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Abstract In this article we present a new kind of computing device that uses

biochemical reactions networks as building blocks to implement logic gates. The

architecture of a computing machine relies on these generic and composable

building blocks, computation units, that can be used in multiple instances to perform

complex boolean functions. Standard logical operations are implemented by bio-

chemical networks, encapsulated and insulated within synthetic vesicles called

protocells. These protocells are capable of exchanging energy and information with

each other through transmembrane electron transfer. In the paradigm of computa-

tion we propose, protoputing, a machine can solve only one problem and therefore

has to be built specifically. Thus, the programming phase in the standard computing

paradigm is represented in our approach by the set of assembly instructions (specific

attachments) that directs the wiring of the protocells that constitute the machine

itself. To demonstrate the computing power of protocellular machines, we apply it

to solve a NP-complete problem, known to be very demanding in computing power,

the 3-SAT problem. We show how to program the assembly of a machine that can

verify the satisfiability of a given boolean formula. Then we show how to use the

massive parallelism of these machines to verify in less than 20 min all the valua-

tions of the input variables and output a fluorescent signal when the formula is

satisfiable or no signal at all otherwise.
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1 Introduction

What is Computation? One definition could be ‘‘the goal-oriented process that

transforms a representation of input information into a representation of output

information’’. The process itself can be iterative (or in another form recursive), in

this case it is called an algorithm, but other forms of processing can be used, such

as: neural networks or first order logic.

A computation process, whatever it is, has to be run by a computer, which can be

a human being using pen and paper, or a machine specifically built for that purpose.

The most popular form of computer is an electronic device that use a digital

representation of data, and manipulate this representation according to a set of

instructions that implements the algorithm that transforms them into results. The set

of instructions is then called a computer programme.

Electronic computers use numbers, integer and floating point, to represent data.

These numbers are commonly coded in base 2, which can also be directly used to

encode boolean values and therefore easily implement conditional calculations.

Electronic computers are mainly built from basic blocks, logic gates, that are

interconnected to make the arithmetic and logic units, memory registers and micro-

controllers that form the Central Processing Unit which in turn, along with theMain

Storage Unit, and the I/O Controllers constitute the computer itself.

Therefore, one can build a digital computer using any technology that can mimic

the logic gates and their interconnections. We will demonstrate in this article how to

implement single logic gates using synthetic minimal biological systems embedded

in a vesicle (protocell) and how to connect them together to get a device

(protocellular machine) that computes a complex logical function. The computing

model that underlies our biochemical implementation of a computer is similar to the

one of an electronic computer, their computing capabilities are the same.

The fundamental characteristic of electronic computers is their ability to run a

potentially infinite number of algorithms doing a wide variety of computations on

data, because they are programmable: the same computer can run sequentially (or

pseudo-concurrently) as many different programmes as those that can reside in its

main memory storage, along with the associated data.

Here, we will show how to build a reduced kind of computer that can only solve

one problem, but a problem belonging to a class known to be hard to solve: a NP-

complete problem.

The computational complexity theory explores the feasibility of computational

problems, in terms of computing time (or memory space) needed to solve a problem

of a given size. In the von Neumann based architectures (standard electronic

computers) the number of computing elementary steps (instructions) is often used to

approximate the computing time, since each instruction takes approximately the

same amount of time to be performed.

There are two main classes of computational problems, those that can be solved

by a deterministic machine in a number of steps which can be expressed as a

polynomial of the problem size (class P), and those that can be solved in polynomial

time, but on a non-deterministic machine (class NP). Typically decision problems
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where (1) a solution can be verified in polynomial time and (2) there is no other

known algorithm except generate and verify all the potential solutions, are NP

problems. Solving these problems on a von Neumann computer require an

exponential number of steps with respect to the problem size.

A NP problem is said to be NP-complete if any other NP problem can be

transformed into this problem in polynomial time (Karp 1972). In consequence NP-

complete problems are more difficult to solve than any other NP problems because

if one NP-complete problem is quickly solved (in polynomial time) then all the NP

problems will be quickly solved. Of course all these complexity classes collapse if

P ¼ NP (which is one of the great open conjectures in computer science).

