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Abstract In this article we present a new kind of computing device that uses
biochemical reactions networks as building blocks to implement logic gates. The
architecture of a computing machine relies on these generic and composable
building blocks, computation units, that can be used in multiple instances to perform
complex boolean functions. Standard logical operations are implemented by bio-
chemical networks, encapsulated and insulated within synthetic vesicles called
protocells. These protocells are capable of exchanging energy and information with
each other through transmembrane electron transfer. In the paradigm of computa-
tion we propose, protoputing, a machine can solve only one problem and therefore
has to be built specifically. Thus, the programming phase in the standard computing
paradigm is represented in our approach by the set of assembly instructions (specific
attachments) that directs the wiring of the protocells that constitute the machine
itself. To demonstrate the computing power of protocellular machines, we apply it
to solve a NP-complete problem, known to be very demanding in computing power,
the 3-SAT problem. We show how to program the assembly of a machine that can
verify the satisfiability of a given boolean formula. Then we show how to use the
massive parallelism of these machines to verify in less than 20 min all the valua-
tions of the input variables and output a fluorescent signal when the formula is
satisfiable or no signal at all otherwise.
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1 Introduction

What is Computation? One definition could be “the goal-oriented process that
transforms a representation of input information into a representation of output
information”. The process itself can be iferative (or in another form recursive), in
this case it is called an algorithm, but other forms of processing can be used, such
as: neural networks or first order logic.

A computation process, whatever it is, has to be run by a computer, which can be
a human being using pen and paper, or a machine specifically built for that purpose.
The most popular form of computer is an electronic device that use a digital
representation of data, and manipulate this representation according to a set of
instructions that implements the algorithm that transforms them into results. The set
of instructions is then called a computer programme.

Electronic computers use numbers, integer and floating point, to represent data.
These numbers are commonly coded in base 2, which can also be directly used to
encode boolean values and therefore easily implement conditional calculations.
Electronic computers are mainly built from basic blocks, logic gates, that are
interconnected to make the arithmetic and logic units, memory registers and micro-
controllers that form the Central Processing Unit which in turn, along with the Main
Storage Unit, and the I/O Controllers constitute the computer itself.

Therefore, one can build a digital computer using any technology that can mimic
the logic gates and their interconnections. We will demonstrate in this article how to
implement single logic gates using synthetic minimal biological systems embedded
in a vesicle (protocell) and how to connect them together to get a device
(protocellular machine) that computes a complex logical function. The computing
model that underlies our biochemical implementation of a computer is similar to the
one of an electronic computer, their computing capabilities are the same.

The fundamental characteristic of electronic computers is their ability to run a
potentially infinite number of algorithms doing a wide variety of computations on
data, because they are programmable: the same computer can run sequentially (or
pseudo-concurrently) as many different programmes as those that can reside in its
main memory storage, along with the associated data.

Here, we will show how to build a reduced kind of computer that can only solve
one problem, but a problem belonging to a class known to be hard to solve: a NP-
complete problem.

The computational complexity theory explores the feasibility of computational
problems, in terms of computing time (or memory space) needed to solve a problem
of a given size. In the von Neumann based architectures (standard electronic
computers) the number of computing elementary steps (instructions) is often used to
approximate the computing time, since each instruction takes approximately the
same amount of time to be performed.

There are two main classes of computational problems, those that can be solved
by a deterministic machine in a number of steps which can be expressed as a
polynomial of the problem size (class P), and those that can be solved in polynomial
time, but on a non-deterministic machine (class NP). Typically decision problems
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where (1) a solution can be verified in polynomial time and (2) there is no other
known algorithm except generate and verify all the potential solutions, are NP
problems. Solving these problems on a von Neumann computer require an
exponential number of steps with respect to the problem size.

A NP problem is said to be NP-complete if any other NP problem can be
transformed into this problem in polynomial time (Karp 1972). In consequence NP-
complete problems are more difficult to solve than any other NP problems because
if one NP-complete problem is qguickly solved (in polynomial time) then all the NP
problems will be quickly solved. Of course all these complexity classes collapse if
P = NP (which is one of the great open conjectures in computer science).

