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Maize (Zea mays) has an exceptionally complex genome with a rich history in both epigenetics and evolution. We report
genomic landscapes of representative epigenetic modifications and their relationships to mRNA and small RNA (smRNA)
transcriptomes in maize shoots and roots. The epigenetic patterns differed dramatically between genes and transposable
elements, and two repressive marks (H3K27me3 and DNA methylation) were usually mutually exclusive. We found an organ-
specific distribution of canonical microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), indicative of their
tissue-specific biogenesis. Furthermore, we observed that a decreasing level of mop1 led to a concomitant decrease of 24-
nucleotide siRNAs relative to 21-nucleotide miRNAs in a tissue-specific manner. A group of 22-nucleotide siRNAs may
originate from long-hairpin double-stranded RNAs and preferentially target gene-coding regions. Additionally, a class of
miRNA-like smRNAs, whose putative precursors can form short hairpins, potentially targets genes in trans. In summary, our
data provide a critical analysis of the maize epigenome and its relationships to mRNA and smRNA transcriptomes.

INTRODUCTION

Histones are decorated by numerous epigenetic modifications,
particularly at their N-terminal ends (Fuchs et al., 2006; Kouzarides,
2007). It has been proposed that combinations of different
histone modifications form a histone code (Jenuwein and Allis,
2001), which extends the genetic code embedded in the DNA
nucleotide sequence. Numerous studies have demonstrated
that histone modifications influence gene expression genome-
wide. Whereas histone acetylation generally is associated with
gene activation (e.g., Wang et al., 2008), histone methylation can
lead to either gene repression or activation depending on the
modification site (Shi and Dawe, 2006; Barski et al., 2007;
Mikkelsen et al., 2007; Zhang et al., 2007).

DNA methylation adds another layer of heritable epigenetic
changes. In higher plants, methylation of cytosines is present in

CG, CHG (where H is A, C, or T), and asymmetric CHH sequence
contexts (Henderson and Jacobsen, 2007). Recent studies have
shown that cytosines are methylated not only in plant repetitive
sequences and transposable elements (TEs) but also in pro-
moters and gene bodies and that DNA methylation is highly
correlated with transcription (Rabinowicz et al., 2005; Zhang
et al., 2006; Vaughn et al., 2007; Zilberman et al., 2007; Cokus
et al., 2008; Li et al., 2008c; Lister et al., 2008). Epigenetic
changes, such as DNA methylation and histone modifications,
do not act in isolation but rather in concert with each other,
allowing for complex interdependencies. For example, in Arabi-
dopsis thaliana, CHG DNA methylation is associated with dime-
thylation of histone H3K9 (Bernatavichute et al., 2008), and CG
DNA methylation is necessary for transgenerational epigenetic
stability, including H3K9 methylation (Mathieu et al., 2007).
Moreover, histone deacetylase HDA6 and histone methyltrans-
ferase KRYPTONITE are known to control DNA methylation
(Aufsatz et al., 2002; Jackson et al., 2002). Other histone meth-
ylations and acetylations have been shown to be excluded by
chromatin structure remodeling induced by DNA methylation
(Lorincz et al., 2004; Okitsu and Hsieh, 2007). A complex inter-
play between DNAmethylation, histone modifications, and gene
expression has been reported in rice (Oryza sativa; Li et al.,
2008c).
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In addition, recent studies have shown that small RNAs
(smRNAs) are associated with DNA methylation (Lister et al.,
2008) and that small interfering RNAs (siRNAs) target epigenetic
changes to specific regions of the genome (Martienssen et al.,
2005). In Arabidopsis, siRNAs are highly correlated with repet-
itive regions (Kasschau et al., 2007). Epigenetic modifications
achieve an additional layer of complexity through the involve-
ment of TEs, whose DNA is generally highly methylated and can
attract the RNA silencing machinery and interact with histone
modifications (Lippman et al., 2003, 2004). Epigenetic changes
of TEs are not restricted to the TEs themselves, but in turn also
regulate neighboring genes, which gives TEs a key role in the
genome-wide distribution of epigenetic marks and smRNAs
(Slotkin and Martienssen, 2007; Weil and Martienssen, 2008).
This aspect is of particular importance inmaize (Zeamays), since
>60%of its genome consists of TEs (Meyers et al., 2001; Haberer
et al., 2005; Messing and Dooner, 2006). Moreover, although
genes are estimated to make up 8 to 20% of the maize genome,
we now know that they are organized in islands surrounded
by TEs (Chandler and Brendel, 2002; Messing et al., 2004;
Rabinowicz and Bennetzen, 2006). In early 2008, a first draft of
the sequence of themaize inbred line B73 genomewas released,
the largest and most complex plant genome ever sequenced.
Sequencing projects for Mo17, another well-studied inbred line,
and a popcorn strain are also scheduled to be completed shortly
(Pennisi, 2008). However, presently, the maize genome is only
sparsely annotated and assembled, which hampers its full ex-
ploitation.

Here, wedescribe an integrated genome-wide analysis of DNA
methylation, histone modifications, smRNAs, and mRNA tran-
scriptional activity, using maize as a model. We surveyed the
epigenomes of the maize inbred line B73 in shoot and root tissue
by Illumina/Solexa 1G parallel sequencing after digesting ge-
nomic DNA with a methylation-sensitive restriction enzyme and
after conducting chromatin immunoprecipitation (ChIP) using
antibodies that target specific histone modifications (H3K4me3,
H3K9ac, H3K27me3, and H3K36me3). Additionally, we profiled
RNA pools (microRNA [miRNA], siRNA, and mRNA) using the
same sequencing strategy. This study provides a comprehen-
sive and integrated organ-specific analysis of diverse epigenetic
marks, smRNAs, and transcriptional activity and also gives new
insight into the organization of the maize genome, which will aid
in its continued assembly and annotation.

RESULTS

Direct Sequence Profiling of Maize Transcripts,
Epigenetically Modified Genomic Regions, and smRNAs

To survey the mRNA transcriptome, epigenetic landscapes, and
smRNAs in a maize inbred line, we isolated total RNA and
genomic DNA from shoots and roots of 14-d-old B73 seedlings.
We extracted mRNA from total RNA using Dynabeads and
enriched for smRNA by running total RNA on a PAGE gel for
gel purification of RNAs in the 19- to 24-nucleotide size range,
respectively. Methylated regions of the genome were enriched
by digesting genomic DNA with the methylation-sensitive re-

striction enzyme McrBC. Genomic regions populated by epi-
genetically modified histone H3 proteins were enriched by a
ChIP approach using antibodies targeting H3K4me3, H3K9ac,
H3K27me3, or H3K36me3, respectively (see Methods). We used
the resulting fractions to build libraries for Illumina/Solexa 1G
high-throughput parallel sequencing, which generated 8.4 to
35.9 million reads for the individual libraries (Figure 1A; see
Supplemental Figure 1A and Supplemental Table 1 online).

Previous studies estimated that repetitive elements make up
80% or more of the maize genome (Chandler and Brendel, 2002;
Messing et al., 2004; Rabinowicz and Bennetzen, 2006). This
poses a major challenge to map Illumina/Solexa 1G sequencing
reads to themaize genome accurately, since each read is usually
36 nucleotides or less in length. We usedMAQ software (Li et al.,
2008b; see also Supplemental Methods online) to map our 196
million sequencing reads to the currently available 2.4 Gb of B73
genome sequence represented by 16,205 BACs at http://www.
maizesequence.org (dated June 4, 2008). The MAQ algorithm
uses quality (MQ) scores to evaluate the reliability of a read based
on both the uniqueness of the mapping position and the prob-
ability of sequencing errors. This allowed us to exploit sequenc-
ing data even for repetitive regions. A statistical model for
calculating MQ scores and a detailed mapping procedure are
described in Supplemental Methods online. Using MAQ, we
mapped the proportion of reads corresponding to unique posi-
tions in the B73 genome as follows for shoot (root) libraries:
H3K4me3, 31% (25%); H3K27me3, 14% (12%); H3K9ac, 30%
(19%); H3K36me3, 34% (25%); DNA methylation, 8% (8%);
smRNAs, 21% (23%); and mRNA, 44% (42%) (Figure 1B; see
Supplemental Figure 1B andSupplemental Table 1 online). Using
our criteria, we could map;85% of all mRNA reads to unique or
non-unique positions. This indicates that even though the se-
quencing project is still ongoing, the currently available B73
genomic sequence is nearly complete. It also indicates that
Illumina/Solexa 1G sequencing is a feasible alternative to previ-
ous large-scale transcriptome studies in maize (Ma et al., 2006;
Fernandes et al., 2008).

Most reads that could not be correctly mapped to unique
locations matched repetitive sequences, which are widespread
in the maize genome. To classify recognizable repeat types, we
used RepeatMasker software (http://www.repeatmasker.org)
and found that 504 Mb of the B73 genome sequence were
made up of long terminal repeat (LTR) retrotransposons of the
Copia class, while 818 Mb were made up of LTR retrotranspo-
sons of the Gypsy class. Similarly, we found that 14 Mb of the
genome sequence were occupied by DNA transposons and 22
Mb by other repeats (Figure 1C). For example, BAC AC199189.3
shows thatmaize genes are surrounded by a vast number of TEs,
which is a key characteristic of the maize genome. As indicated
for this representative BAC, we found that, in general, TE-rich
regions were less commonly modified by H3K4me3, H3K9ac,
H3K27me3, and H3K36me3 relative to non-TE regions and TE-
free intergenic regions between non-TE genes (Figure 1D).

To visualize the epigenetic profiles of TEs and non-TE genes in
more detail, we developed a pipeline to display a continuous 20-
Mb stretch of the B73 genome (see Supplemental Figure 2
online). As illustrated for a representative section of this 20-Mb
region,mRNA signals showed a strong correlationwith predicted
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Figure 1. Sequencing, Mapping, and Visualization of the Maize Transcriptome, Epigenome, and smRNAome.
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gene structures. Sequencing reads for the studied activating
epigenetic marks (H3K4me3, H3K9ac, and H3K36me3) were
generally present at high levels at transcribed genes in this region
(Figure 1E). As shown for a larger region of these 20Mb, TEswere
generally heavily DNA methylated and lacked transcriptional
activity, while non-TE genes were transcriptionally active and
lacked significant DNA methylation (Figure 1F). Interestingly, we
detected many smRNA reads at TEs whose DNA was not
methylated. Conversely, we found that TEs whose DNA was
highly methylated were relatively devoid of smRNAs (Figure 1F).

An Initial Estimate of Transcriptional Activity in the Maize
Genome Using mRNA-seq

Weused two gene sets for analyzing the transcriptional activity of
the maize genome: a set of 11,742 full-length cDNAs (flcDNAs)
obtained from http://maizecdna.org and prediction results from
the FgeneSH gene finding software for 16,205 BACs obtained
from http://maizesequence.org. Compiling these flcDNAs re-
sulted in 9451 nonredundant sequences mapped to the maize
genome, including 7141 flcDNAs with only one best location and
2310 with multiple best locations (see Supplemental Figure 3A
online).

To estimate the transcriptional activity of the maize genome
using mRNA-seq data, we developed a pipeline for de novo
scanning of transcribed exons by merging overlapping Illumina/
Solexa reads into contiguous regions (see Supplemental Figure 2
online). For this part of our analysis, we combined 16 lanes of
mRNA reads (71 million) from both shoot and root libraries to
achieve a maximum coverage. We then scanned for putative
exons using MQ scores larger or equal to 0, 13, 20, and 30
(Figures 2B and 2C). We identified up to 1,122,064 putative
exons representing 87,606,799 transcribed bases using our de
novo scanning approach. To evaluate the coverage of mRNA-
seq, we matched the de novo detected exons with flcDNAs
representing bona fide genes. At MQ 0, the detected exons
covered 99% at gene level, 95% at exon level, and 87% at base
level, while at MQ 13 only 79, 65, and 56% were covered,
respectively (Figures 2D to 2G).

We next matched the de novo detected exons as derived from
our mRNA-seq data of shoot and root libraries with FgeneSH
predicted genes. This resulted in the identification of nearly
45,000 validated protein-coding genes (Figure 2H; see Supple-
mental Table 2 online). Because the maize genome is not
completely sequenced and because the available sequence
data is marginally annotated, we were unable to estimate all
transcribed regions. However, our pilot survey of transcriptional
activity in maize suggests that even though the maize genome is
about six times larger than the rice genome (Goff et al., 2002; Yu

et al., 2002), the number of genes is likely to be similar. To
complement these data, a series of protein-level comparative
analyses, including functional comparisons based on pathway
enrichment andGeneOntology (TheGeneOntologyConsortium,
2000) for maize, rice, and Arabidopsis, were performed (see
Supplemental Figures 4 to 7 and Supplemental Data Sets 1 and 2
online). This analysis assigned the products of;20,000 genes to
known Gene Ontology pathways.

Epigenetic Marks Differ in Their Absolute and Relative
Distributions on a Whole-Genome and Gene Level

To analyze the extent of epigenetic modifications on a whole-
genome level, we determined how many regions were covered
by DNA methylation, H3K4me3, H3K9ac, H3K27me3, or
H3K36me3 (Figure 3A) using MACS software (Zhang et al.,
2008; see Supplemental Methods online). We found that DNA
methylation was the most prevalent modification in both shoots
and roots, covering ;60,000 regions in shoots and 40,000
regions in roots, respectively. Two of the studied activating
histone modifications, H3K4me3 and H3K9ac, were also found
at high frequencies. Interestingly, the number of regionsmodified
by H3K9ac or H3K27me3 was almost twice as high in shoots
compared with roots, which might indicate genome-wide tissue-
specific epigenetic alterations. The length and frequency of
modified regions varied dramatically. DNA methylation was
found at more regions than any other modification, but the
average length of the affected genomic regions was only ;200
bp, by far the shortest of all modifications studied. Conversely,
H3K36me3 was present at relatively few regions, but their
average length was almost 1600 bp; significantly longer than
any other modification (Figure 3B). Similar conclusions can be
drawn when the total lengths of modified regions are considered
rather than the average lengths or number of regions (Figure 3C).

To study the level of epigenetic modifications in different
regions of genes and TEs, we aligned all flcDNAs at their
transcript start site (TSS) and all predicted non-TE genes and
TEs at their start codon (ATG). We defined the region of a gene or
TE as its body (annotated transcribed region) plus 2 kb upstream.
We observed no significant differences in the distributions of the
epigenetic marks on aligned genes when we compared flcDNAs
and predicted non-TE genes (Figures 3D and 3E; see Supple-
mental Figures 8A and 8B online). H3K4me3 andH3K9ac formed
a strong peak at or near the TSS or ATG, respectively, and were
present at relatively low levels in the gene body. By contrast,
H3K36me3 was found throughout the gene body in shoots, but
formed a more distinct peak at the TSS or ATG in roots (Figures
3D and 3E; see Supplemental Figures 8A and 8B online). As
expected, DNA methylation was present at very low levels in

Figure 1. (continued).

(A) Counts of quality reads from Illumina/Solexa 1G sequencing.

(B) Proportions of unmapped and mapped reads with unique and multiple locations.

(C) Distribution of classified repetitive sequences in maize 2.4-Gb BAC sequences.

(D) A representative BAC (AC199189.3) showing predicted gene models with mRNA and epigenetic landscapes in shoots.

(E) Distribution of epigenetic patterns on an actively transcribed gene in shoots.

(F) The 21- and 24-nucleotide siRNAs are enriched in methylation-depleted regions in shoots.
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Figure 2. Validation of flcDNAs and FgeneSH-Predicted Genes.

(A) FgeneSH-predicted maize genes in different groups.

(B) Numbers of retained and filtered reads in 16 merged lanes of mRNA-seq reads using different mapping quality (MQ) scores.