We have chosen the 3-SAT problem, a variant of the boolean satisfiability

problem (SAT), as an example of NP-complete problem (Cook 1971) a protocellular

computer can solve elegantly. This is mainly because the very small size of

protocells and their 3D packing allow us to build a machine made of billions of

logic gates specifically connected to solve a given 3-SAT problem. Another

characteristic of our protocellular machines is that they are disposable in the sense

that once the computation is done for a given set of input values, the machine is no

more usable. But the counterpart is that the energy needed for the computation is

very low (Sarpeshkar 2010).

Finally, the biochemical nature of the protocellular machines make them very

easy to interface with living organisms. For example, they can be used for medical

diagnosis to implement biosensing coupled with medical decision algorithm.

2 Methods

2.1 Protocell Logic Gates Definitions

The bottom-up design of biological systems is made possible by the synthetic

biology approach that applies engineering principles to biology in order to design

standardised biological parts, devices, systems in a systematic and rational manner.

Hierarchical abstraction of biological functions enables the assembly at the system

level of new biological systems with user-defined functionalities (Purnick and

Weiss 2009; Canton et al. 2008; Endy 2005). The behaviour of synthetic systems is

predictable and designs can be automatised in silico before attempting to implement

them with biological components (Marchisio and Stelling 2009). In addition, the

remarkable capacity of biological building blocks to compute in highly sophisti-

cated ways has led scientists to design and engineer biomolecular computers

(Benenson 2012). Thus far, most biocomputing has been investigated from the top

down perspective, that is, by modifying existing organisms (Khalil and Collins

2010). The strategy we propose here, protoputing, is interested in implementing

protocells from the bottom-up perspective to perform computation, where very little

attention has been given Rasmussen et al. (2009), Luisi and Stano (2011) and

Smaldon et al. (2010).

Starting from an abstract operation that is to be computed, one can rationally and

systematically choose biochemical species for the implementation (metabolites,
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enzymes, nucleic acids...) (Fig. 1a). Standardised and robust biomolecular compo-

nents and reactions can be engineered, tested and optimised to implement different

types of biological functions or computations (Koeppl 2011): simple boolean

operations, memory devices, amplifiers, analog to digital converter, oscillators etc.

Figure 1b. In addition, this process can be automatised using CAD tools recently

developed for that purpose (Koeppl 2011; Rialle et al. 2010; Chandran et al. 2011).

For example, an AND biochemical logic gate taking reduced metabolites as

inputs (NADPH and FADH2) can be implemented using a network of 3 different

enzymes and 4 different metabolites connected by 3 biocatalytic reactions, and

transferring electrons to NADH as an output. In the same way, we can implement a

set of standardised computation units that recapitulate all boolean logic gates (see

Fig. 3 for examples of implementations of AND, NOT and NOR gates). Electron

transfer can also be coupled to various output biological functions to produce human

readable signals (Fig. 2) or enable the selection of machines with specific behaviour

for further analysis. We propose that specific reduction of species can trigger as an

output, either luminescence or fluorescence (Candeias et al. 1998) or the transport

of a ligand (or its receptor).

Our approach improves modularity of biomolecular computing systems by the

fact that biochemical networks implementing boolean logic are encapsulated within

synthetic vesicles, or protocells, distinguished by their high degree of organisation

and control over biological processes provided by the membrane boundary (Elani

et al. 2014). Such architecture of insulated computing units allows us to use many

instances of the same type of protocell anywhere in the circuit when the same logic

gate is needed. Moreover, this enables the connection of multiple layers of

Fig. 1 a Rational design of a computation unit implementing a given logical function. (b Different types
of computation units. An AND gate outputs true only if the two inputs are true; An OR gate outputs true if
at least one of the inputs is true; A XOR gate outputs true only when one of the inputs is true; The NAND,
NOR and XNOR gates outputs the opposite value of the AND, OR and XOR gates respectively
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protocells to achieve complex information processing capabilities. In such

architecture, input information arrives from upstream connections with previous

protocells, to output connections to following computation units.

