
Exact Methods for Computing Biological System Dynamics

Drew Endy (http://mit.edu/endy/)

Goals Covered Last Time

C. What is the underlying physics models used by exact methods?

D. How can we use this model to compute when a reaction will take place?

Goals for Today

E. Review how the physics model leads to computational method

F. What is the complete computational method?

G. What is the difference between a reaction rate and a reaction propensity?

46. Review. From physics model to computational method  

47. Givens:

 i. A self-mixing volume, V.

 ii. V contains a system of N chemical species, S1 -> SN

 iii. Each species, Si, is present at some number of molecules, Xi

 iv. Species, Si, participate in M chemical reactions, R1 -> RM

v. Each time a reaction event occurs substrate molecules are converted into 
product molecules in accordance with the stoichiometry of that particular reac-
tion.

48. What can we compute (from previous lecture)?

i. ai is the probability that reaction i will occur in the next time interval. 
 

ai = cu x hu.

ii. cu is the average probability that a particular combination of Ru reactant mole-
cules will react.  Computed via hard-sphere, will mixed, Arrhenius model.

iii. hu is the number of unique reactant (i.e., substrate) combinations.for reaction 
Ru at time, t.  Computed via combinations.

49.  We’ve some probability that a particular reaction will take place in the next bit of 
time, ai.  This leads to an exponential distribution of times at which this reaction event 
will take place.  I.e., the reaction is likely to take place at some point in time, if it does 
great, if it doesn’t then the probability that it will take place in the future is the chance 
that it’s not yet taken place multiplied by the chance that it will happen in the future, and 
so on.
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50. From this exponential, if we want to compute one instance of a time that a particular 
reaction will next take place, we can use the following equation...

τ = (1/a)*ln(1/r)

where 
 τ is a randomly sampled time that a reaction next takes place


 
 a is the reaction propensity (chance of reaction)


 
 r is a random number drawn from a unit uniform distribution 

51. Say what?  OK.  I’m sure a mathematician somewhere is screaming but here’s how 
I think about it.  Solve the above equation for r.  You get...

r = exp[-a*τ]

Then, graphically, what this leads to is... first sample along the Y-axis of an exponential 
probability density function using a uniform distribution scaled to the maximum PDF 
value at τ = 0 (note that this is a).  Then, lookup the value of τ for any value of r.  See 
figure below:


 
  
 


52. What is the complete computational method?  So far we can compute a time for 
a single instance of one reaction event?  How about computing the behavior of a sys-
tem of coupled chemical reaction events?  To do this we need some way to compute 
which reaction will take place first (next), execute that reaction, and re-compute which 
reaction will take place next, continuing until we’re satisfied.  Or, 

i. Initialize the system (time = zero, Xi.numbers of molecules).

ii.Compute which reaction takes place (from M total reactions) and when.
iii. Execute the first reaction event, updating Xi.numbers.


 iv. Repeat as desired, starting at step ii.
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53. OK.  So how do we do this for a set of M reactions.  The first approach is called 
Gillespie’s “Direct Method.”  Here’s how it works:


 i. Compute ai for all reactions and the sum of ai

ii. Compute when a reaction will occur next.  τ = (1/∑a)*ln(1/r)  
iii.Compute which reaction occurs (the probability of the i-th reaction occurring is 

ai / ∑a).  You can use a sample a uniform distribution to do this.

iv. Carry out the appropriate reaction, update time to τ, and goto step i.  

Note that the Direct Method requires computing two random numbers per reaction event 
(one to sample when the next reaction event occurs, a second to determine reaction re-
action fires).

54. Another approach is called Gillespie’s “First Reaction Method.”  Here’s how it works:

 i. Compute ai for all reactions.

ii. Compute next reaction event times for all reactions via τ = (1/a)*ln(1/r)  
iii.Find the reaction that occurs first (hence the name of the method)
iv. Carry out the first reaction, update time to τ, and goto step i.

Note that the First Reaction Method requires computing M random numbers per reac-
tion event (one for each reaction in the system) and also requires sorting the reaction 
times to figure out which reaction event occurs first. 

55. What is the difference between a reaction rate and a reaction propensity?

Most folks think about and use continuous, approximate methods.  Thus, most descrip-
tions (models) of biological systems use continuous rate constants to describe reaction 
kinetics.  Can we convert from continuous reaction rate constants to reaction propensi-
ties?  Yes.  The key is to look at the units of the constants.  

Consider the following system: A <-> B+C

A -> B+C, with rate koff = 1/time

B+C -> A, with rate kon = 0.6E9/molar/time

koff is a first-order reaction, whose rate is equivalent to the chance that an individual re-
action event will take place, c.

kon is a second-order reaction.  Here, the units don’t match.  We need to convert from 
1/molar/second to 1/#/time.  Molar has units of moles per volume.  So, the units of kon 
are 1/(moles/volume)/time.  We can convert this to 1/#/time by multiplying the denomi-
nator by the (numbers of molecules / mole) and the volume of the system.  
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56. Here’s an example.  Consider:

B+C -> A, with rate kon = 0.6E9/molar/time in a reaction the size of a bacteria (1E-15 L)

c = kon / V/A# = 0.6E9 / [6E23#/mole x 1E-15L] = 1/#/time.

57. For higher order reactions c = k / V(N-1)/A#, where N is the reaction order.  
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