We have chosen the 3-SAT problem, a variant of the boolean satisfiability
problem (SAT), as an example of NP-complete problem (Cook 1971) a protocellular
computer can solve elegantly. This is mainly because the very small size of
protocells and their 3D packing allow us to build a machine made of billions of
logic gates specifically connected to solve a given 3-SAT problem. Another
characteristic of our protocellular machines is that they are disposable in the sense
that once the computation is done for a given set of input values, the machine is no
more usable. But the counterpart is that the energy needed for the computation is
very low (Sarpeshkar 2010).

Finally, the biochemical nature of the protocellular machines make them very
easy to interface with living organisms. For example, they can be used for medical
diagnosis to implement biosensing coupled with medical decision algorithm.

2 Methods
2.1 Protocell Logic Gates Definitions

The bottom-up design of biological systems is made possible by the synthetic
biology approach that applies engineering principles to biology in order to design
standardised biological parts, devices, systems in a systematic and rational manner.
Hierarchical abstraction of biological functions enables the assembly at the system
level of new biological systems with user-defined functionalities (Purnick and
Weiss 2009; Canton et al. 2008; Endy 2005). The behaviour of synthetic systems is
predictable and designs can be automatised in silico before attempting to implement
them with biological components (Marchisio and Stelling 2009). In addition, the
remarkable capacity of biological building blocks to compute in highly sophisti-
cated ways has led scientists to design and engineer biomolecular computers
(Benenson 2012). Thus far, most biocomputing has been investigated from the top
down perspective, that is, by modifying existing organisms (Khalil and Collins
2010). The strategy we propose here, protoputing, is interested in implementing
protocells from the bottom-up perspective to perform computation, where very little
attention has been given Rasmussen et al. (2009), Luisi and Stano (2011) and
Smaldon et al. (2010).

Starting from an abstract operation that is to be computed, one can rationally and
systematically choose biochemical species for the implementation (metabolites,
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enzymes, nucleic acids...) (Fig. 1a). Standardised and robust biomolecular compo-
nents and reactions can be engineered, tested and optimised to implement different
types of biological functions or computations (Koeppl 2011): simple boolean
operations, memory devices, amplifiers, analog to digital converter, oscillators etc.
Figure 1b. In addition, this process can be automatised using CAD tools recently
developed for that purpose (Koeppl 2011; Rialle et al. 2010; Chandran et al. 2011).

For example, an AND biochemical logic gate taking reduced metabolites as
inputs (NADPH and FADH2) can be implemented using a network of 3 different
enzymes and 4 different metabolites connected by 3 biocatalytic reactions, and
transferring electrons to NADH as an output. In the same way, we can implement a
set of standardised computation units that recapitulate all boolean logic gates (see
Fig. 3 for examples of implementations of AND, NOT and NOR gates). Electron
transfer can also be coupled to various output biological functions to produce human
readable signals (Fig. 2) or enable the selection of machines with specific behaviour
for further analysis. We propose that specific reduction of species can trigger as an
output, either luminescence or fluorescence (Candeias et al. 1998) or the transport
of a ligand (or its receptor).

Our approach improves modularity of biomolecular computing systems by the
fact that biochemical networks implementing boolean logic are encapsulated within
synthetic vesicles, or protocells, distinguished by their high degree of organisation
and control over biological processes provided by the membrane boundary (Elani
et al. 2014). Such architecture of insulated computing units allows us to use many
instances of the same type of protocell anywhere in the circuit when the same logic
gate is needed. Moreover, this enables the connection of multiple layers of
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Fig. 1 a Rational design of a computation unit implementing a given logical function. (b Different types
of computation units. An AND gate outputs true only if the two inputs are true; An OR gate outputs true if
at least one of the inputs is true; A XOR gate outputs frue only when one of the inputs is true; The NAND,
NOR and XNOR gates outputs the opposite value of the AND, OR and XOR gates respectively
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Fig. 2 Example of experimental fluorescence signal triggered in micrometric protocells. Ezymatic
electron transfer from carbohydrate to the redox sensor probe (in that case resazurin is reduced into the
red fluorescent product resorufin). Phospholipidic protocells encapsulating biochemical species were
generated using microfluidic devices, and imaged using a confocal microscope. Left no induction; right
induced with glucose. (Color figure online)

protocells to achieve complex information processing capabilities. In such
architecture, input information arrives from upstream connections with previous
protocells, to output connections to following computation units.

