4. Kopplung

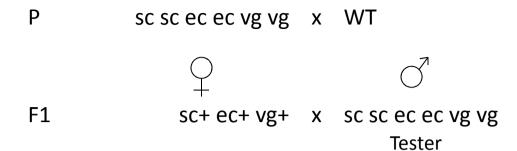
Konzepte:


Gekoppelte Vererbung

Genkarten

Doppel-Crossover

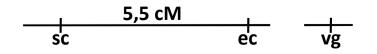
Interferenz


Statistik

1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in *Drosophila melanogaster* (scute [sc; keine Thoraxborsten], echinus [ec; rauhe Augen] und vestigial [vg] Stummel-flügel). Zu diesem Zwecke wird ein Fliege die alle drei Mutationen homozygot trägt mit einem Wildtyp gekreuzt. Anschließend werden die F₁ Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:

Na	chkomn	nen	Frequenz	Bemerkungen			
sc	ec	vg	235	parental			
+	+	+	241	parental			
SC	ec	+	243				
+	+	vg	233				
sc	+	vg	12				
+	ec	+	14				
sc	+	+	14				
+	ec	vg	16				
			1008				

- a) <u>Wie häufig sollte jeder Genotyp auftauchen, wenn keine Kopplung zwischen den Genen</u> vorliegt?
- b) Welche Gene sind gekoppelt?
- c) Berechnen Sie den Abstand zwischen den Genen.


Es entstehen 8 Gametengenotypen des heterozygoten F1 🔾

Na	Nachkommen		Frequen	Z	Bemer	kungen	
SC	ec	vg	235	1	pare	ental	
+	+	+	241	1	pare	ental	
sc	ec	+	243	1	*	*	
+	+	vg	233	1	*	*	Keine Kopplung
sc	+	vg	12	1		* *	
+	ec	+	14	1		* *	
SC	+	+	14	1	*	*	
+	ec	vg	16	1	*	*	
			1008				

Rekombination zwischen sc und vg: 506 ≈ 50% → keine Kopplung

Rekombination zwischen sc und ec: $56 \approx 5.5\% \rightarrow \text{Kopplung}$

Rekombination zwischen ec und vg: 502 ≈ 50% → keine Kopplung

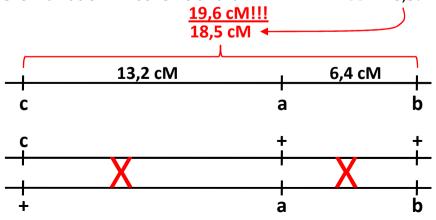
2. Sie analysieren die Kopplungsverhältnisse von 3 Genen (A, B, C; a, b, c). Zu diesem Zwecke wird folgende Kreuzung durchgeführt:

Anschliessend werden die F1 Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:

Na	achkomm	ien	Frequenz	Bemerkungen			
С	+	+	580	parental			
+	b	a	592	parental			
c	b	+	45				
+	+	a	40				
c	b	a	89				
+	+	+	94				
c	+	a	3				
+	b	+	5				

1448

- a) Welche Gene sind gekoppelt?
- b) Erstellen Sie eine Genkarte.
- c) <u>Berechnen Sie die Anzahl der *erwarteten* Doppelrekombinationsereignisse (unter Anwendung der Produktregel).</u>
- d) <u>Berechnen Sie den "Koeffizienten der Koinzidenz"</u> und die "Interferenz".


F1 a+b+c+x aa bb cc

Na	achkomm	nen	Frequenz	Bemerkungen			
С	+	+	580	parental			
+	b	a	592	parental			
c	b	+	45	* *			
+	+	a	40	* *			
c	b	a	89	* *			
+	+	+	94	* *			
c	+	a	3	* *			
+	b	+	5	* *			
			1448				

Rekombination zwischen c und a: $191 \approx 13,2\%$

Rekombination zwischen a und b: $93 \approx 6,4\%$

Rekombination zwischen c und b: $268 \approx 18,5\%$

R zw. c und b inkl. Doppelrek.:

Erfolgen Crossing-over Ereignisse unabhängig voneinander?

