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Research objectives

Determinism of traits of

Genetic diversity interest:
characterisation biomass and grain
\ yield, flowering time, nitrogen

use /

Optimisation of breeding methods,
Using molecular diversity information



Dilemma for the talk in the context of the meeting ...

We have worked (so far) on

v' a population infermated over several
generations, compared to a « classical » version, but

starting from a single biparental cross (Huang et
al., 2010, Genetics)

v multiparental designs but with no multi generation
intermating ...



Outline

1. Use of a multiparental mating design for
marker assisted selection in maize

2. Evaluation of parental allele clustering

3. Multiparental QTL mapping insights into
heterosis



Use of a multiparental mating design for marker
assisted selection in maize (Blanc et al., 2006, TAG)
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Two years of experimentation
of hybrids (10 trials) for grain
yield, moisture, flowering time
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Global QTL analysis (MC QTL software, Jourjon,
2005, Bioinformatics)

Model 1: QTL effects assumed independant across populations

Performances Y = JM + Xqu + ZXCAC +¢ -

(N x 1) . u|atian/ l o \ Random residual
eﬁgcts QTL effects

p-1=5df  P=6df

Covariates effects

Model 2: allele effects forced to be consistent across populations
(3 df for QTL effect instead of 6)

Rk. Difference between models 1 and | o005 | | o€ |

2 makes it possible to test QTL x
genetic background epistatic effects, |
See Jannink and Jansen 2001 [ rze7]




Number of QTL detected, average confidence intervals
(CI), and percentage of variance explained (R?) in the
different analyses (same global type I risk).

Silking Date Grain Moisture Grain Yield Index
Analyses Nb Nb Nb Nb
of Cl R?2 of Cl R?2 of Cl R?2 of Cl R2
QTL QTL QTL QTL
Singlg- 2.28 32 29.6 1.82 30 28.9 1.32 49 259 0.82 44 13
population  (gb) (7%) (7%) \ (5b)
model ;
Mutpop 8 25 643 8 29 522 & Joint connected model:
connected -Reduced CT
del (1
model (1) -Increased R?

MU|t|p0p 11 28 66.0 13 20 57.9 12 oy U, I I9U o9 9J.U

connected d d d d
model (2) (169) (149 (179 (239)

%average number of QTL detected per population

b total number of regions detected by all single-population analyses (model(1))

‘average CI of the QTL also detected in the single-population analyses (model(1))

d average CI of the QTL also detected in the multipopulation disconnected analyses (model(2))

(Blanc et al., TAG, 2006)



Global comparison of allelic effects for each QTL
(flowering time, days)

it Estimated additive effect epistasis
QTL Ch. zﬁif\';l’)” cl 2 imated adalive etie %S with  Ghack
(5%)

DE F283 F9005 K810

1 1 46 38-56 006 022 003 02F 2 1011
2 1 140 134-166 006  OOF - 006 035 3 11
3 2 85 62 -89 0.07 019¢ 031° -00® 3 8
4 3 41 3-5 008 027 019 043 2 11
5% 3 15  139-18 0.0/ o 0i°  011° 0.2¢¢ 3
6° 4 75 45 - 97 0.02 0.09¢ 0.15° 3
7" 5 26 10-38 002 006 @ o 10a 012 2
8 6 25 2-31 004  01F o 08a 017 2 3
9 7 145 135-167 004 u 0 o 15a 3
10 8 58 47-65 005 007 o4 Co1s) 2 1
11 10 30  28-32 [ 018 087 (0290 -025) 3 1,24 =

O Early flowering alleles
o Several QTL with three classes of allelic effects

(consistent with Buckler et al. 2009)
Contribution of epistasis seems limited



Yield (+ ha!)
Parental alleles
- - — Nbof QTL X

N° chr pos DE F283 F9005 F810 class QTLx QTL Backgr.
1 1 44 (00999 (01143) -0.017 -0.195° 3 3 11 *
2 1 105 & -0.086°  0.017 .0.03%c 3 7. 11
3 1 160 .0.08%  -0.08% 0.0982 2 1,7
4 1 217 (00572) (00069 -0.101° 2 10, 11, 12 *
5 3 35 (00399 (00012 -0.094° 2
6 4 79  -0.083 0.015°  -0.028  (0.096¢ 3 7,11, 12
7 4 164  -0.043 -0.007 0052 2 236 10, 11 -
8 6 23 -0.022 (0.094° -0.087¢ 0.0142 2 11
9 7 139 -005% -0.057 2
10 8 33  -0.032 -0.040° 0.0012 2 4,7
11 9 75  -0.020 -0.025*  -0.054 0.099b 2 12467812 *
12 10 2 .0.02¢ C00889) -0.063 0.003 3 4,6 11 *