(C) Total lengths of transcribed nucleotides by adding up de novo exons using different MQ scores.

(D) to (G) Percentages and numbers of validated flcDNAs at gene, exon, and base level.

(H) Numbers of validated non-TE genes in different groups.
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Figure 3. Genome-Wide and Genic Distribution Patterns of Epigenetic Modifications.

(A) to (C) Numbers, average lengths, and total lengths of epigenetically modified regions detected by MACS software.

(D) to (F) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3, and DNA methylation levels within flcDNAs, predicted TE-related, and non-TE

genes aligned from TSSs and ATG, respectively. The y axis shows the average depth, which is the frequency of piled-up reads at each base divided by

the bin size. The x axis represents the aligned genes that were equally binned into 40 portions, including 2K up- and downstream regions.

(G) to (K) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3, and DNA methylation within five groups of genes with different expression levels

summarized from validated non-TE genes.
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genes but was themost prevalent modification in TEs (Figure 3F;
see Supplemental Figure 8C online).

To determine the effect of individual epigenetic modifications
on transcriptional activity, we sorted all protein-coding genes
(;45,000) as identified above based on their expression levels
derived from mRNA-seq reads using percentile grouping. The
top;9000most highly expressed genes were labeled “highest,”
the next;9000 genes “high,” the next;9000 genes “medium,”
etc., such that five groups of equal sizewere obtained, for each of
which we analyzed the distribution of each epigenetic modifica-
tion of interest.We found that in both shoots and roots, the genes
with the highest expression levels showed the highest amounts
of H3K4me3, H3K9ac, or H3K36me3 (Figures 3G to 3I; see
Supplemental Figures 8D to 8F online). By contrast, genes with
the lowest expression levels had the highest amounts of
H3K27me3 or DNA methylation in both tissue types (Figures 3J
and 3K; see Supplemental Figures 8G and 8H online). Whereas
H3K27me3 was present throughout the gene body, DNA meth-
ylation peaked at the ATG for genes in the lowest expression
group. In addition, we determined the average levels of all four
histone modifications of interest relative to the expression levels
of genes (see Supplemental Figure 9 online). We found that in
shoots and roots, genes with the highest expression levels
tended to have the most H3K4me3, H3K9ac, or H3K36me3. By
contrast, genes with the lowest expression levels tended to have
the most H3K27me3, albeit at markedly lower levels relative to
activating histone marks in highly expressed genes.

Epigenetic Modifications Show Differential Targeting of
Genes and TEs and Display Combinatorial Effects in Maize
Shoots and Roots

Toanalyzewhether epigeneticmodifications target genesandTEs
differentially, we determined how many flcDNAs, predicted non-
TE genes, and TEs show specific epigenetic modifications. We
found that for both shoots and roots, genes (represented by either
a flcDNA or as predicted non-TE gene) were less commonly
affected by H3K27me3 or DNA methylation than by H3K4me3,
H3K9ac, or H3K36me3 (Figures 4Aand 4B). By contrast, TEswere
epigenetically modified by DNA methylation up to 8 times more
often than by modification of histone H3 (Figure 4C).

Furthermore, we analyzed whether different epigenetic marks
showed distinct combinatorial effects. We found that in both
shoots and roots, a significant and similar proportion of regions
that were modified by one of the activating marks studied
(H3K4me3, H3K9ac, and H3K36me3) were also modified by a
second activating epigenetic mark (Figure 4D). While most
pairwise combinations of activating epigenetic marks did not
differ drastically between shoots and roots, 51% of all shoot-
derived regions that were modified by H3K27me3 were co-
modified by H3K9ac, while only 18% of root-derived regions
showed the same comodification pattern.

Additionally, we analyzed the influence of various combinations
of epigenetic marks on the mRNA level of such modified genes.
We observed that while all three activating epigenetic modifica-
tions under study were cooperatively present in genes with high
mRNA levels and lacking in genes with low mRNA levels, the two
repressivemarks showed amutually exclusive pattern (Figure 4E).

In both shoots and roots, genes with low mRNA levels were
marked with either H3K27me3 or methylated DNA, but genes
markedwith one of thesemodifications had low levels of the other,
indicating a mutually exclusive effect between these two modifi-
cations. The mutually exclusive effect of those two repressive
marks could also be observed for genes with high mRNA levels.

We observed that H3K9acwasmore enriched in shoots than in
roots (see Supplemental Figure 10 online). To analyze tissue-
specific epigenetic effects in more detail, we grouped all non-TE
genes into 10 percentiles based on theirmRNA levels and plotted
them against differences in the respective epigenetic modifica-
tions in shoots and roots (Figures 4F and 4G; see Supplemental
Figure 11 online). We observed that H3K4me3, H3K9ac, and
H3K36me3 were all correlated with tissue-specific gene expres-
sion, albeit to different degrees. Whereas a very distinct trend
could be determined for H3K4me3, which was positively corre-
lated with expression levels, H3K36me3was less correlated with
differential gene expression between shoots and roots. The
different degrees of correlation with gene expression between
these two activating histone modifications are unclear at this
point. Interestingly, H3K36me3 continued to increase in the
highest expression percentiles for genes that weremore strongly
expressed in shoots than in roots, but in contrast, it dramatically
dropped in the highest gene expression percentiles for genes
that were more strongly expressed in roots than in shoots
(Figures 4F and 4G). Neither H3K27me3 nor DNA methylation
displayed a clear trend like the activating epigenetic marks of
interest, which indicates that in our study, neither H3K27me3 nor
DNA methylation had a clear effect on differential expression of
genes in maize shoots and roots at the genome scale (see
Supplemental Figure 11 online).

Changes in smRNA Populations Followmop1
Gene Expression

To profile smRNA populations in maize seedling shoot and root
tissue, we generated smRNA libraries for Illumina/Solexa 1G
sequencing. After removing reads that likely originated from
rRNA or tRNA contamination, we obtained 4,406,055 adaptor-
trimmed sequences representing 1,639,984 unique smRNAs
from shoots and 3,960,345 sequences representing 709,440
unique smRNAs from roots, respectively (see Supplemental
Figure 12 online). We noted a tissue-specific smRNA size distri-
bution: 24-nucleotide smRNAs were the predominant size class
in shoots, whereas the predominant smRNAs in roots were 21
nucleotides (Figure 5A). This observation indicates that in maize,
miRNAs, most of which are 20 to 22 nucleotides in length, are
relatively enriched in roots, while siRNAs, which are mostly 24
nucleotides long, are relatively more prevalent in shoots. Inter-
estingly, we did not observe a dramatic enrichment of 24-
nucleotide siRNAs, as recently reported for maize flower organs
(Nobuta et al., 2008) and for Arabidopsis immature floral tissue
(Lister et al., 2008). It has been previously described (Henderson
and Jacobsen, 2007) that in Arabidopsis the endogenous siRNA
biogenesis pathway requires RNA-dependent RNA polymerase-2
(RDR2). Inmaize, MOP1 is homologous to RDR2, and it has been
shown that a loss of function of RDR2 and MOP1 caused
dramatic reduction of 24-nucleotide siRNAs in Arabidopsis and
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Figure 4. Combinatory Modifications and Correlation with Gene Expression.

(A) to (C) Numbers of modified flcDNAs, non-TEs, and TEs by H3K4me3, H3K9ac, H3K36me3, H3K27me3, and DNA methylation in shoot and root.

(D) Frequencies of concurrent modifications on genes. Above the diagonal, numbers indicate the percentage of genes modified by X also have

modification Y, while below the diagonal, percentages indicate how many genes were modified by Y and also modified by X.

(E) Heat maps of epigenetic modification levels on ;60,000 genes sorted by their expression measured by mRNA-seq. Gene expression levels and

modifications levels were transformed to 100 percentiles, and each bar represents the averaged level of ;600 genes within each percentile.

(F) and (G) Correlation of differential modifications and differential gene expression in shoot and root. The y axis shows differences in the modification

level of shoot higher than root and vice versa. The x axis shows the difference in the expression level of shoot higher than root and vice versa.
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maize, respectively (Nobuta et al., 2008; Woodhouse et al.,
2006). To determine whether differences in mop1 expression
levels could explain the different compositions of smRNA pop-
ulations in maize seedling and floral tissue, we examined the
mop1 expression level across different organs using published
microarray data (Stupar and Springer, 2006) and our mRNA-seq
reads for shoots and roots. We found that mop1 expression in
seedlings was significantly lower than in immature ears and
embryos (Figure 5B), confirming previous findings for maize
(Woodhouse et al., 2006) and for RDR homologs in rice (Kapoor
et al., 2008). In fact, when examining the mRNA-seq data from
our study, we found that only ;40 reads, mostly from shoots,
mapped to the mop1 gene, which indicates a very low expres-
sion level in seedling tissues. Moreover, we found that the three
activating epigenetic marks H3K4me3, H3K9ac, and H3K36me3

were slightly more abundant for mop1 in shoots compared with
roots (Figure 5B). In summary, these findings suggest that
decreasing mop1 expression leads to a concomitant decrease
of 24-nucleotide siRNAs relative to 21-nucleotide miRNAs in a
tissue-specificmanner progressing from floral organs, to shoots,
to roots.

Classification of smRNAs Based on Secondary Structure
Predictions of Precursors

The smRNA population within a cell is composed of miRNA and
natural antisense transcript-derived miRNA (Lu et al., 2008) as
well as several classes of endogenous siRNAs, including repeat-
associatedRNA, natural antisense transcript-derived siRNA, and
trans-acting siRNA (Bonnet et al., 2006; Ramachandran and

Figure 5. In Silico Classification Indicates Dynamic smRNA Populations in Maize Shoots and Roots.

(A) smRNA length distributions in shoots and roots.

(B) Tissue-specific expression and epigenetic modification of maize mop1 gene.

(C) Distribution of smRNAs and matched and unmatched known miRNAs in miRBase within different MFE bins.

(D) to (F) Length distributions of known miRNA, shRNAs, and putative siRNAs with different 59 terminal nucleotides.

(G) Sequence motifs of 20-, 21-, and 22-nucleotide miRNAs analyzed by WebLogo (Crooks et al., 2004).

(H) Nucleotide composition of mature 24-nucleotide putative siRNAs.
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Chen, 2008). To separate miRNAs from siRNAs, we aligned all
smRNA reads with known miRNA sequences from miRBase
(Griffiths-Jones et al., 2006). Since sequence similarity alone
does not necessarily guarantee that the smRNA in question is a
miRNA, we next determined whether the respective smRNA
precursor sequences were able to form a stem-loop structure
indicative of miRNAs, which are derived from short hairpin
structures, whereas siRNAs generally form from long double-
stranded RNA (dsRNA) molecules. To determine putative pre-
cursor sequences, we adopted a more stringent mapping
method using SOAP software (Li et al., 2008a) to retrieve all
perfectly mapped locations for each smRNA and then extended
20 nucleotides at the 59-end and 70 nucleotides at the 39-end
(see Supplemental Methods online). Using this approach, we
obtained 37,763,920 and 18,734,677 putative precursor se-
quences from 2,890,098 smRNAs in shoots and 1,650,153
smRNAs in roots, respectively. We employed RNAfold (Ho-
facker et al., 1994) to calculate a minimum free energy (MFE) for
each putative precursor. The lower the MFE, the higher the
possibility that a precursor can form a stem-loop structure
(Hofacker et al., 1994). To determine theminimum threshold, we
compared the MFE for the smRNAs that matched known
miRNAs in miRBase and those with unmatched sequences
(Figure 5C; see Supplemental Figure 14A and Supplemental
Tables 3 and 4 online). For the overall set of smRNAs, we
observed two distinct peaks at 225 and 245, indicating a
mixture of miRNAs and siRNAs, while for the matched and the
unmatched smRNAs, single peaks were found to center at245
and 225, respectively. Therefore, we set the MFE minimum
threshold at 240 to determine the ability of a smRNA’s precur-
sor to form a hairpin structure.

Based on these criteria, we categorized all smRNAs into three
groups (see Supplemental Figure 13 online). Group I, “known
miRNAs” withmatches inmiRBase andMFE <240, consisted of
526,961 reads representing 155 unique sequences from shoots
and 252,505 reads representing 126 unique sequences from
roots. Group II, “small hairpin RNAs (shRNAs)” without matches
in miRBase but MFE < 240, consisted of 120,227 reads rep-
resenting 10,314 unique sequences from shoots and 131,553
reads representing 31,856 unique sequences from roots. This
group might include unidentified miRNAs and other smRNA
species. Group III consisted of all remaining smRNAs whose
precursors could not form hairpins. We classified all smRNAs in
group III as “putative siRNAs,” consisting of 1,768,555 reads rep-
resenting 984,890 unique sequences from shoots and 800,094
reads representing 379,199 unique sequences from roots, re-
spectively. Interestingly, these three groups of smRNAs had
distinctly different average frequencies with ;3400 copies for
known miRNA, ;120 copies for shRNAs, and ;1.8 copies for
putative siRNAs.

ThreeGroupsof smRNAsExhibitedDistinct Signatures of 59
Terminal Nucleotide Identities and Overall
Nucleotide Compositions

It has been shown that in Arabidopsis, the 59 terminal nucleotide
is a key characteristic to direct distinct smRNA classes to
different Argonaute (AGO) complexes (Mi et al., 2008). Therefore,

we examined the size distributions of smRNAs in these three
groups based on their 59 terminal nucleotides. We found that
virtually all known miRNAs (Group I) had a 59 U, the signature of
canonical miRNAs (Figure 5D; see Supplemental Figure 14B
online), while most 24-nucleotide putative siRNAs (Group III) had
a 59 A, a signature feature of canonical siRNAs (Figure 5F; see
Supplemental Figure 14D online).

Unexpectedly, smRNAs in Group II demonstrated a more
complex distribution (Figure 5E). Within this group, a large
number of 20-, 21-, and 22-nucleotide smRNAs had a 59 terminal
U, indicative of canonical miRNAs. However, an equally large
number of smRNAs in these size classes also had a 59 terminal C,
which might represent either a novel group of miRNAs or un-
known small hairpin siRNAs. Furthermore, this group of smRNAs
also contained a large number of 24-nucleotide siRNAs with a 59
A, suggesting that certain siRNA species need a hairpin precur-
sor state for processing through DICER. The complex compo-
sition of this group of smRNAs, which most likely includes
miRNAs and siRNAs as well as potentially other unknown
smRNA species, led us to classify these smRNAs collectively
as shRNAs. In shoots, 20- to 22-nucleotide smRNAs with a 59
terminal C were not detected, indicating that 59 C shRNAs might
potentially represent a group of uncharacterized tissue-specific
smRNAs (see Supplemental Figure 14C online).

To further characterize the sequence patterns of these three
groups of smRNAs and to explore smRNAs in irregular lengths
other than 21 and 24 nucleotides, we calculated the frequencies
for each nucleotide within the mature smRNA and extended the
mature RNA by 10 nucleotides at both ends. For the known
miRNAs in lengths of 20, 21, and 22 nucleotides, sequence
motifs were analyzed by WebLogo (Crooks et al., 2004). The
sequence motifs reflected the most enriched miRNA families
(Figure 5G; see Supplemental Figures 15A and 15B online).
Overall, we observed a high frequency of upstream As and Us for
half of the putative siRNA group and a sharp peak for 59 terminal
A (Figure 5H). This result is congruent with sequence patterns
found in Arabidopsis (Lister et al., 2008). However, the relative
enrichment of 39Gs seems to be a unique feature of maize when
compared with Arabidopsis. For putative 20- to 26-nucleotide
siRNAs (excluding the 24-nucleotide class), we observed a
relatively high frequency of As up to two nucleotides upstream
of the 59 terminus as well as for the 39 terminal nucleotide (see
Supplemental Figure 16 online). This result indicates that the
siRNA of other lengths could be variations of canonical siRNAs.
Overall, the nucleotide composition of the shRNA group showed
the highest amount of GC from 210 nucleotides to +10 nucle-
otides in the mature smRNAs, indicating distinct differences in
the nature of shRNA compared with miRNAs and siRNAs (see
Supplemental Figure 17 online).