As each logic gate is encapsulated in an impermeable vesicle, the reactions that

compute the output value will go from the non-equilibrium initial state to an

equilibrium state. Therefore, once a logic gate has finished to compute the output, it

is no more able to do another computation. So this first model of protocellular

machine is in essence a kind of disposable computer.

Encapsulation of biochemical networks can be achieved using natural bilayer

membranes (e.g. phospholipid bilayers, liposomes) (Noireaux and Libchaber 2004),

or engineered membranes (e.g. copolymers, polymersomes) (Kamat et al. 2011),

with respect to stoichiometry of internal species and incorporation of membrane

proteins for connections (Chaize et al. 2004; Huang et al. 2014; Peters et al. 2014).

This process is also known to stabilise enzymes, prevent cross-talk, denaturation or

proteolysis and improve enzymatic properties (Yoshimoto 2011; Sunami et al.

2010). In addition, streamlined workflows, for example relying on microfluidics, are

already available for the high-throughput generation of protocells that encapsulate

various substrates (Richmond et al. 2011; Thiele et al. 2010; Duncanson et al. 2012;

Matosevic and Paegel 2011; Teh et al. 2011). This strategy, extensively used in our

lab, allowed us to test the implementation of various protocellular logic gates. Such

vesicle have proven to be sufficently stable (i.e. not prone to fuse together or

physical disruption) to enable the construction of such multi vesicular assemblies

(Stanish and Singh 2001; Teh et al. 2011). Tunable sizes ranging from 50 nm to

50 lm can be obtained, although in our approach, size should be kept as small as

possible to obtain the highest density of computing operators.

2.2 Circuit Wiring

To obtain a full circuit implementing a given boolean function, we then need to

concatenate and wire basic logic gates. The design of a function-specific

Fig. 2 Example of experimental fluorescence signal triggered in micrometric protocells. Ezymatic
electron transfer from carbohydrate to the redox sensor probe (in that case resazurin is reduced into the
red fluorescent product resorufin). Phospholipidic protocells encapsulating biochemical species were
generated using microfluidic devices, and imaged using a confocal microscope. Left no induction; right
induced with glucose. (Color figure online)
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protocellular machine exploits the composability of computation units. Amongst a

specific set of protocells, multiple instances of the same logic gates can be wired

together to implement a user-defined function.

One way to achieve successive reactions in each layer of a protocellular machine,

from input to output protocells, is to drive them using electrochemical potential (e.g.

oxido-reduction reactions). By analogy with electronic computers, electrons are

energy carriers and the redox potential is the current of the system, which could be

measured with an electronic device. The major difference is that inside a protocell,

wires are replaced by free molecules (e.g. NADH, NADPH, FADH2), and effective

wiring is achieved using chemical selectivity of enzymes. Molecules are either

electron donors or acceptors, obeying biological enzymatic rules resulting in current

and energy for computation. In such systems, the in ! out direction is driven by the

thermodynamics of the redox reaction. In our example, a protocell giving the

truevalue would have a reductive state with high concentration of NADH, which

can then transfer its electron to reduce the input of the next protocell. Conversely, a

protocell giving the falsevalue does not output any electron. In addition, electron

transfer occurs only between physically connected protocells, through tight

junctions putting into close contact electron transfer complexes, which carry out

the connections between protocells and therefore between logic gates (Fig. 3).

We will build a protocellular machine from a set of protocell logic gates

assembled in a tree-like layout (see Sect. 3). When set to true, the inputs of the

machine initiate electron transfer through the chain of protocells that constitutes

each branch of the tree, down to the root protocell.

In these input protocells, electron production is started by the specific oxidation

of molecular species by oxidase enzymes. Electrons are then transferred down the

protocell chain via transmembrane electron transport complexes that enable electron

coupling (reduction) of specific molecular species. In that sense, input protocells can

be seen as the generators that power the machine. Moreover fuel protocells, with a

switch like behaviour, could be used to amplify and reshape the signal and therefore

counteract its decay.