As each logic gate is encapsulated in an impermeable vesicle, the reactions that
compute the output value will go from the non-equilibrium initial state to an
equilibrium state. Therefore, once a logic gate has finished to compute the output, it
is no more able to do another computation. So this first model of protocellular
machine is in essence a kind of disposable computer.

Encapsulation of biochemical networks can be achieved using natural bilayer
membranes (e.g. phospholipid bilayers, liposomes) (Noireaux and Libchaber 2004),
or engineered membranes (e.g. copolymers, polymersomes) (Kamat et al. 2011),
with respect to stoichiometry of internal species and incorporation of membrane
proteins for connections (Chaize et al. 2004; Huang et al. 2014; Peters et al. 2014).
This process is also known to stabilise enzymes, prevent cross-talk, denaturation or
proteolysis and improve enzymatic properties (Yoshimoto 2011; Sunami et al.
2010). In addition, streamlined workflows, for example relying on microfluidics, are
already available for the high-throughput generation of protocells that encapsulate
various substrates (Richmond et al. 2011; Thiele et al. 2010; Duncanson et al. 2012;
Matosevic and Paegel 2011; Teh et al. 2011). This strategy, extensively used in our
lab, allowed us to test the implementation of various protocellular logic gates. Such
vesicle have proven to be sufficently stable (i.e. not prone to fuse together or
physical disruption) to enable the construction of such multi vesicular assemblies
(Stanish and Singh 2001; Teh et al. 2011). Tunable sizes ranging from 50 nm to
50 um can be obtained, although in our approach, size should be kept as small as
possible to obtain the highest density of computing operators.

2.2 Circuit Wiring

To obtain a full circuit implementing a given boolean function, we then need to
concatenate and wire basic logic gates. The design of a function-specific
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protocellular machine exploits the composability of computation units. Amongst a
specific set of protocells, multiple instances of the same logic gates can be wired
together to implement a user-defined function.

One way to achieve successive reactions in each layer of a protocellular machine,
from input to output protocells, is to drive them using electrochemical potential (e.g.
oxido-reduction reactions). By analogy with electronic computers, electrons are
energy carriers and the redox potential is the current of the system, which could be
measured with an electronic device. The major difference is that inside a protocell,
wires are replaced by free molecules (e.g. NADH, NADPH, FADH?2), and effective
wiring is achieved using chemical selectivity of enzymes. Molecules are either
electron donors or acceptors, obeying biological enzymatic rules resulting in current
and energy for computation. In such systems, the in — out direction is driven by the
thermodynamics of the redox reaction. In our example, a protocell giving the
truevalue would have a reductive state with high concentration of NADH, which
can then transfer its electron to reduce the input of the next protocell. Conversely, a
protocell giving the falsevalue does not output any electron. In addition, electron
transfer occurs only between physically connected protocells, through tight
junctions putting into close contact electron transfer complexes, which carry out
the connections between protocells and therefore between logic gates (Fig. 3).

We will build a protocellular machine from a set of protocell logic gates
assembled in a tree-like layout (see Sect. 3). When set to frue, the inputs of the
machine initiate electron transfer through the chain of protocells that constitutes
each branch of the tree, down to the root protocell.

In these input protocells, electron production is started by the specific oxidation
of molecular species by oxidase enzymes. Electrons are then transferred down the
protocell chain via transmembrane electron transport complexes that enable electron
coupling (reduction) of specific molecular species. In that sense, input protocells can
be seen as the generators that power the machine. Moreover fuel protocells, with a
switch like behaviour, could be used to amplify and reshape the signal and therefore
counteract its decay.

