29; Supplementary Figs. 6 and 7 online).
This indicates that sharing of transcription factor binding motifs
results either from restricted divergence or from convergence and is
not an evolutionary artifact that is likely to dissipate on an evolu-
tionary time scale.

To corroborate the hypothesis that PCoR underlies reprogramming
and, ultimately, backup, we examined three predictions. First, one
member of a pair with high PCoR should be upregulated transcrip-
tionally in response to the deletion of its paralog. To investigate this
prediction, we used the Rosetta Compendium!® containing genome-
wide expression response to single-gene deletions. Of the 259 knock-
outs in the Compendium, 76 have paralogs in our data set. Of
these, 18 share high similarity in molecular function, and another 5
are synthetically lethal. We reasoned that if such potential backup-
providing pairs undergo reprogramming then the transcriptional level

of the intact paralog should increase as a function of the pair’s PCoR.
In fact, we found a significant correlation between PCoR and the
logarithm of transcriptional response to deletion among these backup-
providing candidates (R = 0.67, P = 0.002; Fig. 3). As a negative
control, functionally similar nonparalogs and random pairs showed
no correlation between PCoR and transcriptional response to deletion
(R = —0.02 and R = 0.01, respectively). Therefore, we conclude
that PCoR measured across wild-type conditions predicts backup
capacity or the ability of a gene to respond, by upregulation, to
deletion of its counterpart.

Our second prediction addresses 478 paralogs in which only one of
the two genes is essential. We tested our ability to predict which of the
two genes in such asymmetric pairs is essential by inspecting their
regulatory motifs. Our reprogramming scenario predicts that the
more motifs control a gene, the better its reprogramming and
backup-providing capacity will be. Therefore, for paralogous pairs,
we expect a negative correlation between number of motifs controlling
a gene and its dispensability. As expected, the more essential of the two
genes tended to have more motifs (Fig. 4). As a negative control, we
repeated the analysis with random pairing of the paralogs to deter-
mine whether this observation merely reflected the potential bias that
essential genes are regulated by a larger number of motifs. This
analysis with random pairing resulted in no signal (Fig. 4).
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Figure 2 Gene dispensability as a function of the regulatory motif-content
overlap O between genes and their closest paralogs. By fitting these data

to a linear function (not shown), a quadratic function (red) and the rational
function (purple; y = (ax + b)/(x2 + cx + d)), we obtained adjusted r2 values
of 0.56, 0.72 and 0.82, respectively. A binomial test showed that the
proportion of dispensable genes with O values between 0 and 0.25 (blue
bars) was significantly higher than that of genes with O values of either O
(P=1.6x 10" or >0.25 (P < 1.3 x 10714),
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Figure 3 Transcriptional response of backup-providing genes to the deletion
of the counterparts. (a) Transcriptional responses of genes to the deletion
of their functionally similar paralogs (red, R = 0.67, P = 0.002) and
functionally similar nonparalogs (black, R = —0.02) as a function of their
PCoR (data obtained from the Rosetta Compendium!3). Response is
depicted as average log, relative change of the expression level of a gene in
the mutant strain lacking its paralog divided by the expression level of the
gene in the wild type. Decreased reads in response to deletion may result
from artifacts owing to potential cross-hybridization in the wild type. This
effect was excluded by analyzing only genes that are upregulated after the
deletion. Only functionally similar paralogs were analyzed, defined either as
genes encoding enzymes with the same EC classification or, for nonenzymes,
as genes with high Gene Ontology-based semantic similarity2” (where high
similarity indicates similarity exceeding that observed at the 90t percentile
of similarities of all gene pairs in the genome). (b) Average upregulation of
functionally similar pairs that are also synthetically lethal (from the BIND
database) compared with randomly selected gene pairs.

Third, our proposed model predicts synthetic lethal interactions.
We embedded the paralogous pairs in a plane spanned by their mean
expression similarity and PCoR (Fig. 5). We gathered evidence for
synthetic lethality for certain pairs of paralogs and observed that the
prevalence of backup depended on both mean expression similarity
and PCoR score. Backup was maximal among pairs with high PCoR
and low coexpression. Physical interactions between paralogs showed
an opposite trend (Supplementary Fig. 4 online), in agreement with
previous observations'#!>. The model also includes verified cases
of reprogramming.