22-Nucleotide siRNAs Are Differentially Enriched in Long
Hairpin dsRNAs

In both shoots and roots, we found that siRNA populations were
enriched primarily in 24-nucleotide and secondarily in 22-nucle-
otide species (see Supplemental Figures 13E and 13F online). A
recent study showed that 22-nucleotide siRNAs were specifi-
cally enriched in maize compared with other plants, which led to
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the hypothesis that this size class might potentially represent
a new species of smRNA in addition to the canonical 21- and
24-nucleotide siRNA (Nobuta et al., 2008). It is possible that a yet
to be identified siRNA biogenesis pathway exists in maize
(Nobuta et al., 2008). Two other recent reports summarizing
work in mouse delivered evidence that siRNAs found in naturally
formed endogenous long hairpin dsRNA molecules are respon-
sible for generating a certain class of smRNAs (Tam et al., 2008;
Watanabe et al., 2008). It has also been shown in maize that
smRNAs produced from a hairpin version ofMuDR, Muk, are not
lost in a mop1 mutant background (Woodhouse et al., 2006).
Taken together, these findings led us to explore whether long
hairpin dsRNAs are the sources of 22-nucleotide siRNAs in maize
because a naturally formed RNA duplex could be independent of
mop1, whose expression we found to be very low in seedling
tissues.

We performed de novo scanning of 2.4-Gb maize BACs using
the einverted program (see Supplemental Methods online) and
identified 1086 long hairpin dsRNAs with a stem length of at least

1000 nucleotides and at least 90% base pair complementation
within the stem sequence. By mapping the putative siRNAs onto
long hairpin dsRNAs, we indeed observed a higher relative en-
richment of 22-nucleotide compared with 24-nucleotide siRNAs
in both shoots and roots (Figures 6A to 6D), which differed from
the siRNAs mapped onto LTR-TEs (Figures 6E to 6G). A detailed
comparison of siRNAs derived from long hairpin dsRNAs or LTR-
TEs revealed more unique features of this novel siRNA species.
First, we found that these siRNAs had a higher copy number
(305,288 reads representing 58,210 unique sequences from
shoots and 238,313 reads representing 30,138 unique se-
quences from roots). Second, we identified shorter siRNAs (18
to 22 nucleotides), which were replicated in even higher fre-
quencies (e.g., 30 times for 20-nucleotide siRNAs in roots). Third,
19-, 20-, 21-, and 24-nucleotide siRNAs bore a signature 59 ter-
minal A, whereas 22-nucleotide siRNAs had approximately equal
amounts of 59 A and 59 U. In summary, our observations indicate
that siRNAs derived from long hairpin dsRNAmight be a miRNA-
like species, even though they bear canonical siRNA features.

Figure 6. 22-Nucleotide siRNAs Are Differentially Enriched in Long Hairpin dsRNAs Rather Than in LTR-TEs.

(A) to (C) Length distributions of putative siRNAs mapped on long hairpin dsRNAs. (A) Count of unique sequences; (B) and (C) total reads.
(D) An example of a long hairpin dsRNAs generating more 22-nucleotide siRNAs than 24-nucleotide siRNAs. The loop region of;500 bp is not shown,

and paired regions in stem are 99% in identity. Bubbles indicate unmatched nucleotides.

(E) to (G) Length distributions of putative siRNAs mapped on full-length LTR-retrotransposons. (E) Count of unique sequences; (F) and (G) total reads.
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smRNAs Target Distinct Regions in Genes and
Full-Length LTR-RetroTEs

Traditional annotation of TEs is based on open reading frame
predictions followed by comparison with known repeat types
in public databases. However, TEs predicted following this
strategy cannot represent a complete unit, especially in the
case of LTR-retrotransposons, which have a complicated archi-
tecture. Therefore, we used a program called LTR-finder (Zhao
and Wang, 2007) and identified 75,015 full-length LTR retrotrans-
posons de novo, representing 880 Mb of DNA sequence (see
Supplemental Methods online). By mapping putative siRNAs to
LTR-TEs, we found 753,512 siRNA reads representing 314,044
unique sequences from shoots and 455,881 reads representing
138,853 unique sequences from roots, respectively. When we
analyzed the distribution of the 59 terminal nucleotides for siRNAs
matching LTR-TEs, we found that in both shoots and roots, most
24-nucleotide siRNAs had the characteristic 59 terminal A, but that
22-nucleotide siRNAs started with an A or U in about equal
proportions (Figures 6E to 6G). This result might indicate different
mechanisms in 22- and 24-nucleotide siRNAbiogenesis aswell as
tissue-specific siRNA populations.

siRNAs have twomain known functions. Themajority of repeat-
associated 24-nucleotide siRNAs contribute to the formation of
DNA methylation, while a small portion of siRNAs including 21-
and 24-nucleotide classes contribute to the RNA interference
machinery targeting genes and TEs either in trans-acting or
natural-antisense-transcriptmode (Bonnet et al., 2006). Therefore,
we analyzed the distributions of the respective siRNA classes
surrounding and within genes and LTR-TEs. Since most siRNAs
are associated with repetitive sequences, keeping a randomly
selected subset of all siRNAs would lead to a significant bias. For
this reason, we adopted a method based on a best possible
compromise using the following formula: coverage of one siRNA
divided by all the locations this siRNA could be mapped to in the
genome (see Supplemental Methods online). As a basic classifi-
cation, we assumed here that if a smRNA is mapped to the sense
strand of a genomic locus, this smRNA might originate from this
site, while a smRNA mapped on the antisense strand of a locus
might indicate that this smRNA targets this site. However, this
approximation does not take other, more complicated scenarios
into account (e.g., origination of siRNAs from antisense mRNAs
and base-pairing of siRNAs to genomic DNA in addition to sense
mRNAs). To determine whether different size classes of siRNAs
and shRNAs target different regions in genes or LTR-TEs, we
examined the distribution of the respective smRNAs over gene
regions and LTR-TEs in shoots and roots (Figures 7A to 7H; see
Supplemental Figures 18A to 18H online).

Interestingly, each class of siRNAs exhibited a distinct pattern
on genes and LTR-TEs. For the 24-nucleotide siRNAs on flcDNA
genes, we observed a distinct bias toward the sense and
antisense strand in specific regions. A sharp 59 peak indicated
that a group of 24-nucleotide siRNAs originated from the imme-
diate upstream 100- to 200-bp region on the sense strand of
genes, while another equal amount of 24-nucleotide siRNAs
targeted the immediate downstream 100 to 200 bp, which
would still be within the 39 untranslated regions. This group of
24-nucleotide siRNAs potentially represents natural antisense

transcript-derived siRNAs. For the 24-nucleotide siRNAs on
LTR-TEs, we found that the overall distribution on the sense
strand was mirrored on the antisense strand and that the tran-
scribed regions had a higher proportion of 24-nucleotide siRNAs
than the 59 and 39 LTR regions (Figures 7A and 7B; see Supple-
mental Figures 18A and 18B online).

The 21-nucleotide siRNAs exhibited a similar pattern com-
pared with 24-nucleotide siRNAs in genes, but differed in their
origin regions. On the LTR-TEs, the distribution of 21-nucleotide
siRNAs on the sense and antisense strands was dissimilar. We
found more 21-nucleotide siRNAs on the sense strand at the 59
end, indicating more origin sites, while we observed more 21-
nucleotide siRNAs on the antisense strand at the 39 end, indi-
cating more targeting sites in this region (Figures 7C and 7D; see
Supplemental Figures 18C and 18D online).

Similarly, 22-nucleotide siRNAs exhibited a strand-specific
distribution in the transcribed region of genes (Figure 7E; see
Supplemental Figure 18E online). However, the origins of 22-
nucleotide siRNAs were biased toward the 39 end, while the
targeting sites were biased toward the 59 end within the tran-
scribed regions. The 22-nucleotide siRNAs showed a similar
pattern on LTR-TEs (Figure 7F; see Supplemental Figure 18F
online). This pattern indicates 22-nucleotide siRNAs might fulfill
their silencing function in a different way compared with 21- and
24-nucleotide siRNAs.

Interestingly, shRNAs were extremely strand-specific in both
flcDNAs and LTR-TEs (Figures 7G and 7H; see Supplemental
Figures 18G and 18H online). Virtually all shRNAs mapped to the
antisense strand in both 59 and 39 regions of flcDNAs, indicating
that shRNAs could function in a trans-acting fashion. In LTR-TEs,
almost all shRNAs mapped to the sense strand in the 39 coding
region.

Overall, our findings indicate that different siRNA classes
target different regions in genes and LTR-TEs and target different
transposon classes (see Supplemental Figure 19 online), point-
ing at specialized regulatory roles during epigenetic regulation of
these siRNAs (Figures 7I to 7K).

DISCUSSION

Using maize, we have generated an integrated genome-wide
and organ-specific survey of epigenetic marks together with
transcriptional outputs. Our results show that Illumina/Solexa 1G
sequencing and read mapping are feasible with high accuracy
even in large and repeat-rich plant genomes, opening the door to
exploring similarly complex genomes in the future.

Epigenetic changes, including histone modifications and DNA
methylation, have a profound impact on gene regulation. We
observed that H3K4me3, H3K9ac, and H3K36me3 were asso-
ciated with transcriptionally active genes, while H3K27me3 and
DNA methylation were predominantly found in transcriptionally
inactive genes and repetitive elements, supporting the findings of
previous studies in other organisms (e.g., Martens et al., 2005;
Zhang et al., 2006; Barski et al., 2007; Zilberman et al., 2007; Li
et al., 2008c; Wang et al., 2008). Interestingly, we found that
genic DNA methylation patterns in maize are very similar to rice,
but very different fromArabidopsis.While inmaize and rice, genic
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DNA methylation peaks around the ATG (Figure 3K; Li et al.,
2008c), it is most prevalent in the transcribed region in Arabi-
dopsis genes (Zhang et al., 2006; Zilberman et al., 2007). More-
over, we found that the differential accumulation of distinct
epigenetic marks in genes and repetitive elements was reflected
in the proportion of reads mapped to unique or nonunique
positions in the genome. As expected for strongly repeat-asso-

ciatedmodifications, we only identified a small number of unique
genome positions for H3K27me3 and DNA methylation (Figure
1B; see Supplemental Figure 1B online). Interestingly, we found
that while multiple activating epigenetic marks tended to occur
together, the two repressive marks under study, H3K27me3 and
DNA methylation, were more likely to exclude each other at the
same loci (Figures 4D and 4E). This supports similar findings for

Figure 7. Origin and Target Sites on Genes and LTR-TEs for Different Classes of Putative siRNAs.

(A), (C), (E), and (G) The 24-, 21-, and 22-nucleotide siRNAs and shRNAs on flcDNA genes show significant strand bias on different positions in

originating and targeting strands.

(B), (D), (F), and (H) The 24-, 21-, and 22-nucleotide siRNAs and shRNAs on LTR-TEs. Calculation of relative depth and de novo identification of LTR-

TEs is described in the supplemental data online.

(I) to (K) Percentages of unique smRNA loci situated in epigenetic regions of H3K4me3, H3K9ac, H3K36me3, H3K27me3, and DNA methylation.
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genome-wide studies inArabidopsis (Mathieu et al., 2005; Zhang
et al., 2007) and for a locus-specific analysis in mouse (Lindroth
et al., 2008). For example, in Arabidopsis, <10% of H3K27me3-
covered regions overlapped with DNA methylation (Zhang et al.,
2007). Even though the reason behind this antagonism is unclear,
it suggests a very different mode of action compared with
activating epigenetic marks, which generally do not seem to be
mutually exclusive. H3K27me3 is regarded as a mark of tran-
scriptional quiescence, but a recent study (Riclet et al., 2009)
showed that inmouse, upon loss of heterochromatin protein 1 on
the mesoderm-specific transcript promoter, H3K27me3 associ-
ates with gene activation and correlates with DNA hypomethyl-
ation. In animals, H3K27me3 regions typically form large
domains (>5 kb) and include multiple genes (Bernstein et al.,
2006; Schwartz et al., 2006). In plants, it covers much shorter
regions (typically <1 kb), and it tends to be restricted to the
coding region of single genes (Figures 3B and 3J; Zhang et al.,
2007). Taken together, these results suggest that H3K27me3
might be based on different spreading and maintenance mech-
anisms and that it might also have different functions in gene
activation and gene repression in plants and animals.

smRNAs have been increasingly recognized as key regulators
of gene activity that can have major effects. For example, a
recent study has shown that miRNAs were involved in the
domestication of maize (Chuck et al., 2007). Whereas most
endogenous plant siRNAs are 21 to 24 nucleotides long
(Ramachandran andChen, 2008),maize possesses an additional
class of 22-nucleotide siRNAs. Interestingly, other monocots,
such as wheat (Triticum aestivum), barley (Hordeum vulgare), or
rice, lack 22-nucleotide siRNAs (Nobuta et al., 2008). To eluci-
date the biogenesis of this 22-nucleotide class, we examined
potential sources of these siRNAs and found that they might be
generated from long dsRNAs. We hypothesize that the respec-
tive long dsRNAs might be encoded by pseudogenes similar to
those found inmouse,where duplexes formedby their sense and
antisense transcripts have been shown to produce siRNAs
without requiring RdRP activities (Tam et al., 2008; Watanabe
et al., 2008). Canonical 24-nucleotide siRNAs bear a 59 terminal
A, which is recognized by AGO2 and AGO4 (Mi et al., 2008).
Interestingly, we found that 22-nucleotide siRNAs matching long
dsRNAs bear all four nucleotides at their 59 end, which indicates
the involvement of other AGO proteins or potentially non-AGO
proteins during 22-nucleotide siRNA-mediated silencing pro-
cesses. We observed marked differences in the distributions of
siRNAs derived from long hairpin dsRNAs compared with those
derived from LTR-TEs. For example, long hairpin dsRNA-derived
siRNAs were relatively enriched for small sizes (18 to 22 nucle-
otides) and had a high copy frequency (Figures 6B and 6C), while
for LTR-TE–derived siRNAs, the copy frequency was relatively
low. These differences might indicate two distinct siRNA bio-
genesis pathways in maize, in which RdRP is necessary to
generate siRNAs from LTR-TEs but not from long hairpin
dsRNAs. We found that the expression level of one RdRP
gene,mop1, correlated with a decrease of 24-nucleotide siRNAs
relative to 21-nucleotide miRNAs in a tissue-specific manner
progressing from floral organs to shoots and roots. Intriguingly,
mop1 also seems to be involved in a tissue-specific regulation of
paramutation and silencing at the p1 locus in maize (Sidorenko

and Chandler, 2008), which opens the possibility that siRNAs
might be involved in tissue-specific and targeted paramutation.

Maize was one of the first model organisms for biological
research and has a rich history in the study of epigenetics, plant
domestication, and evolution. With the recent release of its first
draft genomic sequence, it is once again taking center stage in
both plant biology and crop improvement. We hope that the
epigenetic and transcriptomic survey we have described here
will aid in further annotating and understanding the maize ge-
nome. It will also be useful for exploring epigenetic principles and
even more complex smRNA biology, as well as the interplay
between epigenomes and transcriptomes. In summary, we
hereby have delivered a critical analysis of the overall landscapes
of epigenetic histone marks and DNA methylation, together with
mRNA and smRNA transcriptomes in maize.