In order to implement specific electron transfer modules, we propose to exploit
the modularity and thermodynamic reversibility of natural oxidative phosphoryla-
tion and photosynthesis complexes, which catalyse the electron transfer across
natural membranes with specificity to NADH (Complex I), FADH2 (complex II),
and NADPH (NADPH quinine oxido reductase) (Osyczka et al. 2004). This
includes quinone (or chemically related) and cytochrome c shuttle, which are
delocalised mobile electron carriers that could be used as inter-protocell transfer
molecules. In our design, we propose that a first quinone carrier (or related), could
transfer electrons from a specific output signal (substrate specificity given by the
first complex: I, II...) to a close complex III, which would then via a mobile
cytochrome c transfer these electrons forward to the complex III belonging to the
next protocell. This mechanism constitutes efficient reversible energy coupling,
which has been shown to work via electron-tunneling across the proteins (Osyczka
et al. 2004). Furthermore, recent studies have highlighted the possibility to re-
engineer natural prokaryotic complexes for efficient and substrate specific synthetic
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Fig. 3 Detail of a possible implementation of each type of protocell gate. Each type of logic gates has
been simulated in silico with HSIM, and some of them are under test in the lab). The detail of the electron
transfer mechanism is shown in the bottom right cartoon. For example, the fluorescent NOR gate uses a
cascade of two enzymatic reactions (NADH oxidase, Horseradish Peroxidase) to consume the fluorescent
oxidised scopoletin when NADH is present in the protocell, that is when at least one input is set to true, so
is transferring electrons to make NADH from the initial pool of NAD™

electron transporters (Katzen et al. 2002; Page et al. 1999; Wakeham and Jones
2005).

The architecture of a machine is controlled by the functional wiring of input and
output of specific protocells. This can be achieved by using programmable junction
modules, that can be selected to implement any protocellular machine in a plug-and-
play way (Fig. 3). Biological function for these programmable attachments could be
supported by couples of ligand/receptors with high binding affinity, such as
aptameric nucleic acids (Hermann and Patel 2000; Smuc et al. 2013) or peptidic
binders (Falciani et al. 2005), that could be straightforwardly produced in large
combinatorial synthetic libraries using SELEX (Stoltenburg et al. 2007), or
ribosome display respectively (Hanes et al. 2000; Binz et al. 2005).

Starting from a pre-built stock of computation units, the user can define a set of
attachment instructions that corresponds to the boolean function to implement.
Irreversible constructs can be achieved using cross-linking chemicals, so that no
unbinding would occur (Song et al. 2012; Xiang et al. 2014). We assume that the
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kinetics associated with such an assembly process would be of the order of minutes.
Some attachments can also be set as random, to enable stochastic wiring of different
types of protocells to specific positions. This could be used for example to solve
problems involving the navigation through a large parameter space where
protocellular machines could be used to compute a fitness function. Additonnally
selection methods could be implemented to isolate protocellular machines that
exhibit specific behaviours. Positive selection can be done for example using FACS,
conversely negative selection via a self-destruction mechanism.

3 The Case Study
3.1 Boolean Satisfiability Problem

The NP-complete problem we aim to solve is the 3-SAT problem. This problem can
be simply defined as:

given any boolean formula in Conjonctive Normal Form (CNF), with at most
3 litterals per clause, is there a valuation of the variables that satisfy the
formula?

In other words, it asks whether the variables of a given boolean formula can be
consistently replaced by the values trueor falsein such a way that the formula
evaluates to frue. If it is the case, the formula is called satisfiable. The litterals are
either a variable (v) or the negation of a variable (—v); They are connected with the
or operator (V) to form a clause; The clauses are connected with the and operator
(A) to obtain the formula in CNF. For example:

F(a,b,c)=(aV-bVc)A(bV—c)A(aVb) (1)

is true when a = true,b = true and ¢ = false, so the formula F(a, b, c) is satisfiable.
Conversely, the formula:

G(a,b,c) =(aVbVc)A(—aVDb)N(bV—c)A-b (2)

is not satisfiable because all the eight possible valuations for a,b,c lead to
G = false.

