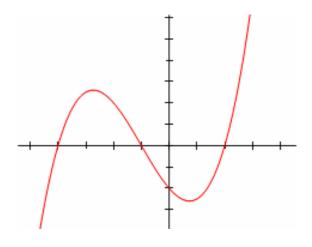
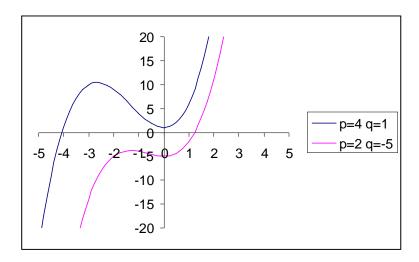
Complement: Cardano's Formulae



Complement : Cardano's Formulae

Cardano's formulae give the roots of cubic (third degree polynomial) P(X).

We only consider in this document the cubic functions $P(X) = X^3 + pX + q$ since all cubic functions can be re-arranged into looking like P(X).



We seek roots of P(X) by writing X = h + k h and k must therefore satisfy

$$X^{3} + pX + q = h^{3} + k^{3} + (3hk + p)(h + k) + q$$

Cardano's Trick

If we can find h and k such as $\begin{pmatrix} h^3+k^3=-q\\hk=-p/3 \end{pmatrix}$ then we have found a root of the cubic.

The conditions are rewritten as $\begin{pmatrix} h^3+k^3=-q\\h^3k^3=-p^3/27 \end{pmatrix}$ which suggests the change $\begin{pmatrix} u=h^3\\v=k^3 \end{pmatrix}$

We eventually get the system in (u,v)

$$\begin{cases}
u + v = -q \\
uv = -p^3 / 27
\end{cases}$$

u and v are roots of the second degree polynomial

$$Y^2 + qY - p^3 / 27$$

The discriminant of the polynomial

$$\Delta = q^2 + 4p^3 / 27$$

Case 1: $\Delta > 0$

$$Y^2 + qY - p^3/27$$
 has two real roots $u = \frac{-q + \sqrt{\Delta}}{2}$ and $v = \frac{-q - \sqrt{\Delta}}{2}$

We have three possible values for h $h_0 = \left(\frac{-q + \sqrt{\Delta}}{2}\right)^{1/3}$, jh_0 and j^2h_0 (where j is the cubic

root of unity $j=e^{i2\pi/3}$) for which the corresponding values of k are $k_0=\left(\frac{-q-\sqrt{\Delta}}{2}\right)^{1/3}$, j^2k_0 and jk_0 .

The equation is solved as we have three possible (one real, two complex) combinations X = h + k:

$$X_1 = h_0 + k_0$$
, $X_2 = jh_0 + j^2k_0$ and $X_3 = j^2h_0 + jk_0 = \overline{X_2}$

Case 2 (Limit Case): $\Delta = 0$

$$Y^2 + qY - p^3/27$$
 has a double real root $u = v = \frac{-q}{2}$

We have three possible values for h $h_0=\left(\frac{-q+\sqrt{\Delta}}{2}\right)^{1/3}$, jh_0 and j^2h_0 for which the corresponding values of k are $k_0=h_0$, j^2h_0 and jh_0 .

The equation is solved as we have two real roots X = h + k of the cubic:

$$X_1 = 2h_0$$
 and $X_2 = jh_0 + j^2h_0 = -h_0$

Case 3 $\Delta < 0$,

$$Y^2 + qY - p^3/27$$
 has two roots $u = \frac{-q + i\sqrt{-\Delta}}{2}$ and $v = \frac{-q - i\sqrt{-\Delta}}{2}$.

We have three possible values for h h_0 (one of the cubic root of u), jh_0 and j^2h_0 . The corresponding values of k are $k_0=\overline{h_0}$, $j^2\overline{h_0}$ and $j\overline{h_0}$.

The equation is solved as we have three <u>real</u> possible combinations X = h + k:

$$h_0 + \overline{h_0} = 2\operatorname{Re}(h_0) ,$$

$$jh_0 + j^2 \overline{h_0} = 2\operatorname{Re}(jh_0)$$
and
$$j^2 h_0 + j\overline{h_0} = 2\operatorname{Re}(j^2 h_0)$$