A crucial question is what controls reprogramming of a gene upon
mutation of its paralog. We propose a kinetic model, or reprogram-
ming switch, consisting of two genes, G1 and G2, that encode enzymes

PCoR

Mean expression similarity
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Figure 4 Difference in the number of motifs regulating paralogous pair
members as a function of the difference in the growth rates of mutants
lacking them. For each pair of paralogs, the number of motifs contained
by the gene with the higher growth rate was subtracted from the number
of motifs in the promoter of the gene with the lower growth rate. This
difference was normalized to the size of the larger of the two motif sets.
All paralogs were then grouped into three categories on the basis of the
absolute value of the difference between their growth rates, and for each
category, the mean normalized difference in the number of motifs was
calculated. The analysis was done separately for all paralogs (blue) and
for paralogs with similar molecular functions (red; defined as in the
legend to Fig. 3).

E1 and E2, which interconvert metabolite M1 into metabolite M2. In
the wild type, only El is active. Assuming that the two genes contain
binding sites for a shared transcription factor T that is induced by M1,
T reprograms (i.e., activates) G2 and hence maintains the level of
M2 upon knockout of G1 (Fig. 6). Upon silencing of G1, M1 accumu-
lates and the concentration of T increases, resulting in more
efficient activation of G2 (Fig. 6). Consequently, the level of E2
increases and the level of M2 returns to its original value after a
transient decrease (Fig. 6). This model provides appropriate control of
backup as it couples response of G2 to an environmental condition
(i.e., the accumulation of M1) with response to an internal pertur
bation (ie., silencing of Gl). The model describes enzymatic
reactions; enzymes are over-represented in our data set (34%;
Supplementary Fig. 8 online). Backup among paralogous
transcription factors may use alternative architectures (Supplemen-
tary Note online).

Figure 5 Confirmation and characterization of genetic backup circuits.
Paralogous gene pairs are plotted as a function of their mean expression
similarity and PCoR. Pairs are colored red if both members are essential or
blue if both are dispensable. Black rectangles (A-F) enclose sets of genes
whose functional redundancy was confirmed or disputed using the Proteome
and BIND databases. In this analysis, pairs were considered to back each
other up only if they have similar molecular activities and are synthetically
lethal. The number of such backup-providing pairs was divided by the total
number of functionally characterized pairs in each of the marked rectangles
individually (A: 10/29 = 0.34; B: 14/30 = 0.47; C: 12/35 = 0.34;

D: 10/45 = 0.22; E: 8/30 = 0.27; F: 1/42 = 0.02). The highest
probability for verified backup coincides with cases where mean expression
similarity is ~0 and PCoR >0.4. The placement of the rectangles reflects
our desire to examine how incidence of backup depends on the x,y
coordinates of the pairs. Four examples of paralogs that show transcriptional
reprogramming in response to gene deletion are also shown (green squares):
1: Acs1-Acs2 (ref. 11); 2: Hxt2-Hxt10 (ref. 28); 3: Idpl-Idp2 (ref. 29);

4: Fks1-Gsc2 (ref. 30).
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Figure 6 Schematic and dynamics of the reprogramming switch. (a) The
reprogramming switch. (b) Simulated dynamics of the switch before and
after knockout, at time point 15. The blue and green curves represent the
concentrations of E1 and E2, respectively; the red curve represents the
concentration of M2. The dynamics were calculated from the differential
equations describing the system using the ode23 solver of Matlab’s simulink.

The different behavior of close and remote paralogs probably stems
from the profoundly different evolutionary regimens acting on them?®.
Focusing first on remote pairs, we propose that preservation of high
coexpression in a subset of these pairs was predominantly due to evolu-
tionary pressures that are inconsistent with, and compromise, backup.
One such effect is evolving protein-protein interactions between
paralogs, which requires coexpression but precludes backup (Supple-
mentary Fig. 4 online). Second, subfunctionalization of proteins may
alleviate the pressure to diverge in expression®, but that, too, precludes
backup between coexpressed pairs (Supplementary Fig. 5 online).
Third, quantitative subfunctionalization'® that may result in regulatory
motif degeneration!®!” accounts for both coexpression and lack of
backup (e.g., due to low dosage of each of the coacting paralogs'®!?).

