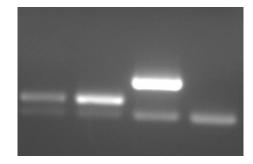
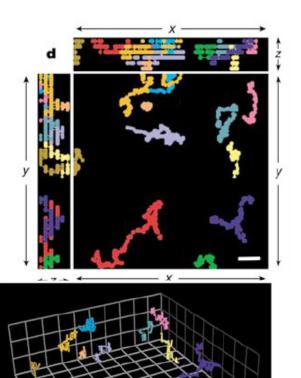

Cartilage TE: from *in vitro* and *in vivo* models to the clinic


Module 3, Lecture 6

20.109 Spring 2010

Lecture 5 review

- What are some advantages of ELISA as a protein assay?
- What are some pros and cons of endpoint RT-PCR as a transcript assay?



Topics for Lecture 6

- Imaging assays
- Cartilage TE in vitro
- Cartilage TE in vivo
- Cartilage TE in the clinic

Day 5-6: image analysis

- Imaging data is often high throughput
 - 4D: time, *x-y-z*
 - requires computation, and
 - human design/interpretation
- Many available analysis packages
 - some ~ \$20-30K
 - NIH ImageJ = free
- Your analyses
 - cDNA band intensities
 - automated cell counts
 - optional: explore other features

Images from: T.R. Mempel, et al. *Nature* **427**:154 (2004)

Fluorescence microscopy

Light source

- Epifluorescence: lamp (Hg, Xe)
- Confocal: laser (Ar, HeNe)
- 2-photon: pulsed laser

Filter cube

- Excitation
- Dichroic mirror
- Emission
- Band-pass vs. long-pass

Detection

CCD camera

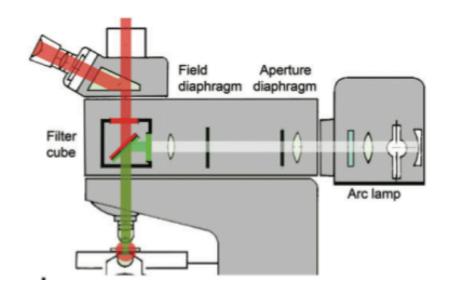
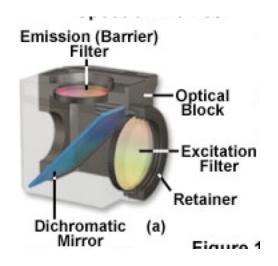
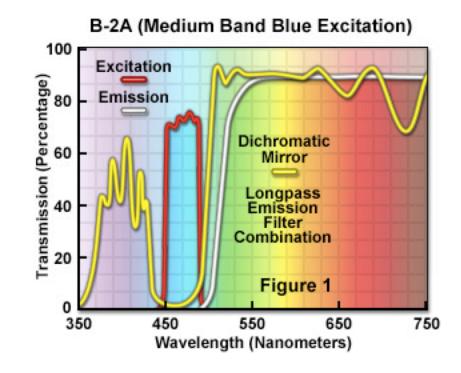
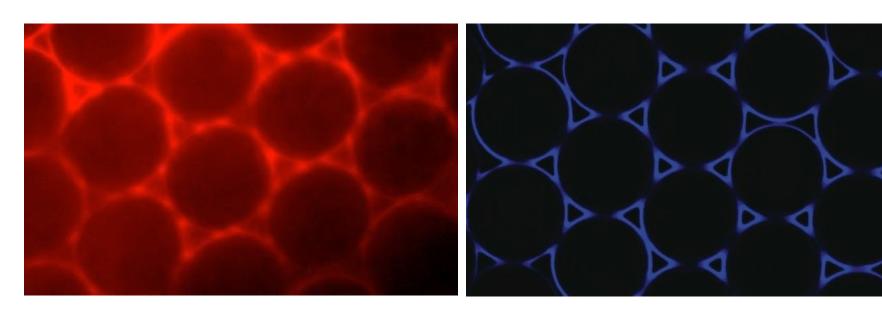




Image from: Lichtman & Conchello, *Nature Methods* **2**:910 (2005)