C D Most productive alleles (Blanc et al., TAG, 2006)

Epistasis more important



Colocalisation between QTL detected for
and other traits of mTeresf grain moisture
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Outcome of marker assisted selection program for

yield index (evaluation 2004-2005-2007 trials)

= Evolution of
expected frequency
of favorable alleles
from to 0.28
(parents) to 0.80

= M cycles efficient:
significant genetic
gain (50% of
expected gain)

Equiv. 0.1 t.ha'l
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Cycles

High performance of inbred lines fixed from last

cycles confirmed




Multiparental designs have a great potential for
marker assisted breeding (assembly of alleles
more challenging)



Development of Optimas, an informatic tool to facilitate
the allele assembly process following multiparental designs

(Valente et al., 2013, J. of Hered.)

File Visualization Data Tools Help
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Use of a multiparental mating design for
marker assisted selection in maize

2. Evaluation of parental allele clustering

3. Multiparental QTL mapping insights into

heterosis



Populations used in applied breeding programs may
only be partially connected

Ex: Euralis design (N. Bardol, 2013, TAG)

Cross (pop. Size)

Parent
2
87 KO627 (156) 42
43 K0459 (182) 63 K0443 (120) 85
0 0 7
64 KO636 (60) 86 KO638 (145) 89 KO644 (114) 93
K0643 (120)

92



All alleles cannot be compared -> problem to predict
genetic values beyond one generation of intermating

0,40

0,45

1,09

K0627 (156) .

K0459 (182)

K0636 (60)

0,40

0,29

+

0,20

Ex. of one QTL analysed with
previous models

K0443 (120)

0,74
K0638 (145) K0644 (114)
0, 2,06
K0643 (120)

1,95



Parental lines are related and therefore share
identical by descent chromosomal segments

21 80

174 168_1_37 177
IS .
161—T—162 < | (93)
v 85\'173 2‘3 v
175 — 1 179
‘16/158 \79170 /\ I\
& @@ " e

-> actual number of alleles is less than number of parents

136 N 129 l 137 130




The linkage disequilibrium - Linkage Analysis
concept (LD-LA),

(Meuwissen et Goddard, 2000; Jannink et Wu,
2003)

Thanks to dense genotyping of parents:
> identification of lines carrying same alleles

» reduction in number of parameters to be
estimated

May increase connexion and/or increase power of
QR TL detection

Should we use directly genotypes at individual loci or
haplotypes?



Clustering of parental alleles into haplotypes
with “"Clusthaplo” (Leroux et al. in review)

Similarity score

Weighted mesure (W1) of
the number of alleles in
common
+

Weighted mesure (W2) of

the longest common region
length

Test Window

W2(k)

Line i !

Line j e B e A N B e e s e e S e

-Common alleles

- Longest common interval

AAG C T
VY Y oy oy
1101 0
0000 O

- e--- X



Application to 50KSNP genotyping EXL0GSS V'S £X1.0032
of parents of Euralis design Ol;', v H" ‘.
lil ' "r II_ '

Ex. of local similarities £X1L0092 VS EXL0043
between three inbred lines — °|;
along a chromosome 1

-> Threshold and transity  eemsvseusme
closure rules for clustering l il MMy
1

'

—

-> three possible definitions for alleles in QTL models
- One allele per parent
- Haplotype grouping
- Single marker grouping



QTL analysis with MCQTL-LD
Coll. BIA Toulouse « Syngenta » « Euralis »

24
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~logio(p)

oM O

Grain moisture

- D
——- Connected model

—— LDLA model with haplotypes
LDLA model with single markers

4 X Traditional linkage-
* based analyse
1 5 ¥ _ i : @ LDLA analyse with
i A |} g ‘ J = ‘i?"'i ancestral haplotypes
| A R .
0/ S ¢ ‘ C 'ﬂ» ot FO i A 8
J ! ﬂ E Y 5 ' i AW DLA analyse with
5 4 : ; single marker alleles
| | l | | | | | -
2 3 4 5 6 7 8 9 10

Chromosomes



Silking date(days) Grain moisture(%o)

Models Nb QTL R2 Nb QTL R2

Single population analyses 1a/ 3P 15.7 2.12/ 8P 29.5
(Partially) Connected 5 24.5 12 53.7
LDLA with ancestral alleles 5 21.7 13 53.2
LDLA with single marker 7 38.8 15 46.1

Grain yield(g.ha 1) Index

Models Nb QTL R2 NbQTL R2

Single population analyses 1a/ 7P 13.0 0.82/ 6P 10.0
(Partially) Connected 7 30.8 7 26.3
LDLA with ancestral alleles 12 37.5 11 30.5
LDLA with single marker 9 35.8 7 31.7

= More QTL detected on average with LDLA approaches
= Differences between models vary among traits suggest
different types of allelic effects



Use of a multiparental mating design for
marker assisted selection in maize

. Evaluation of parental allele clustering

3. Multiparental QTL mapping insights into

heterosis



QTL approaches of heterosis

How to analyze dominance effects using homozygous lines?