Why do remote pairs back each other up? Although it is difficult to
imagine that backup by duplicates is evolutionarily selectable’®, we
propose that backup-providing duplicates may be retained during
evolution if their retention is coupled to other selectable traits, such as
acquisition of new regulatory capabilities!®. Such novelties do not
preclude backup, provided that shared functionalities are preserved.
Our finding that backup is optimal among pairs that maintain high
partial coregulation provides considerable support to this notion.
Notwithstanding this, however, backup has a profound impact on
an organism’s robustness, whether selected for its own sake or not. But
apparent dispensability may be partially due to limited coverage of
growth conditions tested in the laboratory, and a recent computa-
tional study'® estimated that this factor accounts for 37-68% of
dispensable genes, compared with the 15-28% that are estimated to
be compensated by a duplicate. Gu et al. estimated a similar lower
bound of 25% (ref. 2).

Many of the close paralogs that represent recent duplications® are
assumed to be under free selection, meaning that they have not yet
undergone either sub- or neofunctionalization; hence, they are
redundantly similarly expressed. This probably explains their some-
what more intuitive behavior (backup increases with coexpression),
which does not depend on evolving reprogramming.

METHODS

Set of analyzed genes and definition of paralogs. To ensure that we analyzed
genuine genes, we discarded from the list of S. cerevisiae open reading frames
(ORFs) all entries corresponding to spurious ORFs?* and all transposon-
derived genes as annotated by Saccharomyces Genome Database. This resulted
in a list of 5,862 ORFs. We defined paralogs as pairs of ORFs that, by BLASTP
with standard parameters, had E valued <1072, provided that the ratio of the
length of the long protein to the length of the short protein was not larger than
1.33. For each pair of paralogs, we calculated the number of synonymous and

nonsynonymous substitutions (K and K,, respectively)?!. We defined remote
paralogs as pairs with K; > 1 and close paralogs as pairs with Ky < 1. To avoid
potential misclassification of borderline cases, we also adopted an alternative
definition in which we regarded remote pairs as those with Ky > 1.2 and close
pairs as those with K < 0.8 and found that the same trends characterized the
two sets (Supplementary Fig. 9 online). Supplementary Figure 9 contains
additional cutoff justifications including a systematic assessment of the robust-
ness of the results to changes of threshold value and to use of alternative
measures of sequence similarity (e.g., K,). To remove from the set of close
pairs (Ky < 1) any paralogs that represent old duplications, we removed
close paralogs in which at least one of the genes had a low (<32) effective
number of codons?%.

Gene essentiality data. We defined dispensable genes as all genes with a viable
gene-deletion phenotype that were not included in the lists of spurious ORFs
or transposon-derived ORFs. Additionally, we obtained data on growth rates
of mutants lacking each of the ORFs in the genome in five different
growth media?’.

mRNA expression data. We obtained whole-genome mRNA expression data of
40 natural and perturbed time series and the Rosetta Compendium data, which
measures genome-wide transcription response to gene deletions'?, from
ExpressDB. We normalized all expression profiles of genes in each time series
with respect to mean and variance. Detailed descriptions of all analyzed
conditions is presented on our project website (see URL below).

We obtained expression data from either Affymetrix chips (seven experi-
ments) or PCR product-based microarrays (33 experiments). Because the latter
technology is more prone to cross-hybridization errors, we used only data
derived from Affymetrix chips when analyzing close paralogs.

A nonredundant set of promoter regulatory motifs in S. cerevisiae. We
compiled a nonredundant set of 112 yeast regulatory motifs, along with their
gene assignments, from three different sources: ChIP-chip (originally augmen-
ted with phylogenetic conservation of motifs across multiple yeast species)?*,
expression data®® and phylogenetic conservation?’. We included motifs derived
from the last two computational methods only if they corresponded to
experimentally known motifs and had a significance score higher than the
90th percentile in their respective methods.