In order to implement specific electron transfer modules, we propose to exploit

the modularity and thermodynamic reversibility of natural oxidative phosphoryla-

tion and photosynthesis complexes, which catalyse the electron transfer across

natural membranes with specificity to NADH (Complex I), FADH2 (complex II),

and NADPH (NADPH quinine oxido reductase) (Osyczka et al. 2004). This

includes quinone (or chemically related) and cytochrome c shuttle, which are

delocalised mobile electron carriers that could be used as inter-protocell transfer

molecules. In our design, we propose that a first quinone carrier (or related), could

transfer electrons from a specific output signal (substrate specificity given by the

first complex: I, II...) to a close complex III, which would then via a mobile

cytochrome c transfer these electrons forward to the complex III belonging to the

next protocell. This mechanism constitutes efficient reversible energy coupling,

which has been shown to work via electron-tunneling across the proteins (Osyczka

et al. 2004). Furthermore, recent studies have highlighted the possibility to re-

engineer natural prokaryotic complexes for efficient and substrate specific synthetic
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electron transporters (Katzen et al. 2002; Page et al. 1999; Wakeham and Jones

2005).

The architecture of a machine is controlled by the functional wiring of input and

output of specific protocells. This can be achieved by using programmable junction

modules, that can be selected to implement any protocellular machine in a plug-and-

play way (Fig. 3). Biological function for these programmable attachments could be

supported by couples of ligand/receptors with high binding affinity, such as

aptameric nucleic acids (Hermann and Patel 2000; Smuc et al. 2013) or peptidic

binders (Falciani et al. 2005), that could be straightforwardly produced in large

combinatorial synthetic libraries using SELEX (Stoltenburg et al. 2007), or

ribosome display respectively (Hanes et al. 2000; Binz et al. 2005).

Starting from a pre-built stock of computation units, the user can define a set of

attachment instructions that corresponds to the boolean function to implement.

Irreversible constructs can be achieved using cross-linking chemicals, so that no

unbinding would occur (Song et al. 2012; Xiang et al. 2014). We assume that the

Fig. 3 Detail of a possible implementation of each type of protocell gate. Each type of logic gates has
been simulated in silico with HSIM, and some of them are under test in the lab). The detail of the electron
transfer mechanism is shown in the bottom right cartoon. For example, the fluorescent NOR gate uses a
cascade of two enzymatic reactions (NADH oxidase, Horseradish Peroxidase) to consume the fluorescent
oxidised scopoletin when NADH is present in the protocell, that is when at least one input is set to true, so
is transferring electrons to make NADH from the initial pool of NAD?
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kinetics associated with such an assembly process would be of the order of minutes.

Some attachments can also be set as random, to enable stochastic wiring of different

types of protocells to specific positions. This could be used for example to solve

problems involving the navigation through a large parameter space where

protocellular machines could be used to compute a fitness function. Additonnally

selection methods could be implemented to isolate protocellular machines that

exhibit specific behaviours. Positive selection can be done for example using FACS,

conversely negative selection via a self-destruction mechanism.

3 The Case Study

3.1 Boolean Satisfiability Problem

The NP-complete problem we aim to solve is the 3-SAT problem. This problem can

be simply defined as:

given any boolean formula in Conjonctive Normal Form (CNF), with at most

3 litterals per clause, is there a valuation of the variables that satisfy the

formula?

In other words, it asks whether the variables of a given boolean formula can be

consistently replaced by the values trueor falsein such a way that the formula

evaluates to true. If it is the case, the formula is called satisfiable. The litterals are

either a variable (v) or the negation of a variable (:v); They are connected with the

or operator (_) to form a clause; The clauses are connected with the and operator

(^) to obtain the formula in CNF. For example:

Fða; b; cÞ ¼ ða _ :b _ cÞ ^ ðb _ :cÞ ^ ða _ bÞ ð1Þ

is true when a ¼ true; b ¼ true and c ¼ false, so the formula Fða; b; cÞ is satisfiable.
Conversely, the formula:

Gða; b; cÞ ¼ ða _ b _ cÞ ^ ð:a _ bÞ ^ ðb _ :cÞ ^ :b ð2Þ

is not satisfiable because all the eight possible valuations for a; b; c lead to

G ¼ false.