Parent1 Parent 2

-
!
II

Selfing

Backcross with the parent Backcross with the parent 2

" “ “ " " " North Carolina

design III

Creates homozygous vs. heterozygous segregations



Extension of the NCIII (Lariépe et al., 2012, Genetics)

Three parents Cross to both related and unrelated
parents
F2. N p
European A §\ /é 4 g
Flint @\%/\ lodent Té //
S N Y e
N 7,
F252: N N < 4
American
Dent F2 || l I| F2s2
|
i Iil |
| Iodent: / N\
#  American I 0 I l i il

Dent




N v
'u\,:\\x§ \\;\\:: lode Téé @¢
‘s . \%\@ Il %2 2,
9 families of hybrids, N N AV A
including three between e
unrelated lines (bold) !
/BEHHEE\
B0 | wnn
I
Population x F2 X |0 x F252
F2 x Io (D) 11712 12/ 22 13723
F2 x F252 (E) 11/13 12723 13733
lo x F252 (G) 12/13 2223 23733

Makes it possible to compare :

v'Homozygous (indirectly)

v'Homozygous / heterozygous

v'Heterozygous (directly)

v'Test for epistatic effects (6 genotypes / 9 comparisons)




Phenotyping experiment

Materials

1278 Hybrids between Rils and parents

« several checks constructed from parental lines (per se, F1 and
three way hybrids)

Evaluated in four environments

 Single replicates (two rows plots)

 Block design organised to prevent

excessive competition between

related and unrelated crosses

(colored)

* Traits: flowering time (silking date),

plant height, grain moisture at
harvest, grain yield

Relative magnitude of GXE limited
-> focus on average of locations



Heterosis

Dark / Light blue: positive / negative deviations of hybrids to
average of parents

Grain moisture (%) Plant height (cm)

40 250

30 200
150

20
100

0 0

lo F2xlo F2 F2xF252 F252 F252xlo lo F2xlo F2 F2xF252 F252 F252xlo
Silking date GrainYield
100 100

80
60
40
20

80
60
40
20

lo F2xlo F2  F2xF252 F252 F252xlo lo F2xlo F2  F2xF252 F252 F252xlo

v’ Dramatic heterosis for yield (probably enhanced by
competition)
v’ Heterosis towards faster flowering



QTL mapping models

Using McQTL (coop B. Mangin, S. Jasson), multilocus
models

v global analysis of whole design with additive and
dominance effects

y = Jm + X g, + ZXCg: + e.

c#q
y: performance

Jm: family effect (9 families)
X: genotypesy: effects (3 additive, 3 dominant)

v' Inclusion of epistatic terms:
with background or beetween detected QTLs,
additive x additive and terms including dominance




Synthesis of detected effects

QTL detection on the global design

TL with
QTL with QTL Wi
. No. QTL R? o significant
Trait significant .
detected (%) - dominance
additive effects
effects
Grain moisture 13 40 13 2
Silking date 12 36 11 7
Plant height 15 44 15 8
Grain yield 10 34 6 10

v' More QTL detected with global model
v All QTL detected for yield display dominance effects

v Moisture fully additive

v Height and silking intermediate



Visualisation of representative effects

Grain moisture Grain moisture Grain moisture

Circles: homozygous
Genotypes

;>

Crosses: heterozygous R e B R e B [ A
genotypes

Silking date Silking date Silking date

Triangle sides join

homozygous genotypes i W i .4% Bof o

Vertical lines A I .
represent dominance A Y e T A
effect 7 e R
1 indicates the F2 EN N

allele, 2 the Io

allele, and 3 the F252
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All QTL detected for y/e/o’ d/5p/ay apparenf overdominance



Comparison with
yield QTLs
reported in
published studies
adressing heterosis

Tang et al, 2010 (iF2)