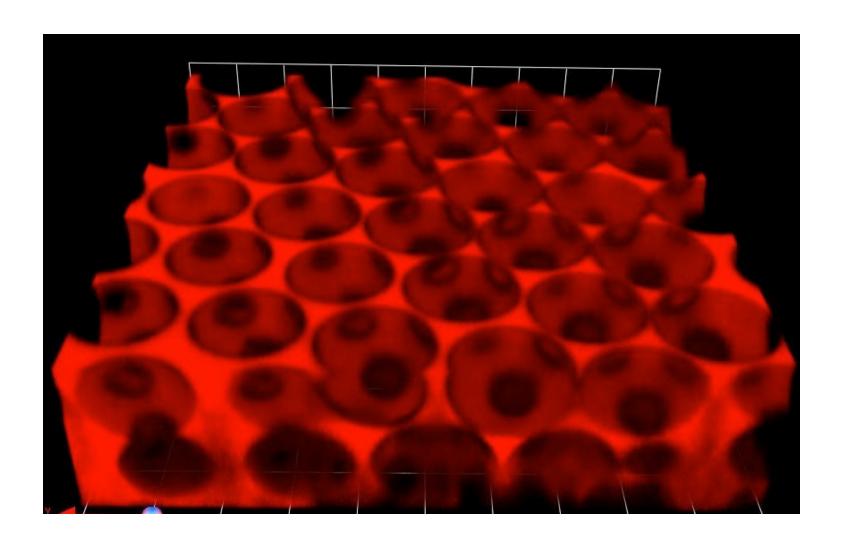
Specifications for Day 3 imaging

- Live/Dead Dyes
 - Green 490 ex, 520 em
 - Red 490 ex, 620 em
- Excitation 450-490 nm
- Dichroic 500 nm
- Emission 515⁺ nm

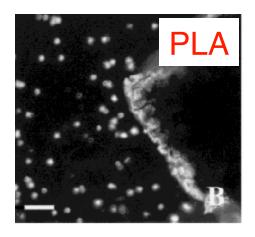


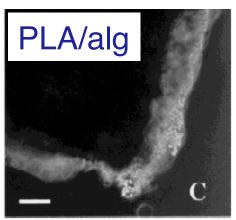
Images from: Nikon microscopy website: www.microscopyu.com

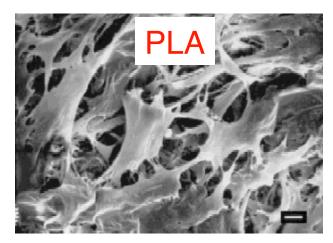
Types of microscopy

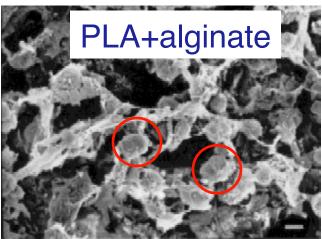

- Epifluorescence: noisy due to out-of-plane light
- Confocal: pinhole rids out-of-plane light
- 2-photon: femtoliter volume excited (in-plane)

Epifluorescence

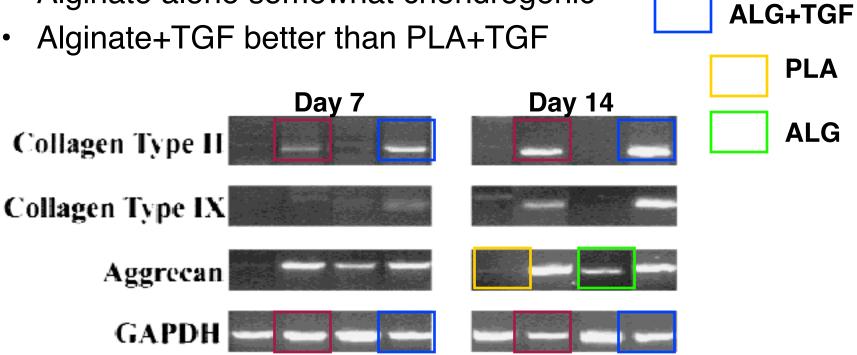

Confocal


Confocal uscopy permits 3D reconstruction




Polymer composite for cartilage TE

- Porous PLA scaffold + stem cells
- Cells loaded in medium
 - elongated morphology
- Cells loaded in alginate
 - round morphology
 - improved cell retention



Chondrogenesis in vitro

- Porous PLA scaffold w/ or w/out alginate
- Alginate alone somewhat chondrogenic

PLA+TGF

Scaffold-free in vitro cartilage TE

- Method: rotational culture of rabbit chondrocytes with no cytokines
- Results
 - Mostly dynamic culture gave best results: low apoptosis, very rigid disc
 - Fresh ECM made: primarily CN II and PG
 - Organized architecture, similar to in vivo
- A scaffold-free method is inherently biocompatible
 - Any disadvantages?
 - Pros/cons of cell-free methods?
 - T. Nagai et al., *Tissue Eng* **14** (2008)

Static

Dynamic, 3 d

Dynamic, 3 w

Interlude:

What TE topics would you like to hear more about (list on board)...?

tree kangaroo: cutest animal ever? scientific proof!?

Cells and scaffolds in vivo

- Y. Liu et al. *Tissue Eng* **12**:3405 (2006)
- Stem cells and/or injectable natural matrix (gelatin/HA) in rabbit knee defects
- Matrix and cells both contributed; synergy

		Grade (Points)				
Group	Interval Until Animals Were Sacrificed (Wks)	Restoration of Osteochondral Architecture	Repair Tissue Integration	Cellular Morphology	Matrix Staining	Total Score
	4	0.13	0.25	0.00	0.00	1.88
Untreated	8	0.63	0.50	0.38	0.13	4.59
	12	1.00	1.13	0.13	0.25	5.63
	4	0.63	0.25	0.38	0.00	3.39
MSCs only	8	1.50	1.50	0.38	0.25	8.01
	12	2.13	1.25	1.25	2.13	11.64
	4	3.00	0.50	1.13	0.88	10.89
sECM only	8	3.25	0.50	1.25	2.13	12.76
	12	3.75	2.75	1.38	2.75	17.13
MSCs + sECM	4	3.25	1.50	2.00	2.38	15.38
	8	3.50	2.25	3.63	2.63	18.64
	12	4.00	3.00	4.38	3.00	21.38

Large animal in vivo model

- D. Barnewitz et al. *Biomaterials* **27**:2882 (2006)
- Biodegradable scaffold with autologous cells
- Examined horses and dissected joints after 6-12 months
- Matrix synthesis, implant integration with native tissue
- Why use a large animal model (vs. small)?