To find if a formula is satisfiable, we will build as many protocellular machines
as there are combinations of valuations of the input variables. To do this, we will
exploit the combinatorial power of ligand-receptor binding to link constant
protocells (with falseor truevalues) to the inputs of the protocellular machine to
cover all the value space. A protocellular machine is dedicated to a specific formula,
and therefore is not programmable in the sense an electronic computer is. The
protocellular machines are self assembled according to the formula they have to
check, so in our approach, the programme is the process that directs the assembly of
the machines. We will ascertain that there is at least one instance of a protocellular
machine per possible valuation of the variables.
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Fig. 4 a Direct implementation of the G formula in standard Conjunctive Normal Form. b Using the De
Morgan laws, the same boolean function is rewritten using a NOR gate instead of the final AND gate,
easier to build with a large number of inputs, and multiple 2- and 3-inputs AND gates fed with the
complement of the original inputs

An instance of the machine can be made using 2- and 3-inputs OR gates
connected to a big AND gate with as much inputs as there are clauses in the
formula. Each input of a clause is connected to a protocell representing a variable v
sending trueor falsewhen a specific start signal is given, or to an inverter protocell
sending the negation of v when the start signal is given. The output of the AND gate
is connected to a protocell that fluoresces when the input value is true. For example,
the protocellular machine corresponding to the G formula would be made of a
4-input AND gate, two 2-input OR gates, one 3-input OR gate and three inverters
connected as in the equation above (Fig. 4a).

As we have at least one (and probably more) instance of the machine for each
possible valuation of the variables, if at least one of the protocellular machine
fluoresces, the formula is satisfiable. Conversely, if there is no fluorescence at all
then the formula is not satisfiable.

We can simplify the construction of the machines using the De Morgan laws to
replace the big AND gate by a NOR gate, which is easier to build and also more
efficient than an AND gate when there is a lot of inputs. Since the output of this
NOR gate is the output of the whole machine, the final inverter can be made using
an inhibitor of the fluorophores stored inside the protocell implementing the gate.
We also need to feed the inputs of the AND gates with the complement of the
variables, which could lead us to use a lot of inverters; But they can be avoided
because these inputs are the inputs of the whole machine, and since we need to test
all the valuations of the variables, these inputs will be fed with constant values.
Therefore we can program the assembly of a machine with the constants already
inverted (Fig. 4b) and we will need no more inverters than negated variables
specified in the original formula.

3.2 The Assembly of the Machines
To obtain one instance of a computing protocellular machine, we need to direct the

self assembly of as many copies of AND gate protocells as there are clauses in the
formula (except when a clause has only one litteral), the output of each AND gate
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being connected to an input of a fluorescent NOR protocell. The inputs of each
AND gate are also to be connected to the output of an inverter or to the output of a
wiring protocell (representing the input variables of the formula). Then, to test a
valuation of the variables of the formula, the input of each wiring protocell will be
connected to special inputless protocells that output the constant value trueor false.
Once the machine and its inputs are assembled, when a start signal is given, after a
few minutes, the NOR gate of this machine will fluoresce if the formula is fruefor
this valuation of the variables, and therefore the formula is satisfiable.

We must ensure that correlated inputs of two (ore more) AND gates are fed with
correlated values. In the previous formula (rewrited using a NOR of ANDs, with the
complemented variables as shown in Fig. 4b)

G(a,b,c) = (@ANbA?C)V (=aNb)V (bA—c)V b (3)

the first input of the first clause, @, is always the opposite of the first input of the
second clause (—a), and the second input of the two first clauses, b, have always the
same value, etc. To achieve that we will use inverter protocells, and wiring pro-
tocells that can transfer their input to two or more outputs.

In this example, since there are 3 variables, we must assemble 8 protocellular
machines to test each of the 8 possible valuations. Each line of the table in Table 1
shows the input values (0 for false, 1 for true) of one of the 8 different protocellular
machines, the complemented value of each clause, and the value of the formula (3),
which is always false (this formula is not satisfiable).