Kinetic analysis of the reprogramming switch. We modeled the concentration
of induced transcription factor (T*) and the fractions of time in which genes
G1 and G2 were transcribed, denoted as G1* and G2*, respectively, with three
saturation equations:

o (MI/K)™
(MI/KM)"M+1’
o (TR
(T"/K)"+1’
and
o (TR
/K1

where Tt is the concentration of total transcription factor; Ky is the affinity
between the transcription factor T and the inducing metabolite M1; K; and K,
are the transcription factor’s affinities to G1 and G2, respectively; and the
powers ny; and n represent binding cooperativity Hill coefficients of M1 to T
and of T* to the two promoters, respectively.

The concentration of the enzymes and the metabolites are described with
time-dependent differential equations:

dE1
== =B GI" —aEl;
dt B Cx’ y
dE2
—Z— - G2 —aE2
dt B cx’ b

aM1

7 By — ¢(E1+E2)M1;
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= G(EL+ E2MI — oy M,
where B and By are the maximal production rate of E1 and E2 and of M1,
respectively; o and oy represent the degradation and dilution of E1 and E2 and
of M2, respectively; and ¢ represents the conversion rate of M1 to M2. Values of
the coefficients, the present simulation, are T™ = 1, Ky = 20, K; = 0.1,
K; = 0.3, nyy = 4, n = 1 (i.e,, no cooperativity is assumed) and o0 = = oy =
Bm = ¢ = 1. There are three reasonable assumptions in the model. First, we
assume that the binding of M1 to T and of T* to G1 and G2 occurs on a short
time scale compared with the other reactions; therefore, these reactions are in a
quasi-steady state. Second, we assume that M1 > T (the total number of free
M1 molecules is roughly the same as the total number of M1 molecules). Finally,
we assume that E1 and E2 work linearly with respect to M1 as a substrate.

Statistical analyses. We computed proportions of dispensable genes as a
function of mean expression similarity, PCoR and motif-content overlap O
(Figs. 1 and 2) by binning genes into groups according to each of these three
variables and then calculating the frequency of viable mutants in each bin. We
counted each gene in each bin only once to avoid repetitions caused by one
gene having multiple paralogs. To establish that our results are independent of
the particular choice of binning strategy, we verified that the observed trends
were valid under any relevant bin-size choice (Supplementary Fig. 10 online).

We tested the significance of trends observed for the proportions of
dispensable genes against mean expression similarity (Fig. la), PCoR
(Fig. 1b) and motif-content overlap (Fig. 2) using logistic regressions analyses
(in Fig. 1a, only the declining portion of the curve, with positive expression
similarity values, was used). Further statistical analyses of the results are shown
in Supplementary Figures 9 and 10 online.

URLs. We downloaded gene sequences from the Saccharomyces Genome
Database (http://www.yeastgenome.org/) and retrieved gene knockout pheno-
type data from http://sequence-www.stanford.edu/group/yeast_deletion_
project/Essential_ORFs.txt. Functional annotations for all genes came from
the Gene Ontology annotation scheme at http://www.yeastgenome.org/. We
downloaded synthetic lethal interactions and physical interactions between
proteins from the BIND database (http://bind.ca/). We collected gene expres-
sion data from ExpressDB (http://arep.med.harvard.edu/ExpressDB/) and used
the Proteome database (http://proteome.incyte.com/) to collect synthetic lethal
pairs manually. Our project website is http://longitude.weizmann.ac.il/
BackUpCircuits/. We obtained EC classifications from http://mips.gsf.de/
genre/proj/yeast/.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS

We thank all members of the laboratory of Y.P. for discussions; I. Pechersky for
computational assistance; and Y. Garten, N. Barkai, J. Berman, B. Shilo, A M.
Dudley, 1. Yanai, O. Man, S. Shen-Orr, D. Graur, D. Lancet, M. Levy and D. Artzi
for critical review of the manuscript. Y.P. is an incumbent of the Aser Rothstein
Career Development Chair in Genetic Diseases and is a Fellow of the Hurwitz
Foundation for Complexity Sciences. We thank the Leo and Julia Forchheimer
Center for Molecular Genetics and the Ben May Foundation for grant support.
This paper is dedicated to the memory of I. Kafri.

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Received 16 November 2004; accepted 25 January 2005
Published online at http://www.nature.com/naturegenetics/

10.

1

—

1

N

1

w

14.

15.

16.

17.

18.

19.

20.

2

—

2

N

2

w

2

~

2

o

2

o

28.