METHODS

Plant Growth Conditions

Maize (Zea mays) inbred line B73 was obtained from the USDA–Agricul-

tural Research Service North Central Regional Plant Introduction Station

in Ames, IA. Seeds were planted in individual pots containing a mixture of

three parts soil (Premier Pro-Mix Bx Professional; Premier Horticulture)

and two parts vermiculite (D3 Fine Graded Horticultural Vermiculite;

Whittemore). Plants were grown under controlled environmental condi-

tions (15 h light/258C, 9 h dark/208C) in a growth chamber, and the soil

mixture was kept moist by watering the pots with 0.7 mM Ca(NO3)2.

Seedlings were harvested after 14 d, separated into shoots and roots,

frozen in liquid nitrogen, and stored at –808C or processed directly after

harvesting for ChIP.

Sample Preparation and Solexa Library Construction

Maize tissue from 10 different seedlings was ground in liquid nitrogen,

and genomic DNA was extracted from 1 g pooled tissue using a Qiagen

DNeasy plant maxi kit. To enrich for methylated genomic DNA, 20 mg

genomic DNA were digested with 200 units McrBC (New England

Biolabs) overnight, and fragments 500 nucleotides and smaller were gel

purified and used for library construction following the manufacturer’s

instructions, but adding a final gel purification step. To enrich for histone-

modified regions, ChIP was conducted using 5 g fresh maize tissue from

10 seedlings following a previously described procedure (Lee et al.,

2007). The following antibodies were used: H3K9ac (Upstate; 07-352),

H3K27me3 (Upstate; 07-449), H3K4me3 (Abcam; ab8580), and

H3K36me3 (Abcam; ab9050). For each 1-mL ChIP reaction, 5 mL anti-

body were added. The ChIPed DNA from three reactions was pooled to

construct Solexa libraries essentially following the manufacturer’s stan-

dard protocol but running 18 PCR cycles before gel purification of the

samples. Total RNA was isolated using TRIzol reagent (Invitrogen) fol-

lowing the manufacturer’s instructions. mRNA was extracted from total

RNA using Dynabeads Oligo(dT) (Invitrogen Dynal) following the manu-

facturer’s directions. After elution from the beads, first- and second-

strand cDNA was generated using SuperscriptII reverse transcriptase

(Invitrogen), and the standard Solexa protocol was followed thereafter to

create mRNA libraries. smRNA was extracted by running total RNA on a

15% PAGE gel and cutting out bands in the ;19- to 24-nucleotide size

range. Libraries for smRNAs were constructed following previously

published procedures (Mi et al., 2008; see Supplemental Methods online

for details). All samples were prepared for sequencing following the

manufacturer’s standard protocol.
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Sequence Data

The data for this article have been deposited at the National Center for

Biotechnology Information Gene Expression Omnibus (http://www.ncbi.

nlm.nih.gov/geo/) under accession number GSE15286. All data also can

be freely accessed at http://plantgenomics.biology.yale.edu.
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Supplemental Figure 1. Sequencing and mapping of mRNA transcripts, 

H3K4me3, H3K9ac, H3K36me3, H3K27me3, DNA methylation and smRNAs in 

maize roots. 

(A) Counts of raw reads from Illumina/Solexa 1G Sequencing. 

(B) Proportions of unmapped and mapped reads with unique and multiple locations. 

                                                                                                                                                                                 1

Supplemental Data. Wang et al. (2009). Genome-wide and organ-specific landscapes of epigenetic
modifications and their relationships to mRNA and smRNA transcriptomes in maize.



   

 

 

 

Supplemental Figure 2. Detection of individual transcribed exons by de novo 

scanning of mRNA-seq reads across the maize genome sequence.  

A de novo exon is represented by a cluster of piled-up mRNA-seq reads. We 

performed a de novo scanning of the mRNA-seq reads across the genome to identify 

the bp-resolution margins for each exon. By adding up all de novo exons, we found 

that the total maize transcription activity mapped to 87.6 Mb. We then aligned the de 

novo exons with flcDNAs, TEs and non-TE genes to validate the gene prediction at 

gene, exon, and base-level. 
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Supplemental Figure 3. Mapping of 11,742 maize flcDNAs to the maize genome 

sequence. 

(A) Procedure for mapping flcDNAs onto 2.4 Gb of maize BACs. 

(B) Two examples of flcDNA genes matched with mRNA-seq reads. mRNA-seq reads 

are highly consistent with gene structure, indicating mRNA-seq data can be used for 

experimentally validating the genome annotation. AJ420859 displayed equal 

expression levels in shoots and roots, while the second gene, X15642, showed 

differential expression. 
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Supplemental Figure 4. Comparison of gene homology in maize, rice and 

Arabidopsis. 

Rice and Arabidopsis protein sequences were downloaded from TIGR (version 5) 

and TAIR (version 8), respectively. We compared the translated genes predicted by 

GenScan and FgeneSH the protein sequences from these two plant species. Since 

there are nearly 200,000 non-TE genes predicted in maize, and only ~30,000 and 

~50,000 genes in Arabidopsis and rice, respectively, the percentages in the bars only 

show how many homologous genes are found in Arabidopsis or rice. 
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The remaining pathways (13,523 genes)

 

Supplemental Figure 5. Pathway annotation of maize genes.  

Using KOBAS, we assigned ~20,000 genes into pathways, (A) and (B) show the 

enrichment of genes in 175 pathways. 
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Supplemental Figure 6. Comparison of pathway enrichment in maize vs rice 

and maize vs Arabidopsis.  
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Supplemental Figure 7. Comparison of Gene Ontology enrichment between 

maize/rice and maize/Arabidopsis. 
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Supplemental Figure 8. Distribution of epigenetic patterns within maize genes in roots. 

(A), (B) and (C) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3 and DNA 

methylation levels within flcDNAs, predicted TE-related and non-TE genes aligned 

from transcription start sites (TSS) and ATG, respectively. The y axis shows the 

average depth, which is the frequency of piled-up reads at each base divided by the 

size of the bin. The x axis represents the aligned genes that were binned into 40 equal 

portions including 2 Kb up- and down-stream regions. 

(D) to (H) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3 and DNA 

8

Supplemental Figure 8. Distribution of epigenetic patterns within maize genes in roots. 

(A), (B) and (C) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3 and DNA methylation levels within
flcDNAs, predicted TE-related and non-TE genes aligned from transcription start sites (TSS) and ATG, respectively.
The y axis shows the average depth, which is the frequency of piled-up reads at each base divided by the size of the
bin. The x axis represents the aligned genes that were binned into 40 equal portions including 2 Kb up- and down-
stream regions.
(D) to (H) Distribution of H3K4me3, H3K27me3, H3K9ac, H3K36me3 and DNA methylation within five groups of
genes with different expression levels summarized from validated non-TE genes.



   

 

 

 

Supplemental Figure 9. Effect of modification levels on gene expression. 

The x axis shows the expression percentiles. Genes were sorted into 10 equal 

percentiles based on increasing expression intensity from mRNA-seq data. The y 

axis shows the average modification level on the genes in each percentile. The 

modification level was represented by the sequencing depth of reads per base. 

(A) and (B) Analysis using non-TE genes and flcDNA-supported genes in shoots. 

(C) and (D) Analysis using non-TE genes and flcDNA-supported genes in roots. 
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Supplemental Figure 10. A differentially expressed gene shows a different 

epigenetic pattern. 

One flcDNA gene mapped within the 20Mb region displayed a higher expression level 

in shoots than in roots. Upon examining the three activating marks on this gene, we 

found that H3K4me3 and H3K36me3 were partially attenuated but that H3K9ac in 

roots was significantly reduced. 
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Supplemental Figure 11. Correlation of differential modifications of H3K27me3 

and DNA methylation with differential gene expression in shoots and roots.  

The y axes show differences in the modification levels of H3K27me3 and DNA 

methylation in shoot and roots. The x axes show the differences in expression levels. 
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Supplemental Figure 12. Length distributions of removed smRNA reads 

matched with tRNA and rRNA sequences.  
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Supplemental Figure 13. Length distribution of three groups of smRNAs. 

(A) and (B) Length distribution of known miRNAs (Group I) in shoots and roots.  

(C) and (D) Length distribution of small hairpin RNA (Group II) in shoots and roots.  

(F) and (G) Length distribution of putative siRNAs (Group III) in shoots and roots. 
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Supplemental Figure 14. Classification of smRNA population in shoots. 

(A) Distribution of smRNAs within different MFE bins. 

(B) , (C) and (D) Length distributions of known miRNA, shRNAs and putative siRNAs 

with different 5’ terminal nucleotides. 

 14



   

 

 

Supplemental Figure 15. Nucleotide composition of known miRNAs. 

(A) and (B) Nucleotide composition of mature known miRNAs of 20 to 22 nt in shoots 

and roots.  

(C) and (D) Nucleotide composition of uncertain miRNAs of 20 to 22 nt in shoots and 

roots. Uncertain miRNAs were defined as smRNAs that did not match known 

miRNAs in miRBase, but whose precursor sequences failed to form a hairpin 

structure. Additionally, uncertain miRNAs had fewer copies than known miRNAs. 

Therefore, we merged uncertain miRNAs with the putative siRNA group.  
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Supplemental Figure 16. Nucleotide composition of putative siRNAs. 

(A) Nucleotide composition of putative siRNAs from 18 nt to 26 nt in shoots. 

(B) Nucleotide composition of putative siRNAs from 18 nt to 26 nt in roots. 
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Supplemental Figure 17. Nucleotide composition of shRNAs. 

(C) Nucleotide composition of shRNAs from 18 nt to 26 nt in shoots. 

(D) Nucleotide composition of shRNAs from 18 nt to 26 nt in roots. 
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Supplemental Figure 18. Origin and target sites on genes and LTR-TEs for 

different classes of putative siRNAs in roots. 

(A), (C), (E) and (G) 24, 21 , and 22 nt siRNAs and shRNAs on flcDNA genes show 

significant strand bias at different positions in originating and targeting strands.  

(B), (D), (F) and (H) 24, 21, and 22 nt siRNAs and shRNAs on LTR-TEs. Calculation 

of relative depth and de novo identification of LTR-TEs is described in Supplemental

 Methods (see below). 
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Supplemental Figure 19. Percentages of different types of repeats generating 

smRNAs in different lengths. 

We identified repetitive regions by RepeatMasker, and determined the percentage of 

smRNAs overlapping with each repetitive region.  
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Supplemental Figure 20. Length distribution of unmapped smRNAs classified 

by 5’ terminal nucleotides. 

(A) and (B) Most of the 21 nt reads that could be perfectly mapped to the genome 

were enriched for 5’ terminal U, indicating that most of them were miRNAs. We then 

used the copy frequency of each unique smRNA to distinguish miRNAs from siRNAs. 

(C) and (D) 21 nt smRNAs with copy frequency >=10 were enriched for 5’ terminal U 

indicating most of them were miRNAs. 

(E) and (F) 24 nt smRNAs with copy frequency <10 were enriched for 5’ terminal A 

indicating most of them were siRNAs. 
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Supplemental Table 1. Solexa Sequencing and mapping statistics 

Root lanes total reads Mapped reads 
Reads mapped to 

unique position 

H3K4me3 2 8,427,836 7,311,810 2,113,484 

H3k27me3 2 6,731,390 2,873,390 773,083 

H3K9ac 2 11,220,867 8,509,462 2,080,436 

H3K36me3 2 11,605,504 8,933,297 2,861,200 

DNA methylation 5 20,188,414 19,457,976 1,685,177 

Small RNA 1 3,648,212 2,728,364 813,100 

Transcriptome  8 34,949,694 29,097,596 14,755,456 

     

Shoot lanes total reads Mapped reads 
Reads mapped to 

unique position 

H3K4me3 2 8,670,391  6,141,591  2,681,539  

H3k27me3 2 8,662,744  3,613,140  1,208,411  

H3K9ac 2 11,893,695  10,207,060  4,059,050  

H3K36me3 2 10,943,618  9,650,552  3,257,569  

DNA methylation 5 19,181,681  18,014,718  1,616,496  

Small RNA 1 4,045,453  3,590,029  866,972  

Transcriptome  8 35,919,980  30,163,104  15,946,441  
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Supplemental Table 2. Validation statistics of FgeneSH predicted genes 

Gene Type Validated rate Validated genes  

  shoot root shoot root  

EVI 47.58% 46.17% 14,262  13,837   

PRO 37.08% 37.17% 27,083  27,153   

UPRO 3.77% 3.81% 3,156  3,197   

TOTAL 23.82% 23.65% 44,501  44,187   
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Supplemental Table 3.  

Number of smRNAs hitting known miRNAs in different minimum free energy (MFE) 

ranges. 

       

 Shoot Root 

MFE 

Total # of putative 

miRNA 

# of known 

miRNA 

Total # of putative 

miRNA 

# of known 

miRNA 

0~-10 0 0 0 0 

-10~-20 80 24 35 17 

-20~-30 8,272 156 17,815 118 

-30~-40 25,118 131 14,182 101 

-40~-50 372,755 94 165,786 77 

-50~-60 154,206 61 86,719 49 

-60~-70 1 1 0 0 

-70~-80 0 0 0 0 

< -80 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 4.  

Solexa sequencing reads for miRNAs. 
    

       

miRNA family length miRNA sequence root shoot ears mop1-1 

miR156a/b/c/d/e/f/g/h/i 20 UGACAGAAGAGAGUGAGCAC 406,699 315,388 98 1,170 

miR156j 21 UGACAGAAGAGAGAGAGCACA 51,873 0 10 148 

miR156k 20 UGACAGAAGAGAGCGAGCAC 63,624 83,985 1 38 

miR159a/b 21 UUUGGAUUGAAGGGAGCUCUG 56,749 13,127 3,052 9,986 

miR159c/d 21 CUUGGAUUGAAGGGAGCUCCU 37,116 0 23 55 

miR160a/b/c/d/e 21 UGCCUGGCUCCCUGUAUGCCA 28,268 26,398 166 147 

miR160f 21 UGCCUGGCUCCCUGUAUGCCG 0 112,786 1 1 

miR162 20 UCGAUAAACCUCUGCAUCCA 0 0 1 2 

miR164a/b/c/d 21 UGGAGAAGCAGGGCACGUGCA 75,984 30,958 18 61 

miR166a 21 UCGGACCAGGCUUCAUUCCCC 57,494 41,043 22,941 129,603 

miR166/b/c/d/e/f/g/h/i 20 UCGGACCAGGCUUCAUUCCC 16,720 12,255 1,471 9,629 

miR166j/k 21 UCGGACCAGGCUUCAAUCCCU 0 22,031 4,462 23,636 

miR166/m 21 UCGGACCAGGCUUCAUUCCUC 22,716 13,383 9,285 60,735 

miR167a/b/c/d 21 UGAAGCUGCCAGCAUGAUCUA 69,012 48,908 3,242 42,729 

miR167/e/f/g/h/i 21 UGAAGCUGCCAGCAUGAUCUG 30,598 27,262 112 1,554 

miR168a/b 21 UCGCUUGGUGCAGAUCGGGAC 175,193 487,810 17,608 128,980 

miR169a/b 21 CAGCCAAGGAUGACUUGCCGA 38,723 6,239 10 49 

miR169c 21 CAGCCAAGGAUGACUUGCCGG 166,876 15,156 1 21 

miR169f/g/h 21 UAGCCAAGGAUGACUUGCCUA 24,019 24,175 3 8 

miR169i/j/k 21 UAGCCAAGGAUGACUUGCCUG 2,165 23,407 5 17 
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Supplemental Table 4 continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

miR171a 20 UGAUUGAGCCGCGCCAAUAU 0 0 0 1 

miR171b 20 UUGAGCCGUGCCAAUAUCAC 0 3,765 0 1 

miR171d/e/i/j 21 UGAUUGAGCCGUGCCAAUAUC 57,454 2,862 53 203 

miR171f 21 UUGAGCCGUGCCAAUAUCACA  0 0 1 

miR171h/k 21 GUGAGCCGAACCAAUAUCACU 0 0 2 3 

miR172a/b/c/d 20 AGAAUCUUGAUGAUGCUGCA 11,377 18,300 14 87 

miR172e 21 GGAAUCUUGAUGAUGCUGCAU 0 71,149 197 1,249 

miR319a/b/c/d 20 UUGGACUGAAGGGUGCUCCC 14,420 5,868 9 32 

miR393 22 UCCAAAGGGAUCGCAUUGAUCU 0 0 2 7 

miR394a/b 20 UUGGCAUUCUGUCCACCUCC 81,095 2,273 33 45 

miR396a/b 21 UUCCACAGCUUUCUUGAACUG 20,324 1,372 12 92 

miR399a/c 21 UGCCAAAGGAGAAUUGCCCUG 0 60,025 1 3 

miR399d 21 UGCCAAAGGAGAGCUGCCCUG 0 0 0 0 

miR399e 21 UGCCAAAGGAGAGUUGCCCUG 28,830 88,073 2 8 

miR408 21 CUGCACUGCCUCUUCCCUGGC 17,028 826 6 11 

17 families, 89 microRNAs 1,554,357 1,558,824 62,841 410,312 
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Supplemental Methods 

 

Generation of small RNA Solexa libraries 

Total RNA was spiked with 32P-labeled 19 bp and 24 bp nucleotides and was loaded 

on a 15% polyacrylamide/urea gel. Small RNAs (~19-24 nt) were cut out and purified. 