In order to have a efficient assembly mechanism, we split the process in two
steps. The first one does not depend on a specific formula, but on the maximal
numbers of variables (V,,x) and of clauses (Cpax) a formula can have. To be able to
test any given formula within the limits of size we stated, we build a reservoir
containing at most for one protocellular machine instance:

one Cp,x-input NOR gate

Chax 2- and 3-inputs AND gates.

Viax inverter protocells

2 - Viax types of inputless constant protocells, outputting the constant falseor
trueto represent the two possible values of each variable.

Table 1 Complemented value

of each clause for the eight b ¢ G e & 2 Gla, bc)
possible valuations of the
variables, and the corresponding 0 0 0 0 0 0 1 0
value of the formula 0 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0
1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 1 0 0 0 1 0 0
1 1 1 1 0 0 0 0
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e a formula dependent number of wiring protocells that duplicate their input to
two (or more) outputs in order to cast each constant protocell output to the
appropriate AND input or inverter.

Of course we can have a larger number of copies of these building blocks if we want
to test more than one instance of the formula.

We can remark that depending on the formula we want to test, all the Cp,,x inputs
of the NOR gate are not used and will stay not connected to any output, which is
equivalent to a falsevalue and so these inputs will not interfere with the computation
since we are certain that nothing can be bound to them.

To verify the satisfiability of a formula made of N < Vi« variables and C < Cpax
clauses, we need to build 2V protocellular machine instances, (at least) one per
possible valuation of the input variables. The building of these protocellular
machines constitutes the second step. Although this step is specific to a given
formula, its principle is generic enough to be applied to any formula. This resemble
to the compilation phase of a programme written in a high level programming
language on a standard computer.

To assemble a machine we will program the binding of each input of one NOR
gate to the output of a 2-inputs or a 3-inputs AND gate, or to one output of a wiring
protocell, or to the output of an inverter. We will also need to program the binding
of one wiring protocell per variable to some inverter, AND or NOR input, according
to the formula. Then, to test a given valuation of the variables, we will need to bind
the constant protocells corresponding to each variable of the formula to the inputs of
this machine.

These programmed bindings are made possible because all the protocells in the
reservoir have been built with specific tags on their inputs and outputs. These tags can be
peptides/nucleic acids with a unique sequence to address them. The process of binding
itself will be done by putting in the environment specific molecular attachment
instructions that recognise and bind the tag on the output and the tag on the
corresponding input. This will enable the binding of specific protocells together (Fig. 5).

Each input of the NOR gate is labeled with a tag implementing the number of the
corresponding clause (0 to Cpyx — 1). Similarly the output of each of the AND gate is
labeled with the same number. Therefore, to connect an AND gate to the
corresponding input of the NOR gate for one protocellular machine, we have to
synthesise an molecular attachment that match at one end the tag labelling the output
of the AND gate and at the other end, the tag labelling the input of the NOR gate.

The same mechanism is used for the input variables of the formula. The input of
a wiring protocell that corresponds to a variable of the formula is labeled with a tag
representing the variable number (0 to Vi, — 1). The constant protocells used for
each variable, whether their output is falseor true, are labeled with a tag matching
the corresponding wiring protocell of the machine. Since there is a high number of
constant protocells in the medium, the falseand trueversion for each variable will be
randomly bound to the corresponding input of the machines, and after some time, all
the possible valuations will be covered.

It is important to notice that we must use constant protocells that output the
boolean value false, even if a non-connected input is equivalent, because when we
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Fig. 5 Directed assembly and wiring via specific attachments of one instance of a protocellular machine
for the formula G (a, b, c). The inputs a, b and ¢ are implemented with wiring protocells (one input, one,
two or more outputs) that distributes the values of the variables to inverters or to the NAND gates
according to the formula (3), see Fig. 4b. The NOR gate is a large protocell underneath the AND gates,
where the outputs of the AND gates are bound. The small protocells a, b, c = 0, 1 are constant protocells
for the input variables a, b and ¢ (left). These input protocells will be randomly be bound to constant
falseor true protocells to cover all the valuations of the variables. On the right side, the protocellular
machine assembled tests the valuation a = 1,6 =0,c =0

want to test a valuation where some variable is false, we must be certain that no
trueconstant protocells can be bound to this input.