To find if a formula is satisfiable, we will build as many protocellular machines

as there are combinations of valuations of the input variables. To do this, we will

exploit the combinatorial power of ligand-receptor binding to link constant

protocells (with falseor truevalues) to the inputs of the protocellular machine to

cover all the value space. A protocellular machine is dedicated to a specific formula,

and therefore is not programmable in the sense an electronic computer is. The

protocellular machines are self assembled according to the formula they have to

check, so in our approach, the programme is the process that directs the assembly of

the machines. We will ascertain that there is at least one instance of a protocellular

machine per possible valuation of the variables.
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An instance of the machine can be made using 2- and 3-inputs OR gates

connected to a big AND gate with as much inputs as there are clauses in the

formula. Each input of a clause is connected to a protocell representing a variable v

sending trueor falsewhen a specific start signal is given, or to an inverter protocell

sending the negation of v when the start signal is given. The output of the AND gate

is connected to a protocell that fluoresces when the input value is true. For example,

the protocellular machine corresponding to the G formula would be made of a

4-input AND gate, two 2-input OR gates, one 3-input OR gate and three inverters

connected as in the equation above (Fig. 4a).

As we have at least one (and probably more) instance of the machine for each

possible valuation of the variables, if at least one of the protocellular machine

fluoresces, the formula is satisfiable. Conversely, if there is no fluorescence at all

then the formula is not satisfiable.

We can simplify the construction of the machines using the De Morgan laws to

replace the big AND gate by a NOR gate, which is easier to build and also more

efficient than an AND gate when there is a lot of inputs. Since the output of this

NOR gate is the output of the whole machine, the final inverter can be made using

an inhibitor of the fluorophores stored inside the protocell implementing the gate.

We also need to feed the inputs of the AND gates with the complement of the

variables, which could lead us to use a lot of inverters; But they can be avoided

because these inputs are the inputs of the whole machine, and since we need to test

all the valuations of the variables, these inputs will be fed with constant values.

Therefore we can program the assembly of a machine with the constants already

inverted (Fig. 4b) and we will need no more inverters than negated variables

specified in the original formula.

3.2 The Assembly of the Machines

To obtain one instance of a computing protocellular machine, we need to direct the

self assembly of as many copies of AND gate protocells as there are clauses in the

formula (except when a clause has only one litteral), the output of each AND gate

Fig. 4 a Direct implementation of the G formula in standard Conjunctive Normal Form. b Using the De
Morgan laws, the same boolean function is rewritten using a NOR gate instead of the final AND gate,
easier to build with a large number of inputs, and multiple 2- and 3-inputs AND gates fed with the
complement of the original inputs
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being connected to an input of a fluorescent NOR protocell. The inputs of each

AND gate are also to be connected to the output of an inverter or to the output of a

wiring protocell (representing the input variables of the formula). Then, to test a

valuation of the variables of the formula, the input of each wiring protocell will be

connected to special inputless protocells that output the constant value trueor false.

Once the machine and its inputs are assembled, when a start signal is given, after a

few minutes, the NOR gate of this machine will fluoresce if the formula is truefor

this valuation of the variables, and therefore the formula is satisfiable.

We must ensure that correlated inputs of two (ore more) AND gates are fed with

correlated values. In the previous formula (rewrited using a NOR of ANDs, with the

complemented variables as shown in Fig. 4b)

Gða; b; cÞ ¼ ða ^ b ^ cÞ _ ð:a ^ bÞ _ ðb ^ :cÞ _ :b ð3Þ

the first input of the first clause, a, is always the opposite of the first input of the

second clause (:a), and the second input of the two first clauses, b, have always the

same value, etc. To achieve that we will use inverter protocells, and wiring pro-

tocells that can transfer their input to two or more outputs.

In this example, since there are 3 variables, we must assemble 8 protocellular

machines to test each of the 8 possible valuations. Each line of the table in Table 1

shows the input values (0 for false, 1 for true) of one of the 8 different protocellular

machines, the complemented value of each clause, and the value of the formula (3),

which is always false (this formula is not satisfiable).