Using mutant RNA ligase, a 3’ linker 

(AMP-5'p=5'pCTGTAGGCACCATCAATdideoxyC-3) was ligated to the small RNA 

fraction, and the ligated ~36-41 nt RNA product was gel purified. Using T4 RNA ligase 

(Ambion), a 5’ adaptor (5'-GUUCAGAGUUCUACAGUCCGACGAUC-3') was ligated 

to these linker-containing RNAs. The resulting RNA products (~68-73 nt) were gel 

purified and reverse transcribed using Superscript III reverse transcriptase 

(Invitrogen) and a 3’ RT primer (5'-ATTGATGGTGCCTACAG-3'). The obtained cDNA 

was amplified by PCR with the following primers: 

5’-AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA-3’ (forward) 

and 5’-CAAGCAGAAGACGGCATACGATTGATGGTGCCTACAG-3’ (reverse). The 

PCR products were purified using phenol/chloroform extraction and gel extraction. 

 

Mapping sequencing reads to the maize reference genome by MAQ 

Basic concept of MQ scores 

Since Illumina’s official tool ELAND can only map reads 32 nt or shorter to a reference 

genome, we chose another application named MAQ (Li et al., 2008a) for mapping 36 

nt reads. MAQ stands for Mapping and Assembly with Quality and one of its features is 

the calculation of a “mapping quality” (MQ) score that measures the likelihood of a 

read being mapped incorrectly. MAQ integrates the uniqueness and sequencing 

errors of a given read. When a read can be mapped equally well to more than one 

position, MAQ determines the best possible location. This is especially relevant if this 

read includes one or two mismatched nucleotides whose positions differ between 

reads. A MQ score is the phred-scaled probability (Ewing and Green, 1998a,b) 

calculated as:  
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MQ = -10*log10 (Pr) where Pr is the probability that a read is not correctly mapped. 

Calculation of the Pr is based on a Bayesian statistical model (Li et al., 2008a). 

MQ=13, 20, 30 indicates probabilities of 0.05, 0.01 and 0.001 respectively, that a read 

is mapped to an incorrect position. Therefore, the higher the MQ score, the more 

stringent the mapping criteria. 

To test which MQ score is a suitable cutoff for removing low quality reads, we 

used MQ=0, 13, 20, and 30 separately to retain reads of different quality for our pilot 

transcriptome analysis using a flcDNA dataset. We found that for MQ=0, more than 

85% of all reads were mapped in the genome and retained for further analyses, but 

an increase to MQ 13 led to a loss of almost half of the reads. The MQ=30 reads 

mapping to the 20 Mb continuous sequence were selected to ensure that all the reads 

were truly derived from this region. 

 

Dealing with MQ zero aligned reads 

If a read can be mapped equally well to multiple locations without mismatch or with 

identical mismatches, MAQ will pick one position at random and set the MQ score as 

0. Although almost half of the sequencing reads had an MQ score of zero, we found 

that the majority of these reads were of perfect sequencing quality but had 

non-unique mapping locations. After discussing this issue with Dr. Heng Li, the 

developer of MAQ, we decided to keep MQ=zero reads for analysis because active 

marks and mRNAs are associated with genic regions, which are relatively unique. 

Our reasoning is that by mapping ~10,000 flcDNAs to the 2.4 Gb genome, we found 

that ~30% of all flcDNAs had multiple best-matched locations, which indicated that 

even some genes have duplicated loci. Hence, the total number of reads for a 

duplicated gene sequence is the sum of reads resulting from all duplicated loci. For 

example, if we assume a gene has two duplications in the genome, and we have a 

total of 1,000 mRNA sequencing reads of MQ=0 associated with these two loci, then 

by removing all MQ=0 reads, all 1,000 reads for that gene would be lost. However, if 

we randomly assign all 1,000 reads to these two duplicated loci, each locus will have 

500 reads, which in all likelihood better approximates the true expression of each 
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locus. Therefore, we believe retaining all mapped reads is more suitable than 

removing them from further analyses.  

 

Transforming read counts to sequencing depth 

MAQ provides a function to transform read counts to sequencing depth of piled-up 

reads covering each base. Using depth per base as measure has several advantages: 

first, it facilitates defining a modification-enriched region; second, it allows a more 

accurate determination of exon/intron boundaries; third, it is easier and more 

accurate to align the sequencing depth from the genes’ ATG or TSS and to split a 

gene into equally binned portions; fourth, sequencing depth conveniently 

summarizes a gene’s expression level, modification level and, under some 

circumstances, enables normalizations. 

 

Compilation of maize genome annotation based on 2.4 Gb of BACs 

In order to compare the McrBC-seq, ChIP-seq, mRNA-seq and smRNA-seq data with 

different genomic elements, we conducted a basic annotation of the 2.4 Gb of BAC 

sequences including TE identification, flcDNA mapping, FgeneSH prediction, 

comparison of maize, rice and Arabidopsis, GO categorization, pathway annotation, 

de novo full-length LTR-retrotransposon identification, and long hairpin 

double-stranded RNA identification. 

 

Mapping maize flcDNAs to the maize genome  

11,742 flcDNAs were downloaded from http://www.maizecdna.org/. We first used 

BlastClust from NCBI to perform self-clustering of these 11,742 sequences to obtain 

11,000 non-redundant sequences. We then used BLAT (Kent, 2002) to map these 

11,000 nr-flcDNAs to the 2.4 Gb of BACs with identity >= 90%. We mapped 9,451 

flcDNAs to the maize genome, with 7,141 flcDNAs having only one best location and 

the remaining 2,310 flcDNAs having multiple best locations (Supplemental Figure 2A). 

As examples, we show two known genes, AJ420859 (tua5 gene for alpha tubulin) and 

X15642 (phosphoenolpyruvate carboxylase), with their mapped mRNA-seq reads. 
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Computational prediction of genes in maize genome 

We prepared two sets of computationally predicted genes based on the available 

maize genome sequence. The first set of genes was predicted by FgeneSH and was 

downloaded from the official maize genome sequencing project 

(http://www.maizesequence.org), and the second set of genes was predicted by us 

using GenScan (http://genes.mit.edu/GENSCAN.html). The FgeneSH prediction set 

includes 508,920 gene models, composed of 322,092 TE-related genes and 186,828 

non-TE protein-coding genes, whereas GenScan predicted 522,588 gene models 

including 329,580 TE-related and 193,008 non-TE protein-coding genes. However, 

after comparing the two predicted non-TE gene sets generated by these two methods, 

we only found ~30,000 overlapping genes, whereas the remaining 150,000 genes 

were unique to GenScan or FgeneSH predictions. This result suggests that both of 

the popular gene prediction software suites need further improvements once the 

maize genome sequence is completed and sufficient flcDNAs are available as a 

training set. 

We then used BLASTP to compare the translated non-TE genes predicted by 

FgeneSH and GenScan with the translated rice (www.tigr.org) and Arabidopsis genes 

(www.arabidopsis.org). Using the same standards (cutoff set as 1E-5), we found that 

FgeneSH delivered almost twice as many homologues as GenScan (30% vs 15%). 

Moreover, pair-wise comparisons of the two species showed that 27- 31% of the 

genes shared high homology (Supplemental Figure 4). This comparative analysis led 

us to conclude that for maize, FgeneSH delivers relatively more reliable results.  

The maize genome sequencing project divides the FgeneSH predicted gene set 

into four groups based on supporting evidence:  

!" TE-like genes (TE): genes classified as transposable elements; 

!" Protein-coding genes (PRO): genes having similarity to known proteins; 

!" Hypothetical genes (UPRO): genes having no similarity to known proteins; 

!" Evidence-genes: genes built from ESTs and flcDNAs. 

 We found that certain Evidence-genes overlapped with FgeneSH predicted 
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genes. In these cases, we scored the FgeneSH genes as EVI since most ESTs are 

only partial sequences of complete coding regions. 

 

Identification of recognizable repeats by RepeatMasker 

The source code for RepeatMasker was downloaded from 

http://www.repeatmasker.org/ and installed on a local server. We used WU-BLAST to 

compare the 2.4 Gb of BAC sequences with RepBase, a database of known plant 

repeats (Jurka et al., 2005). The abbreviated names of different kinds of repeats (x 

axis) in Figure 1C and Supplemental Figure 19 are based on RepeatMasker 

classifications. 

 

Pathway and Gene Ontology annotation based on FgeneSH predicted genes 

We used the KOBAS application (Mao, 2005) to identify biochemical pathways that 

the products of genes predicted by FgeneSH may participate in. KOBAS assigned 

maize genes to pathways by comparing them to homologous genes (as determined 

by BLAST similarity searches with cutoff e-values <1E!5, rank <10, and sequence 

identity >30%) in known Arabidopsis pathways in the KEGG database. Using KOBAS, 

we were able to assign 21,553 maize genes to 175 known GO pathways (The Gene 

Ontology Consortium, 2000) as shown in Supplemental Figures 5A and 5B. 

Moreover, we used KOBAS to rank pathways by P value, an approach designed 

to test whether data from a particular pathway fits the null hypothesis or the 

alternative hypothesis defined as 
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where p0 = m/M, p1 = n/N, m is the number of maize genes mapped to the 

pathway under investigation, M is the number of all maize genes with KOBAS 

annotation, n is the number of all genes mapped to the selected pathway, and N is the 

total number of genes with KOBAS annotation. The P value of a particular pathway 

corresponds to a test statistic following a hypergeometric distribution:  
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Pathways with P values <0.05 were considered statistically significant. 

  We also compared the enrichment of maize genes in each pathway with rice 

and Arabidopsis by a Chi-square test. Using a cutoff of Q<0.001, 62 pathways 

including 6,786 maize genes and 1,769 rice genes were differentially enriched, while 

125 pathways of 15,492 maize genes and 3,614 Arabidopsis genes were differentially 

enriched (Supplemental Figures 6A,B; Supplemental Tables 3,4). 

We then downloaded rice and Arabidopsis genes with GO annotation from 

TIGRv5 (www.tigr.org) and TAIRv8 (www.arabidopsis.org), respectively. We used the 

same statistical model described for the pathway analysis to identify enriched GO 

terms. Here, m is the number of genes with constant expression levels that are 

annotated by a given GO term, M is the number of all genes with constant expression 

levels with GO annotation, n is the number of all genes annotated with the given GO 

term, and N is the total number of genes with GO annotation. GO terms with adjusted 

P values < 0.05 using Bonferroni’s correction for multiple tests were considered 

statistically significant (Supplemental Figures 7A, B). 

Pathway analysis and comparative analysis indicated that although almost 

190,000 genes were predicted as non-TE protein coding genes, only ~20,000 genes 

could be assigned to a known GO pathway. 

 

De novo identification of full-length LTR-retrotransposons 

The traditional method for predicting transposable elements uses gene prediction 

software to identify ORFs in the genome, and then uses Repeat Masker to compare 

the predicted ORFs with TE databases and then classify each TE with a classification 

based on its homology with TE-related proteins. However, this method can only 

identify genes which are potentially related to TEs but can not determine complete 

LTR-retrotransposons. A full-length LTR-retrotransposon has a complicated structure: 

at its 5’ and 3’ ends there are two long terminal repeat regions, termed 5’ LTR and 3’ 

LTR, which are usually identical and oriented in the same direction. The core region of 

a plant retrotransposon encodes two polygenes: the gag gene encodes structural 

proteins and the pol gene encodes three important enzymes: IN (integrase), RT 
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(reverse transcriptase) and RH (RNase H) essential for retrotransposons to complete 

their self-duplication and insertion process. 

 Additional signature sequences such as the TSR (target site repeat), PBS (tRNA 

binding site), and PPT (polypurine tract) sites are additional features that enable the 

prediction of functional full-length LTR-retrotransposons. We performed a de novo 

prediction of LTR-retrotransposons using LTR-finder software (Zhao and Wang, 2007) 

and identified 75,015 full-length LTR-retrotransposons representing 880 Mb of DNA 

sequence. 

 

Visualization of epigenetic landscapes by Affymetrix’ IGB 

The Integrated Genome Browser (IGB) developed by Affymetrix has shown great 

power to visualize tiling-path based microarray data. Here, we attempted to convert 

our high-throughput sequencing-based data into IGB-readable formats. Since a 

maize pseudo-chromosome assembly is still not available, we used a high-quality 

continuous stretch of a 20 Mb maize sequence for an in-depth analysis. Sequencing 

reads from our libraries were mapped to this 20 Mb stretch without allowing any 

mismatch, filtered by MQ>30. mRNA-seq, ChIP-seq, McrBC-seq data were 

transformed into “Wiggle” format files, in which each binned 100 bp region of 

sequencing depth was stored; smRNA-seq data were transformed into “Bed” format 

and gene and TE annotations were transformed into “Psl” format. See 

http://genome.ucsc.edu/ for a detailed description of each file format.  

 

Identification of long hairpin double stranded RNAs 

To identify long hairpin dsRNAs, we performed a de novo search using einverted, 

which is a useful tool in the EMBOSS package (Rice et al., 2000) for finding inverted 

repeats (stem loops) in genomic DNA. We used the default parameters of einverted 

and used 80% and 90% identity of the paired stem regions >= 1Kb to identify long 

hairpin dsRNAs. We found 2,253 long hairpin dsRNAs with stem identity > 80% and 

1,086 with identity >90%. Generally, the average length of miRNA precursors is less 

than 100 bases and we used a stringent criterion of at least 2Kb of dsRNAs. We 
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therefore believe the real number of long hairpin dsRNAs with stem regions longer 

than 200 bp should be much higher than we estimated. 

 

Statistical detection of epigenetically modified regions by MACS 

MACS stands for “model-based analysis of ChIP-Seq data” and its function is to 

isolate ChIP-enriched regions from non-enriched regions based on a dynamic 

Poisson distribution model. Detailed algorithms and models were described by Zhang 

et al. (2008). We set up a bandwidth of 300 bp, mfold of 30, p-value of 1.00e-05 under 

a FDR cutoff of 1% to call peaks representing enriched epigenetic marks. 