c - a Rekombinationsfrequenz = 0,132

a – b Rekombinationsfrequenz = 0,064

Wahrscheinlichkeit des Auftretens von Doppelrekombinanten \rightarrow Produktregel:

$$0,132 \times 0,064 = 0,0084$$

$$0,132 \times 0,064 = 0,0084$$
 $\rightarrow 0,0084 \times 1448 = 12$ erwartet

beobachtet

Interferenz = ein Crossing-over beeinflusst Crossing-over Ereignisse in der Nachbarschaft

I = 1 − c.o.c. (Koeffizient der Koinzidenz)

$$= 1 - \frac{8}{12}$$
 = 1/3 = 0,33 c.o.c. = 0 \rightarrow I = 1 \rightarrow komplette Interferenz

Wie erstellt man eine Genkarte/Kopplungskarte?

- 1. Berechnung der RF für jedes Genpaar
- 2. Darstellung der Kopplung
- 3. Bestimmung der Doppelrekombinanten
- 4. Berechnung der erwarteten Doppelrekombinanten
- 5. Berechnung der Interferenz

3. Sie analysieren die Kopplungsverhältnisse von 2 Genen (A, B; a, b). Zu diesem Zwecke wird folgende Kreuzung durchgeführt: aa bb (Elter 1) X AA BB (Elter 2) Anschließend werden die F₁ Nachkommen mit einem Tester gekreuzt. Dabei entstehen

Anschließend werden die F₁ Nachkommen mit einem Tester gekreuzt. Dabei entstehen folgende Nachkommen:

Nachkommen	Frequenz	Bemerkungen
AB	140	parental
ab	135	parental
Ab	110	
aB	115	
	500	

Analysieren Sie mit Hilfe eines χ^2 (Chi-Quadrat) Tests, ob A und B gekoppelte oder nicht-gekoppelt Gene sind.

Nachkommen	Frequenz	Bemerkungen				
AB	140	parental				
ab	135	parental				
Ab	110	225				
aB	115	$\frac{225}{500} = 45\%$				
	500					

RF nahe, aber $< 50\% \rightarrow$ Kopplung?

Unabhängige Spaltung \rightarrow 1:1:1:1 \rightarrow 125:125:125:125

Voraussetzungen:

- 1. Keinerlei Kopplung zwischen A und B
- 2. Gleiche Überlebensfähigkeit (viability) aller Allelkombinationen
 - → rezessive Allele weisen oft nachteilige Effekte auf die Überlebensfähigkeit auf
 - → Lethalität
 - → Methode zur Berechnung der erwarteten Spaltung unter Einbeziehung der Fitness einzelner Allele benötigt!

Nachkommen	Frequenz	E _i	Bemerkungen
AB	140	127,5	parental
ab	135	122,5	parental
Ab	110	122,5	
aB	115	127,5	
	500		

Allelfrequenz = relative Häufigkeit p eines Allels in einer Population

Wenn Überlebensfähigkeit von a = A, dann p(a) = p(A) = 0.5 bzw. 50%

$$p(A) = (140 + 110)/500 = 0.50$$

$$p(a) = (135 + 115)/500 = 0.50$$

$$p(B) = (140 + 115)/500 = 0.51$$

$$p(b) = (135 + 110)/500 = 0.49$$

$$p(AB) = 0.50 \times 0.51 = 0.255 \rightarrow 0.255 \times 500 = 127.5$$

$$p(ab) = 0.50 \times 0.49 = 0.245 \rightarrow 0.245 \times 500 = 122.5$$

$$p(Ab) = 0.50 \times 0.49 = 0.245 \rightarrow 0.245 \times 500 = 122.5$$

$$p(aB) = 0.50 \times 0.51 = 0.255 \rightarrow 0.255 \times 500 = 127.5$$

Nachkommen	$\mathrm{B_{i}}$	E_{i}	Bemerkungen
AB	140	127,5	parental
ab	135	122,5	parental
Ab	110	122,5	
aB	115	127,5	
	500		

 χ^2 Test: statistische Methode zur Berechnung der Abweichung von Vorhersagen

 χ^2 Wert: Verteilungswert anhand dessen die Wahrscheinlichkeit p abgeschätzt werden kann mit der die beobachteten Werte von der 0-Hypothese abweichen = nicht zufällig sind!