In order to have a efficient assembly mechanism, we split the process in two

steps. The first one does not depend on a specific formula, but on the maximal

numbers of variables (Vmax) and of clauses (Cmax) a formula can have. To be able to

test any given formula within the limits of size we stated, we build a reservoir

containing at most for one protocellular machine instance:

• one Cmax-input NOR gate

• Cmax 2- and 3-inputs AND gates.

• Vmax inverter protocells

• 2 � Vmax types of inputless constant protocells, outputting the constant falseor

trueto represent the two possible values of each variable.

Table 1 Complemented value

of each clause for the eight

possible valuations of the

variables, and the corresponding

value of the formula

a b c c1 c2 c3 c4 Gða; b; cÞ

0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0

0 1 0 0 1 1 0 0

0 1 1 0 1 0 0 0

1 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0
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• a formula dependent number of wiring protocells that duplicate their input to

two (or more) outputs in order to cast each constant protocell output to the

appropriate AND input or inverter.

Of course we can have a larger number of copies of these building blocks if we want

to test more than one instance of the formula.

We can remark that depending on the formula we want to test, all the Cmax inputs

of the NOR gate are not used and will stay not connected to any output, which is

equivalent to a falsevalue and so these inputs will not interfere with the computation

since we are certain that nothing can be bound to them.

To verify the satisfiability of a formula made of N\Vmax variables and C\Cmax

clauses, we need to build 2N protocellular machine instances, (at least) one per

possible valuation of the input variables. The building of these protocellular

machines constitutes the second step. Although this step is specific to a given

formula, its principle is generic enough to be applied to any formula. This resemble

to the compilation phase of a programme written in a high level programming

language on a standard computer.

To assemble a machine we will program the binding of each input of one NOR

gate to the output of a 2-inputs or a 3-inputs AND gate, or to one output of a wiring

protocell, or to the output of an inverter. We will also need to program the binding

of one wiring protocell per variable to some inverter, AND or NOR input, according

to the formula. Then, to test a given valuation of the variables, we will need to bind

the constant protocells corresponding to each variable of the formula to the inputs of

this machine.

These programmed bindings are made possible because all the protocells in the

reservoir have been built with specific tags on their inputs and outputs. These tags can be

peptides/nucleic acids with a unique sequence to address them. The process of binding

itself will be done by putting in the environment specific molecular attachment

instructions that recognise and bind the tag on the output and the tag on the

corresponding input. Thiswill enable the binding of specific protocells together (Fig. 5).

Each input of the NOR gate is labeled with a tag implementing the number of the

corresponding clause (0 to Cmax � 1). Similarly the output of each of the AND gate is

labeled with the same number. Therefore, to connect an AND gate to the

corresponding input of the NOR gate for one protocellular machine, we have to

synthesise an molecular attachment that match at one end the tag labelling the output

of the AND gate and at the other end, the tag labelling the input of the NOR gate.

The same mechanism is used for the input variables of the formula. The input of

a wiring protocell that corresponds to a variable of the formula is labeled with a tag

representing the variable number (0 to Vmax � 1). The constant protocells used for

each variable, whether their output is falseor true, are labeled with a tag matching

the corresponding wiring protocell of the machine. Since there is a high number of

constant protocells in the medium, the falseand trueversion for each variable will be

randomly bound to the corresponding input of the machines, and after some time, all

the possible valuations will be covered.

It is important to notice that we must use constant protocells that output the

boolean value false, even if a non-connected input is equivalent, because when we
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want to test a valuation where some variable is false, we must be certain that no

trueconstant protocells can be bound to this input.

3.3 The Computation Process

The computation process may begin when we are certain that at least one copy of a

protocellular machine is bound to each possible combination of input values.

This process is started by remotely triggering the whole population of

trueconstant protocells and inverter protocells using, for example, light switchable

enzymes (a tryptophan dehydrogenase engineered to bear a photoswitch moiety)

(Strickland et al. 2012; Rakhit et al. 2014; Riggsbee and Deiters 2010).