 

Processing of smRNA-seq data 

We used a different approach to process the smRNA-seq data since smRNAs 

are usually enriched in 18 nt to 30 nt species and because many smRNAs are 

associated with repeats. We first removed the adaptor sequences from both ends of a 

read and then compared the trimmed smRNA reads with a plant tRNA and rRNA 

database from NCBI. This allowed us to remove potentially degraded rRNA and tRNA 

products from our dataset. Size distributions of tRNA/rRNA related smRNA reads 

showed a continuous decline from 19 to 26 nt (Supplemental Figure 12D). 

Furthermore, we did not detect any enrichment with a 5’ terminal A, which is the 

signature feature of siRNAs (Supplemental Figures 12A -C). 

 Before mapping the trimmed reads to the maize genome, we merged all reads 

with identical sequences. By doing so, we lowered the total number from 4.4 million to 

1.6 million unique-sequence reads in shoots and from 4.0 million to 0.7 million in roots, 

respectively. We recorded the frequencies of each unique-sequence smRNA, which 

allowed us to greatly shorten the required mapping time.  

 Since certain kinds of siRNAs are located in heterochromatic regions enriched in 

repetitive sequences, we attempted to retrieve all possible positions to which a read 

can be mapped. We used the SOAP application (Short Oligonucleotide Analysis 

Package, Li et al., 2008b), to map smRNAs to the reference genome. Because we 

needed to retain all mapped locations, we used a stringent mapping approach without 
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any mismatches.  

 Since in many cases one miRNA has several members with identical mature 

miRNA sequences but that come from different genomic locations with different 

primary and precursor miRNA sequences, keeping all mapped positions helped us to 

trace all the members of a given miRNA in the maize genome. 

 After mapping smRNA tags back to the genome, we extracted putative precursor 

sequences by extending 20 nt at the 5’ end and 70 nt at the 3’ end in order to predict 

the secondary structure using RNAfold. Using RNAfold, we calculated a minimum 

free energy (MFE) for each putative precursor with -40 as the cutoff to determine 

whether a given precursor can form a stem-loop structure (Supplemental Table 5; 

Figure 5C).  

 We then compared the smRNA sequences with miRBase, which includes all 

known miRNAs to date to identify known miRNAs in our data set. We used two criteria, 

(1) MFE of –40 and (2) whether or not a given sequence had a match in miRBase to 

separate miRNAs from siRNAs, and to classify all smRNA into three groups as 

mentioned in the main text (Supplemental Figure 10).  

 For Figure 6 and Supplemental Figure 17 we aligned smRNAs to the sense and 

antisense strands of flcDNA and LTR-TE using an averaged sequencing depth, which 

is the read frequency divided by the number of locations the reads can be mapped to. 

By doing so, we retained all the information even for repetitive regions and at the 

same time reduced the influence of repetitive sequences. 
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Wang et al. Plant Cell (2009). Maize epigenomics. Supplemental Dataset 1. Comparisons of maize and rice pathways (chisquare test, Q<0.001)

Pathway Rice (2514) Maize (10589) Rice Maize Pvalue Qvalue

Chaperones and folding catalysts 93 7 3.70% 0.07% 5.98E-78 7.50593E-76

Translation factors 71 0 2.82% 0.00% 3.21E-66 2.01339E-64

General function prediction only 89 26 3.54% 0.25% 2.99E-56 1.25141E-54

Other enzymes 76 15 3.02% 0.14% 3.19E-54 1.00145E-52

Receptors and channels 50 0 1.99% 0.00% 9.23E-47 2.31924E-45

GTP-binding proteins 48 0 1.91% 0.00% 6.56E-45 1.35535E-43

Protein kinases 52 3 2.07% 0.03% 7.55E-45 1.35535E-43

Cell cycle 42 0 1.67% 0.00% 2.35E-39 3.68542E-38

Ubiquitin enzymes 51 8 2.03% 0.08% 1.53E-38 2.12912E-37

Cell cycle - yeast 38 0 1.51% 0.00% 1.18E-35 1.48428E-34

Ubiquitin mediated proteolysis 47 8 1.87% 0.08% 5.82E-35 6.65115E-34

Protein folding and associated processing 35 0 1.39% 0.00% 7.06E-33 7.39263E-32

Other translation proteins 48 18 1.91% 0.17% 9.50E-28 9.18195E-27

Other ion-coupled transporters 27 0 1.07% 0.00% 1.80E-25 1.61381E-24

Inositol phosphate metabolism 34 624 1.35% 5.89% 1.16E-20 9.72194E-20

Benzoate degradation via CoA ligation 32 600 1.27% 5.67% 3.90E-20 3.06582E-19

Wnt signaling pathway 20 0 0.80% 0.00% 4.30E-15 3.17605E-14

Starch and sucrose metabolism 69 695 2.74% 6.56% 2.91E-13 2.03269E-12

Other replication, recombination and repair proteins 22 9 0.88% 0.08% 1.23E-12 8.12461E-12

Antigen processing and presentation 16 0 0.64% 0.00% 3.24E-12 1.94067E-11

Gap junction 16 0 0.64% 0.00% 3.24E-12 1.94067E-11

Peptidases 104 195 4.14% 1.84% 7.18E-12 4.10014E-11

Function unknown 15 0 0.60% 0.00% 1.70E-11 9.28005E-11

Progesterone-mediated oocyte maturation 14 0 0.56% 0.00% 8.90E-11 4.65622E-10

Cell division 13 0 0.52% 0.00% 4.66E-10 2.24956E-09

Pores ion channels 13 0 0.52% 0.00% 4.66E-10 2.24956E-09

Phenylpropanoid biosynthesis 38 425 1.51% 4.01% 1.46E-09 6.80837E-09

Tight junction 12 0 0.48% 0.00% 2.44E-09 1.09294E-08

Colorectal cancer 10 0 0.40% 0.00% 6.66E-08 2.61551E-07

Other amino acid metabolism 10 0 0.40% 0.00% 6.66E-08 2.61551E-07

Other energy metabolism 10 0 0.40% 0.00% 6.66E-08 2.61551E-07

p53 signaling pathway 10 0 0.40% 0.00% 6.66E-08 2.61551E-07

Glycolysis / Gluconeogenesis 76 581 3.02% 5.49% 4.71E-07 1.79318E-06

Signal transduction mechanisms 8 0 0.32% 0.00% 1.82E-06 6.35028E-06

Axon guidance 8 0 0.32% 0.00% 1.82E-06 6.35028E-06

TGF-beta signaling pathway 8 0 0.32% 0.00% 1.82E-06 6.35028E-06

Cyanoamino acid metabolism 16 209 0.64% 1.97% 5.25E-06 1.78235E-05

Focal adhesion 7 0 0.28% 0.00% 9.51E-06 3.06207E-05

Prostate cancer 7 0 0.28% 0.00% 9.51E-06 3.06207E-05

Galactose metabolism 27 269 1.07% 2.54% 1.22E-05 3.84081E-05

Carotenoid biosynthesis 14 181 0.56% 1.71% 2.69E-05 8.23302E-05

Pyruvate metabolism 49 385 1.95% 3.64% 2.83E-05 8.47316E-05

Glycerophospholipid metabolism 30 275 1.19% 2.60% 3.75E-05 0.000109434

Endometrial cancer 6 0 0.24% 0.00% 4.96E-05 0.000129924

Glycan Bindng Proteins 6 0 0.24% 0.00% 4.96E-05 0.000129924

Adherens junction 6 0 0.24% 0.00% 4.96E-05 0.000129924

Other transcription related proteins 6 0 0.24% 0.00% 4.96E-05 0.000129924

Naphthalene and anthracene degradation 16 188 0.64% 1.78% 4.96E-05 0.000129924

Sphingolipid metabolism 9 139 0.36% 1.31% 7.28E-05 0.00018657

Limonene and pinene degradation 19 199 0.76% 1.88% 0.00010771 0.000270606

Biosynthesis of steroids 34 285 1.35% 2.69% 0.000120946 0.000297903

Nitrogen metabolism 29 255 1.15% 2.41% 0.000140491 0.000339388

Phosphatidylinositol signaling system 22 213 0.88% 2.01% 0.000159338 0.000377656

Glycine, serine and threonine metabolism 41 318 1.63% 3.00% 0.000198373 0.000461469

Inorganic ion transport and metabolism 5 0 0.20% 0.00% 0.000259165 0.000551793

Alzheimer's disease 5 0 0.20% 0.00% 0.000259165 0.000551793

Hedgehog signaling pathway 5 0 0.20% 0.00% 0.000259165 0.000551793

Notch signaling pathway 5 0 0.20% 0.00% 0.000259165 0.000551793

ErbB signaling pathway 5 0 0.20% 0.00% 0.000259165 0.000551793

Pentose and glucuronate interconversions 10 134 0.40% 1.27% 0.000267389 0.000559815

Fructose and mannose metabolism 34 274 1.35% 2.59% 0.000316379 0.000651524

Citrate cycle (TCA cycle) 30 248 1.19% 2.34% 0.000437965 0.00088736

Transcription factors 12 12 0.48% 0.11% 0.000653606 0.001303251

Flavonoid biosynthesis 15 154 0.60% 1.45% 0.000875104 0.001717641

Glycerolipid metabolism 19 177 0.76% 1.67% 0.000935853 0.001808618

Ribosome 223 1181 8.87% 11.15% 0.000999346 0.001902061

Bile acid biosynthesis 11 127 0.44% 1.20% 0.001133846 0.002125846

Membrane and intracellular structural molecules 4 0 0.16% 0.00% 0.001352509 0.002392953

Toll-like receptor signaling pathway 4 0 0.16% 0.00% 0.001352509 0.002392953

Chronic myeloid leukemia 4 0 0.16% 0.00% 0.001352509 0.002392953

Parkinson's disease 4 0 0.16% 0.00% 0.001352509 0.002392953

Butanoate metabolism 29 228 1.15% 2.15% 0.00152813 0.002666125

Reductive carboxylate cycle (CO2 fixation) 22 188 0.88% 1.78% 0.001671083 0.002875595

gamma-Hexachlorocyclohexane degradation 13 134 0.52% 1.27% 0.001952625 0.003314664

Methane metabolism 24 197 0.95% 1.86% 0.00204011 0.003416999



Valine, leucine and isoleucine degradation 27 212 1.07% 2.00% 0.002340917 0.003869233

Nucleotide sugars metabolism 11 119 0.44% 1.12% 0.002620608 0.004275273

Glycosphingolipid biosynthesis - globoseries 5 80 0.20% 0.76% 0.002817693 0.004537864

alpha-Linolenic acid metabolism 27 56 1.07% 0.53% 0.003103685 0.004935181

Proteasome 48 317 1.91% 2.99% 0.003699493 0.005809045

Renin - angiotensin system 5 2 0.20% 0.02% 0.003847497 0.005966859

Metabolism of xenobiotics by cytochrome P450 10 109 0.40% 1.03% 0.003926425 0.006015004

Tyrosine metabolism 29 216 1.15% 2.04% 0.004139067 0.006264362

Tryptophan metabolism 22 177 0.88% 1.67% 0.004445754 0.006648424

Lysine degradation 19 160 0.76% 1.51% 0.004553499 0.006729439

Carbon fixation 57 353 2.27% 3.33% 0.00699705 0.009330255

Basal cell carcinoma 3 0 0.12% 0.00% 0.007056098 0.009330255

Neuroactive ligand-receptor interaction 3 0 0.12% 0.00% 0.007056098 0.009330255

Non-small cell lung cancer 3 0 0.12% 0.00% 0.007056098 0.009330255

Pancreatic cancer 3 0 0.12% 0.00% 0.007056098 0.009330255

Natural killer cell mediated cytotoxicity 3 0 0.12% 0.00% 0.007056098 0.009330255

Non-enzyme 3 0 0.12% 0.00% 0.007056098 0.009330255

Acute myeloid leukemia 3 0 0.12% 0.00% 0.007056098 0.009330255

Metabolism of other cofactors and vitamins 3 0 0.12% 0.00% 0.007056098 0.009330255

B cell receptor signaling pathway 3 0 0.12% 0.00% 0.007056098 0.009330255

Long-term depression 9 11 0.36% 0.10% 0.007508065 0.00972319

Replication complex 9 11 0.36% 0.10% 0.007508065 0.00972319

Pentose phosphate pathway 30 212 1.19% 2.00% 0.008661805 0.011102859

Benzoate degradation via hydroxylation 3 56 0.12% 0.53% 0.009560775 0.012131386

GnRH signaling pathway 17 140 0.68% 1.32% 0.010057716 0.01263432

Streptomycin biosynthesis 13 116 0.52% 1.10% 0.011469621 0.014190555

Purine metabolism 42 270 1.67% 2.55% 0.011522509 0.014190555

Valine, leucine and isoleucine biosynthesis 26 186 1.03% 1.76% 0.012678422 0.015462528

Aminoacyl-tRNA biosynthesis 42 266 1.67% 2.51% 0.015098371 0.018236827

Polyketide sugar unit biosynthesis 2 45 0.08% 0.42% 0.015576159 0.018458951

Biosynthesis of vancomycin group antibiotics 2 45 0.08% 0.42% 0.015576159 0.018458951

Glyoxylate and dicarboxylate metabolism 28 191 1.11% 1.80% 0.019310089 0.022670077

Propanoate metabolism 19 143 0.76% 1.35% 0.020052855 0.023222779

Ether lipid metabolism 13 110 0.52% 1.04% 0.020150609 0.023222779

Fatty acid metabolism 27 185 1.07% 1.75% 0.020513005 0.023425513

Phenylalanine metabolism 30 198 1.19% 1.87% 0.02462118 0.027863675

Glutathione metabolism 25 171 0.99% 1.61% 0.026931296 0.030205897

Urea cycle and metabolism of amino groups 25 168 0.99% 1.59% 0.033722103 0.037280373

1- and 2-Methylnaphthalene degradation 8 76 0.32% 0.72% 0.034235585 0.037280373

mTOR signaling pathway 10 17 0.40% 0.16% 0.034568841 0.037280373

Melanoma 2 0 0.08% 0.00% 0.036800136 0.037280373

Apoptosis 2 0 0.08% 0.00% 0.036800136 0.037280373

Cell motility and secretion 2 0 0.08% 0.00% 0.036800136 0.037280373

Thyroid Cancer 2 0 0.08% 0.00% 0.036800136 0.037280373

Other carbohydrate metabolism 2 0 0.08% 0.00% 0.036800136 0.037280373

Bladder cancer 2 0 0.08% 0.00% 0.036800136 0.037280373

Electron transfer carriers 2 0 0.08% 0.00% 0.036800136 0.037280373

Small cell lung cancer 2 0 0.08% 0.00% 0.036800136 0.037280373

Other nucleotide metabolism 2 0 0.08% 0.00% 0.036800136 0.037280373

Photosynthesis - antenna proteins 8 75 0.32% 0.71% 0.03786922 0.038056501

Basal transcription factors 24 161 0.95% 1.52% 0.038682923 0.038565703

DNA polymerase 14 107 0.56% 1.01% 0.043225129 0.042420799

Lysine biosynthesis 14 107 0.56% 1.01% 0.043225129 0.042420799

Caprolactam degradation 5 55 0.20% 0.52% 0.048204218 0.046579433

Olfactory transduction 5 55 0.20% 0.52% 0.048204218 0.046579433

Histidine metabolism 17 121 0.68% 1.14% 0.051052537 0.048955168

Terpenoid biosynthesis 10 83 0.40% 0.78% 0.052292322 0.049562639

SNARE interactions in vesicular transport 26 167 1.03% 1.58% 0.052475134 0.049562639

Androgen and estrogen metabolism 5 54 0.20% 0.51% 0.053782939 0.05041877

Glycosphingolipid biosynthesis - lactoseries 1 28 0.04% 0.26% 0.055024107 0.051200211