(0-Hypothese: Abweichung zwischen beobachtetem und erwartetem Wert ist zufällig)

Fragestellung: Weichen die beobachteten Häufigkeiten B_i unserer Stichprobe signifikant von den erwarteten Häufigkeiten E_i ab?

Die Berechnung von χ^2 :

$$\chi^2 = \sum_{i=1}^{n} \frac{\text{(beobachtete Häufigkeit - erwartete Häufigkeit)}^2}{\text{erwartete Häufigkeit}} = \sum_{i=1}^{n} \frac{(B_i - E_i)^2}{E_i}$$

wobei n = Anzahl der Merkmalsklassen

Nachkommen	B_{i}	E_{i}	$B_i - E_i$	$\frac{(B_i - E_i)^2}{E_i}$	Bemerkungen
AB	140	127,5	12,5	1,23	parental
ab	135	122,5	12,5	1,28	parental $\int_{0}^{\infty} n = 2$
Ab	110	122,5	-12,5	1,28	rekombinant
aB	115	127,5	-12,5	1,23	rekombinant

500

 $\Sigma \chi^2 = 5.02$

df = Freiheitsgrade (degree of freedom) = n - 1 bzw. Anzahl unabh. Abweichungen

TABLE C: x2 CRITICAL VALUES

χ² Wert: gibt die Wahrscheinlichkeit *p* an, dass die Abweichung zwischen beobachtetem und erwartetem Wert auf Zufall beruht

					Tail prob	ability p	1.0				
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5,39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70

 $\chi^2_{Vers} \le \chi^2_{Tab} \rightarrow \text{keine Abweichung zw. B}_i u. E_i \rightarrow \text{freie Spaltung}$ $\chi^2_{Vers} > \chi^2_{Tab} \rightarrow \text{B}_i \text{ abweichend von E}_i \rightarrow \text{Kopplung}$

■ 5,02 > 3,84

Wahrscheinlichkeit, dass sich die beobachteten Abweichungen nur durch Zufall erklären lassen, beträgt ca. 2,5%

 \rightarrow 95% Konfidenzintervall (α =0,05) allgemein anerkannter Schwellenwert

→ Kopplung!

TABLE C: χ² CRITICAL VALUES

					Tail proba	ibility p	123				
df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	. 9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70

 $\chi^2_{Vers} \le \chi^2_{Tab} \rightarrow \text{keine Abweichung zw. B}_i u. E_i \rightarrow \text{freie Spaltung}$ $\chi^2_{Vers} > \chi^2_{Tab} \rightarrow \text{B}_i \text{ abweichend von E}_i \rightarrow \text{Kopplung}$

5,02 > 3,84

_	Nachkom	men	E	\mathbf{B}_{i}		E_{i}		B _i –	E _i		– E _i)² E _i	Be	merkungen
	[AB		14	40		127,5		12,5	5	1	,23	Ì	parental
	ab		13	35		122,5		12,5	5	1	,28	Ì	parental
n = 4	Ab		11	10		122,5		-12,	5	1	,28	rei	kombinant
4	aB	aB		15		127,5		-12,5		1,23		rekombinant	
(degree	eiheitsgrade of freedom n – 1		5(00	TABL	E C: χ² C	RITICAL	VALUES	Š	$\Sigma \chi^2$	² =5,02	5.4	
	$\overline{}$		110,000			Tail prob	ability p						
	df	.25	.20	.15	:10	.05	.025	.02	.01	.005	.0025	.001	
	1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	
	2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	
	3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	
	4	5,39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	
	5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	
	6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	
	7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	
	8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	
	9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	
	10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	
	11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	
	12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	
	13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	
	14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	
	15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	

■ 5,02 < 7,81

$$\chi^2_{Vers} \le \chi^2_{Tab} \rightarrow \text{keine Abweichung zw. B}_i u. E_i \rightarrow \text{freie Spaltung}$$

 $\chi^2_{Vers} > \chi^2_{Tab} \rightarrow \text{B}_i \text{ abweichend von E}_i \rightarrow \text{Kopplung}$