Since all the machines run concurrently to compute the value of the formula, the

total computing time is the time needed either by the first one that output true (that

become fluorescent) or when we can be certain that the slowest machine that outputs

falsehas finished (in this case they all do). If there is a small number of protocellular

machines that fluoresces, we could enhance the signal/noise ratio by scattering the

solution into several parts such that the concentration of the fluorescent machines

would appear higher, and so helps its detection. Another way to easily detect the

first (and possibly only) protocellular machine that outputs truewould be that this

machine triggers the fluorescence of those in its neighbourhood, and so increase the

global fluorescence. Independently of the formula we want to test, the maximal

number of reactions needed from one input to the output is very small: one inverter,

a small number of wiring protocells, one AND, and one NOR.

Fig. 5 Directed assembly and wiring via specific attachments of one instance of a protocellular machine
for the formula G (a, b, c). The inputs a, b and c are implemented with wiring protocells (one input, one,
two or more outputs) that distributes the values of the variables to inverters or to the NAND gates
according to the formula (3), see Fig. 4b. The NOR gate is a large protocell underneath the AND gates,
where the outputs of the AND gates are bound. The small protocells a; b; c ¼ 0; 1 are constant protocells
for the input variables a, b and c (left). These input protocells will be randomly be bound to constant
falseor true protocells to cover all the valuations of the variables. On the right side, the protocellular
machine assembled tests the valuation a ¼ 1; b ¼ 0; c ¼ 0

A. Courbet et al.

123



Considering the kinetics of enzymatic processes for these simple reactions, we

could assume that the calculation time of a single protocell (i.e. the time required for

effective electron transfers though the protocell) would be in the order of a few

minutes. The computation time for one protocellular machine would then be

proportional to the number of layers of this machine. The total computing time

would not exceed 20 min, whatever the number of protocellular machines is needed

to solve the problem. This is of course mainly because the computing process is

massively parallel and to a lesser extent because each processor is dedicated to the

specific problem we want to solve.

Since the size of a complete protocellular machine is of the order of magnitude of

a micron-cube, even less, we can have more than 1012 machines in a few ml of

solution. As 103 is approximately equal to 210, we could theoretically have about

210ð12=3Þ ¼ 240 machines in a few ml. Therefore using this technique, we could

potentially solve any 3-SAT problem involving up to 40 variables in a few minutes.

If we suppose that an electronic computer needs 1 ls to generate and test one

valuation of the variables, the average computing time would be of the order of

1012 � 10�6 ¼ 106 s, which is more than 11 days and a half.

Moreover, if we suppose we use a low power electronic computer, for example

20 watts, the energy consumed at the end of the 11.5 days would be

106 � 20 ¼ 2 � 107 J (�5.5 kWh), compared to a few joules for the protocellular

machines.

4 Conclusion

The case studied here is an example of what we could do with protocellular

machines, and how to make them. Of course, making the huge number of instances

of protocellular machines needed to verify the satisfiability of a large formula is a

bit speculative at the present day, but the mechanisms used to engineer their

building blocks and to direct their assembly are already under test in the lab. Many

implementations of logic gates (much more than those shown in Fig. 5) have been

tested in silico using the HSIM (Amar et al. 2008) simulation system and proven to

be functionning (Bouffard et al. 2015).

The computing time we claim, approximately one thousand times faster than a

traditional electronic computer for a specific class and size of problem, is also a bit

provocative, but the fact remains that this is an example of how to use the really

massive parallelism of protocellular machines in order to solve dedicated problems.

Moreover, to our knowledge, this is the first case where a synthetic biochemical

computer could realistically compete with the speed of electronic computers, while

being far less demanding in terms of energy.

Nevertheless, in our opinion, the most exciting perspective of protocellular

machines is that they are electronically and biologically interfaceable. Thus they

could be incorporated in living organisms, or into hybrid electronic/biological

systems. Our approach allows us to design any given boolean function that can be
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connected and triggered by any biological and/or electronical input, and generate

chosen outputs in a similar way.
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