Brassinosteroid biosynthesis 3 41 0.12% 0.39% 0.05805691 0.053264651

3-Chloroacrylic acid degradation 7 65 0.28% 0.61% 0.058090771 0.053264651

Alkaloid biosynthesis II 7 64 0.28% 0.60% 0.064276964 0.058509823

Cellular antigens 5 51 0.20% 0.48% 0.074491489 0.06732004

Pantothenate and CoA biosynthesis 18 121 0.72% 1.14% 0.076881201 0.068983407

Epithelial cell signaling in Helicobacter pylori infection 23 146 0.91% 1.38% 0.079278751 0.070630161

Alanine and aspartate metabolism 48 266 1.91% 2.51% 0.088408517 0.078209278

Glycosphingolipid biosynthesis - neo-lactoseries 2 31 0.08% 0.29% 0.089887881 0.078961905

Aminophosphonate metabolism 6 54 0.24% 0.51% 0.099567703 0.086857737

RNA polymerase 36 206 1.43% 1.95% 0.101745528 0.088145438

ABC transporters 7 59 0.28% 0.56% 0.105651861 0.090902706

Type I diabetes mellitus 8 18 0.32% 0.17% 0.108830005 0.093000188

Riboflavin metabolism 6 12 0.24% 0.11% 0.113659539 0.09647098

Bisphenol A degradation 2 29 0.08% 0.27% 0.115377505 0.097271897

Protein export 27 79 1.07% 0.75% 0.126953373 0.106317682

Selenoamino acid metabolism 22 134 0.88% 1.27% 0.128515939 0.106913503

Thiamine metabolism 5 10 0.20% 0.09% 0.143779741 0.11804804

Lipoic acid metabolism 5 10 0.20% 0.09% 0.143779741 0.11804804

High-mannose type N-glycan biosynthesis 4 39 0.16% 0.37% 0.145735727 0.118254476

Aminosugars metabolism 23 137 0.91% 1.29% 0.145913935 0.118254476

Huntington's disease 7 55 0.28% 0.52% 0.155299217 0.124700652



Photosynthesis 67 230 2.67% 2.17% 0.156046939 0.124700652

Arginine and proline metabolism 22 131 0.88% 1.24% 0.156845946 0.124700652

Type II diabetes mellitus 4 38 0.16% 0.36% 0.162529488 0.128406662

Pyrimidine metabolism 34 188 1.35% 1.78% 0.164103112 0.128839594

Ascorbate and aldarate metabolism 18 110 0.72% 1.04% 0.171729174 0.133989485

N-Glycan biosynthesis 27 152 1.07% 1.44% 0.19086652 0.145190753

Leukocyte transendothelial migration 1 0 0.04% 0.00% 0.191864459 0.145190753

Dorso-ventral axis formation 1 0 0.04% 0.00% 0.191864459 0.145190753

Circadian rhythm 1 0 0.04% 0.00% 0.191864459 0.145190753

Proteoglycans 1 0 0.04% 0.00% 0.191864459 0.145190753

Two-component system 18 108 0.72% 1.02% 0.197005545 0.148188497

Renal cell carcinoma 5 12 0.20% 0.11% 0.214576041 0.160444362

beta-Alanine metabolism 19 111 0.76% 1.05% 0.22312203 0.165847245

Phenylalanine, tyrosine and tryptophan biosynthesis 40 209 1.59% 1.97% 0.23720793 0.174804567

SNAREs 31 167 1.23% 1.58% 0.237955842 0.174804567

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 9 22 0.36% 0.21% 0.243820064 0.178071127

Glycosphingolipid biosynthesis - ganglioseries 4 34 0.16% 0.32% 0.249557166 0.180411625

Glioma 8 55 0.32% 0.52% 0.249897122 0.180411625

Glutamate metabolism 42 217 1.67% 2.05% 0.251614946 0.180613787

Oxidative phosphorylation 129 607 5.13% 5.73% 0.259094156 0.183960573

Synthesis and degradation of ketone bodies 5 39 0.20% 0.37% 0.259206272 0.183960573

Porphyrin and chlorophyll metabolism 25 136 0.99% 1.28% 0.277694035 0.195974273

Amyotrophic lateral sclerosis (ALS) 9 23 0.36% 0.22% 0.28871733 0.202615346

Methionine metabolism 20 110 0.80% 1.04% 0.320018511 0.221870855

Fc epsilon RI signaling pathway 4 11 0.16% 0.10% 0.321454219 0.221870855

VEGF signaling pathway 4 11 0.16% 0.10% 0.321454219 0.221870855

1,2-Dichloroethane degradation 3 26 0.12% 0.25% 0.329824829 0.226404352

Regulation of actin cytoskeleton 26 86 1.03% 0.81% 0.333698256 0.226695656

MAPK signaling pathway 22 71 0.88% 0.67% 0.33385848 0.226695656

Biosynthesis of siderophore group nonribosomal peptides 1 1 0.04% 0.01% 0.346928781 0.231991566

2,4-Dichlorobenzoate degradation 1 1 0.04% 0.01% 0.346928781 0.231991566

Glycosaminoglycan degradation 5 36 0.20% 0.34% 0.347198253 0.231991566

Novobiocin biosynthesis 10 28 0.40% 0.26% 0.362067201 0.240646691

Cytoskeleton proteins 36 126 1.43% 1.19% 0.37507614 0.246298903

Long-term potentiation 9 55 0.36% 0.52% 0.376453372 0.246298903

Melanogenesis 9 55 0.36% 0.52% 0.376453372 0.246298903

N-Glycan degradation 5 35 0.20% 0.33% 0.381835294 0.247995582

Peptidoglycan biosynthesis 6 40 0.24% 0.38% 0.382995049 0.247995582

Insulin signaling pathway 35 174 1.39% 1.64% 0.415342695 0.267562028

Inositol metabolism 5 34 0.20% 0.32% 0.419385833 0.2687882

Regulation of autophagy 10 58 0.40% 0.55% 0.431649627 0.275026338

Cysteine metabolism 24 82 0.95% 0.77% 0.433497865 0.275026338

D-Glutamine and D-glutamate metabolism 3 10 0.12% 0.09% 0.468126386 0.295139654

Type II secretion system 1 2 0.04% 0.02% 0.472249065 0.295139654

Hematopoietic cell lineage 1 2 0.04% 0.02% 0.472249065 0.295139654

Nicotinate and nicotinamide metabolism 8 47 0.32% 0.44% 0.481217969 0.299256078

Other transporters 13 42 0.52% 0.40% 0.503953306 0.311850737

Lipopolysaccharide biosynthesis 5 20 0.20% 0.19% 0.538814196 0.331788536

Folate biosynthesis 16 82 0.64% 0.77% 0.553214371 0.338994074

Biotin metabolism 4 25 0.16% 0.24% 0.615416245 0.375278989

Styrene degradation 4 19 0.16% 0.18% 0.669279607 0.406153089

Prion disease 4 23 0.16% 0.22% 0.739244997 0.446454878

Arachidonic acid metabolism 9 45 0.36% 0.42% 0.765657945 0.460194073

One carbon pool by folate 15 71 0.60% 0.67% 0.783434056 0.46863602

Caffeine metabolism 1 7 0.04% 0.07% 0.818175153 0.487051903

Polyunsaturated fatty acid biosynthesis 17 65 0.68% 0.61% 0.829133732 0.487051903

Photosynthesis proteins 75 305 2.98% 2.88% 0.833347205 0.487051903

Vitamin B6 metabolism 6 25 0.24% 0.24% 0.837968981 0.487051903

Cytochrome P450 6 25 0.24% 0.24% 0.837968981 0.487051903

C5-Branched dibasic acid metabolism 2 14 0.08% 0.13% 0.841361169 0.487051903

Biosynthesis of ansamycins 2 14 0.08% 0.13% 0.841361169 0.487051903

Diterpenoid biosynthesis 3 22 0.12% 0.21% 0.884219303 0.508318625

Fatty acid elongation in mitochondria 2 16 0.08% 0.15% 0.886191589 0.508318625

Ethylbenzene degradation 2 17 0.08% 0.16% 0.903909395 0.516124807

Adipocytokine signaling pathway 9 42 0.36% 0.40% 0.919091508 0.520065797

Ubiquinone biosynthesis 10 41 0.40% 0.39% 0.919091508 0.520065797

Calcium signaling pathway 13 59 0.52% 0.56% 0.924863596 0.520838649

Transporters 15 59 0.60% 0.56% 0.928749747 0.520838649

PPAR signaling pathway 18 80 0.72% 0.76% 0.937868057 0.521297712

ATPases 19 79 0.76% 0.75% 0.937868057 0.521297712

Sulfur metabolism 18 77 0.72% 0.73% 0.943112534 0.521903457

Alkaloid biosynthesis I 10 44 0.40% 0.42% 0.961519279 0.529746785

1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 2 23 0.08% 0.22% 0.966375451 0.529746785

Glycosyltransferases 27 112 1.07% 1.06% 0.970778062 0.529746785

Fatty acid biosynthesis 14 61 0.56% 0.58% 0.974154399 0.529746785

Linoleic acid metabolism 15 61 0.60% 0.58% 0.980957158 0.5311468

Tetrachloroethene degradation 1 19 0.04% 0.18% 0.985933458 0.531550092

Taurine and hypotaurine metabolism 7 27 0.28% 0.25% 0.991860877 0.532460526



Wang et al. Plant Cell (2009) Maize epigenomics. Supplemental Dataset 2. Comparisons of maize and Arabidopsis pathways (chisquare test, Q<0.001)

Pathway Arabidposis (3001) Maize (10589) Arabidopsis Maize Pvalue Qvalue

Transcription factors 216 12 7.20% 0.11% 8.42E-156 6.174E-154

Other enzymes 162 15 5.40% 0.14% 1.97E-110 7.237E-109

GTP-binding proteins 95 0 3.17% 0.00% 2.11E-74 3.8724E-73

Receptors and channels 95 0 3.17% 0.00% 2.11E-74 3.8724E-73

Translation factors 79 0 2.63% 0.00% 6.04E-62 8.863E-61

Protein kinases 68 3 2.27% 0.03% 5.53E-50 6.7551E-49

Ubiquitin enzymes 57 8 1.90% 0.08% 1.39E-36 1.4562E-35

Ubiquitin mediated proteolysis 56 8 1.87% 0.08% 7.91E-36 7.2491E-35

General function prediction only 74 26 2.47% 0.25% 1.55E-35 1.2667E-34

Cell cycle 40 0 1.33% 0.00% 1.18E-31 8.6194E-31

Protein folding and associated processing 38 0 1.27% 0.00% 4.19E-30 2.7934E-29

Cell cycle - yeast 37 0 1.23% 0.00% 2.50E-29 1.529E-28

Starch and sucrose metabolism 69 695 2.30% 6.56% 5.24E-19 2.9583E-18

Chaperones and folding catalysts 30 7 1.00% 0.07% 2.56E-17 1.3409E-16

Glycolysis / Gluconeogenesis 55 581 1.83% 5.49% 9.01E-17 4.4071E-16

Benzoate degradation via CoA ligation 66 600 2.20% 5.67% 1.18E-14 5.4194E-14

Inositol phosphate metabolism 80 624 2.67% 5.89% 2.66E-12 1.1358E-11

Other translation proteins 32 18 1.07% 0.17% 2.79E-12 1.1358E-11

Wnt signaling pathway 17 0 0.57% 0.00% 6.81E-12 2.6301E-11

Pyruvate metabolism 37 385 1.23% 3.64% 3.15E-11 1.1568E-10

Other replication, recombination and repair proteins 23 9 0.77% 0.08% 4.55E-11 1.5872E-10

Other ion-coupled transporters 15 0 0.50% 0.00% 1.41E-10 4.4917E-10

Function unknown 15 0 0.50% 0.00% 1.41E-10 4.4917E-10

Glycine, serine and threonine metabolism 28 318 0.93% 3.00% 3.19E-10 9.7433E-10

Gap junction 14 0 0.47% 0.00% 6.40E-10 1.8059E-09

Tight junction 14 0 0.47% 0.00% 6.40E-10 1.8059E-09

Butanoate metabolism 15 228 0.50% 2.15% 2.60E-09 7.0617E-09

Antigen processing and presentation 13 0 0.43% 0.00% 2.91E-09 7.1117E-09

Other amino acid metabolism 13 0 0.43% 0.00% 2.91E-09 7.1117E-09

Progesterone-mediated oocyte maturation 13 0 0.43% 0.00% 2.91E-09 7.1117E-09

Ribosome 225 1181 7.50% 11.15% 7.92E-09 1.8729E-08

Glycerophospholipid metabolism 25 275 0.83% 2.60% 9.74E-09 2.2328E-08

RNA polymerase 13 206 0.43% 1.95% 1.03E-08 2.244E-08

Galactose metabolism 24 269 0.80% 2.54% 1.04E-08 2.244E-08

Signal transduction mechanisms 11 0 0.37% 0.00% 6.00E-08 1.2226E-07

p53 signaling pathway 11 0 0.37% 0.00% 6.00E-08 1.2226E-07

Alanine and aspartate metabolism 27 266 0.90% 2.51% 1.18E-07 2.335E-07

Nitrogen metabolism 25 255 0.83% 2.41% 1.23E-07 2.3732E-07

Pores ion channels 10 0 0.33% 0.00% 2.73E-07 5.1241E-07

Prostate cancer 9 0 0.30% 0.00% 1.24E-06 2.2678E-06

Sphingolipid metabolism 8 139 0.27% 1.31% 1.66E-06 2.9775E-06

Valine, leucine and isoleucine degradation 21 212 0.70% 2.00% 1.83E-06 3.1915E-06

Cyanoamino acid metabolism 21 209 0.70% 1.97% 2.65E-06 4.5279E-06

Aminoacyl-tRNA biosynthesis 33 266 1.10% 2.51% 4.53E-06 7.5469E-06

Cell division 8 0 0.27% 0.00% 5.61E-06 8.5757E-06

Endometrial cancer 8 0 0.27% 0.00% 5.61E-06 8.5757E-06

Colorectal cancer 8 0 0.27% 0.00% 5.61E-06 8.5757E-06

Other energy metabolism 8 0 0.27% 0.00% 5.61E-06 8.5757E-06

Reductive carboxylate cycle (CO2 fixation) 19 188 0.63% 1.78% 9.61E-06 1.4386E-05

Lysine degradation 14 160 0.47% 1.51% 1.08E-05 1.5838E-05

Pentose and glucuronate interconversions 10 134 0.33% 1.27% 1.69E-05 2.4368E-05

Adherens junction 7 0 0.23% 0.00% 2.55E-05 3.3348E-05

Focal adhesion 7 0 0.23% 0.00% 2.55E-05 3.3348E-05

Other transcription related proteins 7 0 0.23% 0.00% 2.55E-05 3.3348E-05

TGF-beta signaling pathway 7 0 0.23% 0.00% 2.55E-05 3.3348E-05

Notch signaling pathway 7 0 0.23% 0.00% 2.55E-05 3.3348E-05

Carbon fixation 55 353 1.83% 3.33% 2.76E-05 3.549E-05

Citrate cycle (TCA cycle) 33 248 1.10% 2.34% 3.34E-05 4.2169E-05

Proteasome 49 317 1.63% 2.99% 6.30E-05 7.833E-05

Tyrosine metabolism 28 216 0.93% 2.04% 7.72E-05 9.4394E-05

Valine, leucine and isoleucine biosynthesis 22 186 0.73% 1.76% 7.91E-05 9.5108E-05

Bile acid biosynthesis 11 127 0.37% 1.20% 9.09E-05 0.0001075

Biosynthesis of steroids 43 285 1.43% 2.69% 9.69E-05 0.00011274

Indole and ipecac alkaloid biosynthesis 6 0 0.20% 0.00% 0.0001155 0.00012833

Glycan Bindng Proteins 6 0 0.20% 0.00% 0.0001155 0.00012833

Small cell lung cancer 6 0 0.20% 0.00% 0.0001155 0.00012833

Carotenoid biosynthesis 22 181 0.73% 1.71% 0.000141 0.00015433

Phenylalanine, tyrosine and tryptophan biosynthesis 28 209 0.93% 1.97% 0.0001662 0.00017923