Advantages of working in vivo

- Ability to mimic human disease-state
- Ability to mimic therapy/surgery applied to humans
 - especially true for large animal models
- Can compare results to "gold standard" treatment
- The construct interfaces with an actual wound, the immune system, etc. - more realistic environment
- Toxicity studies more meaningful

Cartilage pathology

- Cartilage has little regeneration capacity why?
- Early damage can promote later disease
- Osteoarthritis pathology
 - PG and collagen loss, PG size
 - → water content, → strength
 - chondrocyte death
- Symptoms
 - loss of mobility
 - pain

Image from OPML at MIT: http://web.mit.edu/cortiz/www/AFMGallery/AFMGallery.html.

V.C. Mow, A. Ratcliffe, and S.LY. Woo, eds. *Biomechanics of Diarthrodial Joints* (Vol. I) Springer-Verlag New York Inc. 1990

Treatments for cartilage damage

- Strategy 1: enhance/provoke healing
 - biologics: hyaluronic acid, TGF-β, etc.
 - damage bone (stem cell effect)
- Strategy 2: replace tissue
 - joint replacement
 - · synthetic or donated tissue
 - invasive or fiber-optic (partial)
 - cell and/or scaffold implantation
 - immature therapy
- Other/supplemental
 - mechanical, electrical stimulation
 - debridement (rid debris)

Public domain image (Wikimedia commons)

- S.W. O'Driscoll. *J Bone Joint Surg* **80**:1795 (1998)
- S. Poitras, et al. Arth Res Ther 9:R126 (2007)
- C.M. Revell & K. A. Athanasiou. Tissue Eng Pt B-Rev 15:1 (2009)

Cutting edge of treatment

- Cell-based therapies on the market (e.g., Carticel)
- Scaffold-based approaches in trials (e.g., NeoCart, INSTRUCT)

2. Tissue
Production
Cells grow on a
patented 3D
matrix in a tissue
engineering
processor under
conditions that
simulate those in
the body. >

3. NeoCart Implant NeoCart has the characteristics of native articular cartilage.

<

Figure 21: Injecting Carticel under periosteal patch

Many clinical trials are ongoing

Found 137 studies with search of: cartilage

Hide studies that are not seeking new volunteers.

Rank	Status	Study
1	Suspended	Cartilage Autograft Implantation System (CAIS) for the Repair of Knee Cartilage Through Cartilage Regeneration Conditions: Articular Cartilage Injury; Osteochondritis Dissecans Intervention: Device: Cartilage Autograft Implantation System
2	Recruiting	AS902330 in Cartilage Injury Repair (CIR) Condition: Isolated Cartilage Injury of the Knee Interventions: Drug: AS902330; Other: Placebo
3	Completed	The Objectives of the Cartilage Repair Registry is to Report Long Term Efficacy and Safety of Cartilage Repair Procedures in Registry Patients. Conditions: Articular Cartilage; Cartilage Diseases Intervention: Biological: Carticel (autologous cultured chondrocyte) implantation
4	Recruiting	Study to Compare the Efficacy and Safety of Cartistem® and Microfracture in Patients With Knee Articular Cartilage Injury or Defect Conditions: Cartilage Injury; Osteoarthritis Interventions: Biological: Cartistem; Procedure: Microfracture treatment — MSCs
5	Completed	Effects of CHONDRON (Autologous Chondrocytes) With Ankle Cartilage Defect Condition: Articular Cartilage Defects of Ankle Joint Intervention: Procedure: autologous cartilage Implantation
6	Recruiting	Evaluation of the CR Plug (Allograft) for the Treatment of a Cartilage Injury in the Knee. Condition: Knee Injury Intervention: Procedure: cartilage repair with allograft plug
7	Recruiting	Autologous Transplantation of Mesenchymal Stem Cells (MSCs) and Scaffold in Full-thickness Articular Cartilage Conditions: Knee Cartilage Defects; Osteoarthritis Intervention: Biological: Bone marrow derived mesenchymal stem cells
8	Completed	MRI Markers of Cartilage Damage in Knee With Osteoarthritis Condition: Osteoarthritis, Knee Intervention: Other: Magnetic Resonance Imaging
9	Recruiting	Post Market Study of DeNovo NT, Natural Tissue Graft

Lecture 6: conclusions

- Both in vitro and in vivo models of cartilage repair can reveal valuable insights, but have different strengths.
- Cell-based therapies have come to market for cartilage TE, and scaffold-based therapies are on the horizen.

Next time: Atissa on presenting with a partner.

Lecture 8: special topics in TE.