Frascaroli et al, 2007

Frascaroli et al, 2007 reanalyzed by Schoen et al, 2010 (Z2)
Frascaroli et al, 2007 reanalyzed by Schoen et al, 2010 (Z1)
Stuber et al, 1992 reanalyzed by Schoen et al, 2010 (Z2)
Stuber et al, 1992 reanalyzed by Schoen et al, 2010 (Z1)

Lu et al, 2003 reanalyzed by Schoen et al, 2010 (Z2)

Lu et al, 2003 reanalyzed by Schoen et al, 2010 (Z1)

00 060 0 00 ©

Grain yield
Chi Ch2 Ch3 Ch4 Ch5 Ché Ch7 Chs Ch9 Ch10
Trait 'y L L L 1 —L —L [— [ —L
72 J« .J-. —_ 1, .J-' —L .J—1 L L — L
71 o I
0 100 200 . 0 100 0 QOO 9 0 100 0 10% 0 100 0 O 1% 0 & g)o 0 %100 0 100
g 8 o

v" high level of congruency in highly diverse materials
contrasts with the expected complexity of heterosis,

v' several close proximities to hypo recombinant
centromeric regions suggests a strong effect of
linkage (see also McMullen et al., 2009)



Outcomes of Multi Parental Populations in maize

Genetic analyses

See also results on other experiments by Rebai et al.

1997 , Buckler et al., 2009, Coles et al., 2010)

« Confirms globally high number of QTLs and a large
contribution of linkage to detected regions

« Suggests complex allelic series with gradient of
effects

« Dominance certainly important for yield, epistasis
more limited / difficult to detect

Breeding analyses

 Nice way to increase a list of solid favorable alleles
to be assembled in Marker Assisted Selection

 Application in advanced generations requires
marker selection, probability computation (Optimas
project)




Opportunities to go further

* a priori grouping of alleles based on dense
genotyping of parents (see NAM, LDLA concepts)
seems promising to gain power and facilitate
management of MAS generations

« Genomic prediction / selection

Questions:

« Nb. of parents and optimisation of design

« Which density of markers needed? (rq. Maize 60
kSNP array just developed, genotyping by
sequencing, ...)

 Statistical models?




Rk. New early flowering populations developed in
cooperative project CornFed,

Coop. KWS (M. Ouzunova et al.),
Limagrain (P. Flament et al.),
University Hohenheim (A. Melchinger
et al, TUM (C. Schoen, E. Bauer et
al.), Syngenta (N. Ranc et al.),

KWS ur'ser'y

early Dent connexion
European Flint connexion

FL2
29 crosses, mating design / : T
constructed as satellites to

UHOOT Flint F353 lodent

US NAM, 2600 DH lines curope Eurcpe

genotyped with 50K SNP //[ \ /

(TUM), phenotyped for
biomass production traits 310

DL6
DL7
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QTL analyses with NCIII I

/NN e
1. Separate analysis of the two populations and a
prosteriori comparison of effects (Stuber et al., 1992)

2. Combination of performances of hybrids with two

parents into linear combinations, followed by QTL analysis
(in maize: Melchinger et al., 2007*, Frascaroli et al., 2007, Schoen et
al., 2010)

Z1 = ( RILxP1 + RILxP2)/2
=> linear contrast for additive™ effect

Z2= (RILxP2 - RILxP1)/2
=> linear contrast for dominance* effect

* Augmented by epistatic effects



Global effect of
consanguinity

Evaluated through
relationship between

« Z2 contrast between
hybrids with P1 and P2

(Y axis)

Distance to Parentl (X
axis), ie. contrast

between

heterozygosities of
hybrids with P1 and P2

Plant

Moisture

Silking
date

F2 x 1o

F2 x F252

LY Ty A odd

lo X F252

g *
' T

- .
-
* * * 0:‘\- - . :
- e Se o - o Yoo *
PR « TN gy
SRR AR TR LS
.
- ': ‘&‘.\. - "'32“ \. .?g.
« " frne . R
- * - ¢ .
r=
-

H @ .. - . - ... .:‘
: * . . ....a i L3
C) ..\ *-. L S 0:‘ 0”

" — .§.... ..t..: . N .. . .
se * P e L 4
c #o, $P% < % *
*® e
*e
r=
87 a0
U S - - 3 >
e :o. E, C
Q - 35 2 F3 e
-
~ LIS g &T‘ ‘.‘l.‘ o .g .:!QQ. *
> n -« * - .".’ ® .
8 0:“’:’?. e N
D L)
(0 e *
T T T T

Strong magnitude of correlation (but for moisture)
-> polygenic and unidirectional dominance effects (positive

for yield and height, negative for flowering time)