Streptomycin biosynthesis 10 116 0.33% 1.10% 0.0001855 0.00019713

Glyoxylate and dicarboxylate metabolism 25 191 0.83% 1.80% 0.0002421 0.0002536

gamma-Hexachlorocyclohexane degradation 66 134 2.20% 1.27% 0.0002483 0.00025643

Fructose and mannose metabolism 43 274 1.43% 2.59% 0.0002824 0.0002876

Pyrimidine metabolism 25 188 0.83% 1.78% 0.0003364 0.00033791



Urea cycle and metabolism of amino groups 21 168 0.70% 1.59% 0.0003523 0.00034912

Aminosugars metabolism 15 137 0.50% 1.29% 0.0003817 0.00037323

Pantothenate and CoA biosynthesis 12 121 0.40% 1.14% 0.0003943 0.00038051

Ether lipid metabolism 10 110 0.33% 1.04% 0.0004053 0.00038603

Inorganic ion transport and metabolism 5 0 0.17% 0.00% 0.0005237 0.00047415

Non-small cell lung cancer 5 0 0.17% 0.00% 0.0005237 0.00047415

Chronic myeloid leukemia 5 0 0.17% 0.00% 0.0005237 0.00047415

Axon guidance 5 0 0.17% 0.00% 0.0005237 0.00047415

Tryptophan metabolism 24 177 0.80% 1.67% 0.0006575 0.00058799

Phosphatidylinositol signaling system 32 213 1.07% 2.01% 0.0007865 0.00069485

Lysine biosynthesis 11 107 0.37% 1.01% 0.0011752 0.001026

Glutamate metabolism 34 217 1.13% 2.05% 0.001308 0.0011285

Histidine metabolism 14 121 0.47% 1.14% 0.001409 0.0012015

mTOR signaling pathway 15 17 0.50% 0.16% 0.0015153 0.00127728

Nucleotide sugars metabolism 14 119 0.47% 1.12% 0.001786 0.0014883

Peptidases 83 195 2.77% 1.84% 0.0020416 0.00168218

DNA polymerase 12 107 0.40% 1.01% 0.0022258 0.00181359

Melanoma 4 0 0.13% 0.00% 0.0023742 0.00183268

Apoptosis 4 0 0.13% 0.00% 0.0023742 0.00183268

Hedgehog signaling pathway 4 0 0.13% 0.00% 0.0023742 0.00183268

Parkinson's disease 4 0 0.13% 0.00% 0.0023742 0.00183268

ErbB signaling pathway 4 0 0.13% 0.00% 0.0023742 0.00183268

GnRH signaling pathway 19 140 0.63% 1.32% 0.0026799 0.00204712

Fatty acid metabolism 29 185 0.97% 1.75% 0.0031826 0.00239259

Pentose phosphate pathway 35 212 1.17% 2.00% 0.0031974 0.00239259

Propanoate metabolism 20 143 0.67% 1.35% 0.0032456 0.00240418

Basal transcription factors 24 161 0.80% 1.52% 0.0035192 0.00258078

Epithelial cell signaling in Helicobacter pylori infection 21 146 0.70% 1.38% 0.0038952 0.00282822

Arginine and proline metabolism 18 131 0.60% 1.24% 0.0042328 0.00304321

beta-Alanine metabolism 14 111 0.47% 1.05% 0.0045333 0.00322756

Polyketide sugar unit biosynthesis 2 45 0.07% 0.42% 0.0055141 0.00385112

Biosynthesis of vancomycin group antibiotics 2 45 0.07% 0.42% 0.0055141 0.00385112

Cellular antigens 3 51 0.10% 0.48% 0.0056176 0.00388637

Purine metabolism 50 270 1.67% 2.55% 0.00596 0.00408469

Benzoate degradation via hydroxylation 4 56 0.13% 0.53% 0.0063501 0.00431178

Glycerolipid metabolism 29 177 0.97% 1.67% 0.0068027 0.00457671

Phenylpropanoid biosynthesis 155 425 5.16% 4.01% 0.0068671 0.00457804

Flavonoid biosynthesis 24 154 0.80% 1.45% 0.0070768 0.00467534

Caprolactam degradation 4 55 0.13% 0.52% 0.0073051 0.00478311

Androgen and estrogen metabolism 4 54 0.13% 0.51% 0.0084018 0.00545251

Oxidative phosphorylation 135 607 4.50% 5.73% 0.0098621 0.00634404

alpha-Linolenic acid metabolism 29 56 0.97% 0.53% 0.0107031 0.006415

Fluorene degradation 3 0 0.10% 0.00% 0.0107597 0.006415

Alzheimer's disease 3 0 0.10% 0.00% 0.0107597 0.006415

Thyroid Cancer 3 0 0.10% 0.00% 0.0107597 0.006415

Pancreatic cancer 3 0 0.10% 0.00% 0.0107597 0.006415

Toll-like receptor signaling pathway 3 0 0.10% 0.00% 0.0107597 0.006415

Natural killer cell mediated cytotoxicity 3 0 0.10% 0.00% 0.0107597 0.006415

Acute myeloid leukemia 3 0 0.10% 0.00% 0.0107597 0.006415

Metabolism of other cofactors and vitamins 3 0 0.10% 0.00% 0.0107597 0.006415

Linoleic acid metabolism 6 61 0.20% 0.58% 0.0143178 0.00846748

1- and 2-Methylnaphthalene degradation 9 76 0.30% 0.72% 0.0150318 0.00881866

Aminophosphonate metabolism 5 54 0.17% 0.51% 0.0178815 0.01036155

Two-component system 16 108 0.53% 1.02% 0.0179444 0.01036155

Methane metabolism 77 197 2.57% 1.86% 0.0186099 0.01066193

Selenoamino acid metabolism 22 134 0.73% 1.27% 0.0203607 0.01157452

Phenylalanine metabolism 76 198 2.53% 1.87% 0.0273755 0.01544255

Glycosphingolipid biosynthesis - lactoseries 1 28 0.03% 0.26% 0.0279716 0.01565835

Synthesis and degradation of ketone bodies 3 39 0.10% 0.37% 0.0314414 0.01746742

Methionine metabolism 18 110 0.60% 1.04% 0.0365501 0.02015291

Cytochrome P450 1 25 0.03% 0.24% 0.0447237 0.02447559

Nicotinate and nicotinamide metabolism 5 47 0.17% 0.44% 0.0450698 0.0244823

Membrane and intracellular structural molecules 2 0 0.07% 0.00% 0.0487506 0.02465544

Monoterpenoid biosynthesis 2 0 0.07% 0.00% 0.0487506 0.02465544

Dorso-ventral axis formation 2 0 0.07% 0.00% 0.0487506 0.02465544

B cell receptor signaling pathway 2 0 0.07% 0.00% 0.0487506 0.02465544

Other carbohydrate metabolism 2 0 0.07% 0.00% 0.0487506 0.02465544

Basal cell carcinoma 2 0 0.07% 0.00% 0.0487506 0.02465544

Neuroactive ligand-receptor interaction 2 0 0.07% 0.00% 0.0487506 0.02465544

Bladder cancer 2 0 0.07% 0.00% 0.0487506 0.02465544

Non-enzyme 2 0 0.07% 0.00% 0.0487506 0.02465544

Other nucleotide metabolism 2 0 0.07% 0.00% 0.0487506 0.02465544

Glutathione metabolism 33 171 1.10% 1.61% 0.0495311 0.02487856

3-Chloroacrylic acid degradation 9 65 0.30% 0.61% 0.0545534 0.02721478

Bisphenol A degradation 2 29 0.07% 0.27% 0.0596015 0.02953223

Metabolism of xenobiotics by cytochrome P450 19 109 0.63% 1.03% 0.060565 0.02980822



Folate biosynthesis 13 82 0.43% 0.77% 0.0634262 0.03077984

Glycosphingolipid biosynthesis - ganglioseries 3 34 0.10% 0.32% 0.0637983 0.03077984

Inositol metabolism 3 34 0.10% 0.32% 0.0637983 0.03077984

Porphyrin and chlorophyll metabolism 26 136 0.87% 1.28% 0.0772193 0.03692545

Glycosphingolipid biosynthesis - globoseries 13 80 0.43% 0.76% 0.0775436 0.03692545

Glycosyltransferases 44 112 1.47% 1.06% 0.0788837 0.03732126

Ascorbate and aldarate metabolism 20 110 0.67% 1.04% 0.0812153 0.03817805

1,2-Dichloroethane degradation 2 26 0.07% 0.25% 0.0930106 0.04344436

Brassinosteroid biosynthesis 5 41 0.17% 0.39% 0.0972228 0.0451244

Glycosaminoglycan degradation 4 36 0.13% 0.34% 0.098113 0.04525118

Riboflavin metabolism 7 12 0.23% 0.11% 0.1048928 0.04807576

ABC transporters 9 59 0.30% 0.56% 0.1059496 0.04825852

Protein export 32 79 1.07% 0.75% 0.1083404 0.0490429

Peptidoglycan biosynthesis 5 40 0.17% 0.38% 0.1102117 0.0495839

Regulation of autophagy 9 58 0.30% 0.55% 0.1179514 0.05274238

Naphthalene and anthracene degradation 67 188 2.23% 1.78% 0.1204246 0.05352195

One carbon pool by folate 12 71 0.40% 0.67% 0.1218551 0.05383146

Prion disease 2 23 0.07% 0.22% 0.14491 0.06357538

N-Glycan biosynthesis 32 152 1.07% 1.44% 0.1456457 0.06357538

Replication complex 6 11 0.20% 0.10% 0.1529673 0.06637621

Olfactory transduction 9 55 0.30% 0.52% 0.1617022 0.06975375

Limonene and pinene degradation 69 199 2.30% 1.88% 0.1657188 0.07106835

MAPK signaling pathway 28 71 0.93% 0.67% 0.1703274 0.07262008

Ubiquinone biosynthesis 6 41 0.20% 0.39% 0.1718386 0.07284087

Diterpenoid biosynthesis 11 22 0.37% 0.21% 0.1770356 0.07461254

Renal cell carcinoma 6 12 0.20% 0.11% 0.1888981 0.07915714

Terpenoid biosynthesis 16 83 0.53% 0.78% 0.1922899 0.08012062

N-Glycan degradation 5 35 0.17% 0.33% 0.2032558 0.08421126

Fatty acid biosynthesis 11 61 0.37% 0.58% 0.2101191 0.08656575

Renin - angiotensin system 2 2 0.07% 0.02% 0.2135485 0.08744527

Tetracycline biosynthesis 1 0 0.03% 0.00% 0.2208241 0.08744527

C21-Steroid hormone metabolism 1 0 0.03% 0.00% 0.2208241 0.08744527

Cell motility and secretion 1 0 0.03% 0.00% 0.2208241 0.08744527

Electron transfer carriers 1 0 0.03% 0.00% 0.2208241 0.08744527

T cell receptor signaling pathway 1 0 0.03% 0.00% 0.2208241 0.08744527

Biotin metabolism 3 25 0.10% 0.24% 0.2210805 0.08744527

Thiamine metabolism 5 10 0.17% 0.09% 0.2217935 0.08744527

Sulfur metabolism 15 77 0.50% 0.73% 0.2245431 0.08805595

SNAREs 57 167 1.90% 1.58% 0.253163 0.09875132

Long-term depression 5 11 0.17% 0.10% 0.2678708 0.10393556

Taurine and hypotaurine metabolism 4 27 0.13% 0.25% 0.3092677 0.11936623

PPAR signaling pathway 17 80 0.57% 0.76% 0.3355677 0.128839

Calcium signaling pathway 12 59 0.40% 0.56% 0.3618831 0.13821897

Lipoic acid metabolism 4 10 0.13% 0.09% 0.3748466 0.14242846

Other transporters 8 42 0.27% 0.40% 0.3854002 0.14568362

Lipopolysaccharide biosynthesis 3 20 0.10% 0.19% 0.4269696 0.16056944

Photosynthesis 73 230 2.43% 2.17% 0.4336205 0.16223862

Transporters 21 59 0.70% 0.56% 0.4435947 0.16512799

Insulin signaling pathway 56 174 1.87% 1.64% 0.450127 0.16671337

Alkaloid biosynthesis I 9 44 0.30% 0.42% 0.4646758 0.17123695

ATPases 27 79 0.90% 0.75% 0.4672243 0.17131523

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 9 22 0.30% 0.21% 0.4732631 0.1726661

Long-term potentiation 12 55 0.40% 0.52% 0.4979807 0.17901229

Huntington's disease 12 55 0.40% 0.52% 0.4979807 0.17901229

Melanogenesis 12 55 0.40% 0.52% 0.4979807 0.17901229

Type II secretion system 1 2 0.03% 0.02% 0.5269802 0.18851287

D-Glutamine and D-glutamate metabolism 3 10 0.10% 0.09% 0.572869 0.20393353

Arachidonic acid metabolism 10 45 0.33% 0.42% 0.5920048 0.20887865

Cytoskeleton proteins 40 126 1.33% 1.19% 0.592457 0.20887865

Photosynthesis - antenna proteins 18 75 0.60% 0.71% 0.609431 0.213835

Vitamin B6 metabolism 5 25 0.17% 0.24% 0.6201823 0.21657117

VEGF signaling pathway 3 11 0.10% 0.10% 0.6268751 0.21787084

Novobiocin biosynthesis 6 28 0.20% 0.26% 0.6764699 0.23399854

Photosynthesis proteins 91 305 3.03% 2.88% 0.7073265 0.24352349

Regulation of actin cytoskeleton 27 86 0.90% 0.81% 0.7246286 0.24831459

Adipocytokine signaling pathway 10 42 0.33% 0.40% 0.7419934 0.2530825

1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 5 23 0.17% 0.22% 0.7553995 0.25646226

Cysteine metabolism 21 82 0.70% 0.77% 0.7665889 0.25906177

Styrene degradation 4 19 0.13% 0.18% 0.7708387 0.259303

Fc epsilon RI signaling pathway 2 11 0.07% 0.10% 0.8173641 0.27369824

Glioma 14 55 0.47% 0.52% 0.8302339 0.27615691

Type I diabetes mellitus 5 18 0.17% 0.17% 0.8322382 0.27615691

Caffeine metabolism 1 7 0.03% 0.07% 0.8642217 0.28490903

Glycosphingolipid biosynthesis - neo-lactoseries 10 31 0.33% 0.29% 0.8663842 0.28490903

Polyunsaturated fatty acid biosynthesis 17 65 0.57% 0.61% 0.8711136 0.28518541

Type II diabetes mellitus 12 38 0.40% 0.36% 0.8754749 0.28533939



Biosynthesis of ansamycins 2 14 0.07% 0.13% 0.8979849 0.29138095

High-mannose type N-glycan biosynthesis 10 39 0.33% 0.37% 0.9119822 0.29461919

Alkaloid biosynthesis II 18 64 0.60% 0.60% 0.9165427 0.29479384

Fatty acid elongation in mitochondria 2 16 0.07% 0.15% 0.9317567 0.29837854

Ethylbenzene degradation 2 17 0.07% 0.16% 0.9443724 0.30110363

Amyotrophic lateral sclerosis (ALS) 6 23 0.20% 0.22% 0.9656479 0.30655426

C5-Branched dibasic acid metabolism 1 14 0.03% 0.13% 0.9763636 0.30862006

SNARE interactions in vesicular transport 48 167 1.60% 1.58% 0.9969836 0.31378534