29.

30.

LETTERS

Conant, G.C. & Wagner, A. Duplicate genes and robustness to transient gene
knock-downs in Caenorhabditis elegans. Proc. R. Soc. Lond. B Biol. Sci. 271,
89-96 (2004).

Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations.
Nature 421, 63-66 (2003).

Nowak, M.A., Boerlijst, M.C., Cooke, J. & Smith, J.M. Evolution of genetic redundancy.
Nature 388, 167-171 (1997).

Lynch, M., O'Hely, M., Walsh, B. & Force, A. The probability of preservation of a newly
arisen gene duplicate. Genetics 159, 1789-1804 (2001).

Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes.
Science 290, 1151-1155 (2000).

Force, A. et al. Preservation of duplicate genes by complementary, degenerative
mutations. Genetics 151, 1531-1545 (1999).

Wagner, A. The role of population size, pleiotropy and fitness effects of mutations
in the evolution of overlapping gene functions. Genetics 154, 1389-1401
(2000).

Gu, Z., Nicolae, D., Lu, H.H. & Li, W.H. Rapid divergence in expression between
duplicate genes inferred from microarray data. Trends Genet. 18, 609-613
(2002).

Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425,
686-691 (2003).

Papp, B., Pal, C. & Hurst, L.D. Evolution of cis-regulatory elements in duplicated genes
of yeast. Trends Genet. 19, 417-422 (2003).

. van den Berg, M.A. et al. The two acetyl-coenzyme A synthetases of Saccharomyces

cerevisiae differ with respect to kinetic properties and transcriptional regulation.
J. Biol. Chem. 271, 28953-28959 (1996).

. Kratzer, S. & Schuller, H.J. Transcriptional control of the yeast acetyl-CoA synthetase

gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor
UMEG6. Mol. Microbiol. 26, 631-641 (1997).

. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cel/

102, 109-126 (2000).

Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with
protein-protein interactions. Genome Res. 12, 37-46 (2002).

Ge, H., Liu, Z., Church, G.M. & Vidal, M. Correlation between transcriptome and
interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29, 482-486
(2001).

Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. Trends
Genet. 20, 544-549 (2004).

Teichmann, S.A. & Babu, M.M. Gene regulatory network growth by duplication. Nat.
Genet. 36, 492-496 (2004).

Kondrashov, F.A., Rogozin, I.B., Wolf, Y.I. & Koonin, E.V. Selection in the evolution of
gene duplications. Genome Biol. 3, RESEARCH0008 (2002).

Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution
of enzyme ‘dispensability’ in yeast. Nature 429, 661-664 (2004).

Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature 423,
241-254 (2003).

. Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-

coding DNA sequences. Mol. Biol. Evol. 11, 725-736 (1994).

. Cavalcanti, A.R., Ferreira, R., Gu, Z. & Li, W.H. Patterns of gene duplication in

Saccharomyces cerevisiae and Caenorhabditis elegans. J. Mol. Evol. 56, 28-37
(2003).

. Steinmetz, L.M. et al. Systematic screen for human disease genes in yeast. Nat. Genet.

31, 400-404 (2002).

. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature

431, 99-104 (2004).

. Pilpel, Y., Sudarsanam, P. & Church, G.M. Identifying regulatory networks by combi-

natorial analysis of promoter elements. Nat. Genet. 29, 153-159 (2001).

. Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient

genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617-624
(2004).

. Lord, P.W., Stevens, R.D., Brass, A. & Goble, C.A. Investigating semantic similarity

measures across the Gene Ontology: the relationship between sequence and annota-
tion. Bioinformatics 19, 1275-1283 (2003).

Ozcan, S. Two different signals regulate repression and induction of gene expression by
glucose. J. Biol. Chem. 277, 46993-46997 (2002).

McCammon, M.T. & McAlister-Henn, L. Multiple cellular consequences of iso-
citrate dehydrogenase isozyme dysfunction. Arch. Biochem. Biophys. 419, 222-233
(2003).

Garcia-Rodriguez, L.J. et al. Characterization of the chitin biosynthesis process as a
compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett.
478, 84-88 (2000).

NATURE GENETICS ADVANCE ONLINE PUBLICATION