3.3 The Computation Process

The computation process may begin when we are certain that at least one copy of a
protocellular machine is bound to each possible combination of input values.

This process is started by remotely triggering the whole population of
trueconstant protocells and inverter protocells using, for example, light switchable
enzymes (a tryptophan dehydrogenase engineered to bear a photoswitch moiety)
(Strickland et al. 2012; Rakhit et al. 2014; Riggsbee and Deiters 2010).

Since all the machines run concurrently to compute the value of the formula, the
total computing time is the time needed either by the first one that output true (that
become fluorescent) or when we can be certain that the slowest machine that outputs
falsehas finished (in this case they all do). If there is a small number of protocellular
machines that fluoresces, we could enhance the signal/noise ratio by scattering the
solution into several parts such that the concentration of the fluorescent machines
would appear higher, and so helps its detection. Another way to easily detect the
first (and possibly only) protocellular machine that outputs truewould be that this
machine triggers the fluorescence of those in its neighbourhood, and so increase the
global fluorescence. Independently of the formula we want to test, the maximal
number of reactions needed from one input to the output is very small: one inverter,
a small number of wiring protocells, one AND, and one NOR.
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Considering the kinetics of enzymatic processes for these simple reactions, we
could assume that the calculation time of a single protocell (i.e. the time required for
effective electron transfers though the protocell) would be in the order of a few
minutes. The computation time for one protocellular machine would then be
proportional to the number of layers of this machine. The total computing time
would not exceed 20 min, whatever the number of protocellular machines is needed
to solve the problem. This is of course mainly because the computing process is
massively parallel and to a lesser extent because each processor is dedicated to the
specific problem we want to solve.

Since the size of a complete protocellular machine is of the order of magnitude of
a micron-cube, even less, we can have more than 10'? machines in a few ml of
solution. As 103 is approximately equal to 2'°, we could theoretically have about
210012/3) — 240 machines in a few ml. Therefore using this technique, we could
potentially solve any 3-SAT problem involving up to 40 variables in a few minutes.
If we suppose that an electronic computer needs 1 ps to generate and test one
valuation of the variables, the average computing time would be of the order of
10!12. 107 = 10° s, which is more than 11 days and a half.

Moreover, if we suppose we use a low power electronic computer, for example
20 watts, the energy consumed at the end of the 11.5 days would be
10%-20 =2-107 J (~5.5 kWh), compared to a few joules for the protocellular
machines.

4 Conclusion

The case studied here is an example of what we could do with protocellular
machines, and how to make them. Of course, making the huge number of instances
of protocellular machines needed to verify the satisfiability of a large formula is a
bit speculative at the present day, but the mechanisms used to engineer their
building blocks and to direct their assembly are already under test in the lab. Many
implementations of logic gates (much more than those shown in Fig. 5) have been
tested in silico using the HSIM (Amar et al. 2008) simulation system and proven to
be functionning (Bouffard et al. 2015).

The computing time we claim, approximately one thousand times faster than a
traditional electronic computer for a specific class and size of problem, is also a bit
provocative, but the fact remains that this is an example of how to use the really
massive parallelism of protocellular machines in order to solve dedicated problems.
Moreover, to our knowledge, this is the first case where a synthetic biochemical
computer could realistically compete with the speed of electronic computers, while
being far less demanding in terms of energy.

Nevertheless, in our opinion, the most exciting perspective of protocellular
machines is that they are electronically and biologically interfaceable. Thus they
could be incorporated in living organisms, or into hybrid electronic/biological
systems. Our approach allows us to design any given boolean function that can be
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connected and triggered by any biological and/or electronical input, and generate
chosen outputs in a similar way.
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