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Omes?

e One June 26, 2000 President Clinton, with J. Craig Venter, left, and
Francis Collins, announces completion of "the first survey of the
entire human genome."
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Proteomics

Networks in the cell appear at many levels. They include protein-protein interaction
networks (red-lines), protein-gene intereactions (green-lines) and metabolic networks
(bottom). They together form what is often called the "cellular network."



Metabolomics

« Genomics and proteomics tell you what might happen, but
metabolomics tells you what actually did happen.
- Bill Lasley-
University of California, Davis

The topology of the metabolic network of the yeast cell The Rosetta Stone



Metabolomics

Jens Nielsen
Professor, dr. techn., Ph.D.

 The fraction of open reading frames (ORFs) in
a given genome directly involved in cellular
metabolism is relatively low

TABLE 1. Overview of reactions, metabolites, and ORFs in
reconstructed metabolic networks®

No. of % of ORFs
Organism No. ,Df No. DF metabolic Toral no. involved in
reactions metabolites ORFs of ORFs metabolism
H. pviori 444 340 268 1.638 16
H. influenzae 477 343 362 1.880 19
E. coli 720 436 695 4,485 15
S. cerevisiae 1,175 584 708 5,773 12°

# The reconstructed networks are described in references 6, 8, 17, and 15,
® The value is based on a recent gene count (3).

Guest commentary 2003 Journal of Bacteriology Vol.185,No.24



Metabolomics

Number of Reactions

The reconstructed networks clearly illustrate how the different parts of the cellular
metabolism are interconnected, particularly due to usage of common factors like
ATP, ADP, NADH, and NADPH .it is not only these factors that ensure a tight
connection among the different branches of the metabolic network.
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The Analyzing tools

Not only need to accommodate the high diversity of biomolecules but also
need to cover the vast dynamic range

Extreme care and fast inactivation of all biochemical reactions during
sampling vs. Proteome &. Transcriptome

Dynamic Range: The range of concentrations, between detection limit and
maximum amount of a substance to be quantified by one analytical
technology

Spectroscopy fingerprint at infrared (IR) , near infared (NIR), or UV , GC-
MS, LC-ESI-MS, CE-MS, LC-NMR-------- No single analytical platform
for the complete metabolome

(Metabolome analysis , trends in biotechnology, vol.23 No.1 Jan 2005)



The Analyzing Tools

Table 1. Overview of the four general variants in the toolbox of metabolome analyses. Properties of fingerprinting, profiling, pool
size and flux analysis are described for typical analyses

Fingerprinting

Profiling

Pool size analysis Flux analysis

Major field of
application

Major result

Sample
composition

Functional genomics,
diagnostics

Sample classification
based on apparent
metabolite pattern

Functional genomics,
molecular physiology

Relative quantification of
changes in metabolite pool
size, identification and
discovery of novel
metabolites

High complexity {(minimal pre-purification)

Biochemistry,
biotechnology,
molecular physiology
Absolute quantification
of metabolite pools

Biotechnology, modeling

Quantification of
metabolite flux

Low complexity (partial
or highly selective
purification)

High complexity
{minimal prepurification)
possible

identification

Metabolite
concentrations

Required
control
experiments

Analytical
trade-off

metabolites not required

metabolites as possible

The concentration of the most abundant metabolite determines
the highest possible sample load. The dynamic range of the
instrument defines the detection limit of coanalyzed minor

metabolites

Detector response is
corrected for the initial
amount of sample and total
losses of material during
sample preparation and
handling

The precision of
metabolite identification
and quantification is
sacrificed for optimised
sample through-put.

In addition, analysis of
recovery, detection limits
and linearity of detector
response of all known
metabolites

Absolute quantification is
substituted for relative
quantification in exchange
for full metabolite
coverage and medium to
high sample throughput

Sample High High-medium Low (might be extremely Medium-low
throughput high when dedicated to
a single metabolite)

Analytical MNonhyphenated technologies Hyphenated technologies Combination of hyphenated or nonhyphenated technologies
technology possible required (dependent on the means of prepurification)
Metabolite Limited only by choice of metabolite extraction and analytical  Preconceived, that is, limited to a predefined set of targeted
coverage technology metabolites

Fingerprinting Profiling Pool size analysis Flux analysis
Metabolite Identification of Identification of as many Unambiguous metabolite Unambiguous metabolite

identification required and mass isotopomer
identification required
Prepurification enables concentration of trace metabolites and
thus adaptation to the sensitivity range of the analytical
instrument. The dynamic range of instrumental analysis is thus
nonlimiting.

In addition,

guantitative

calibration of the
detector response by
dilution of a series

of pure metabolites

The number of analyzed
metabolites is

restricted in exchange
for precise
guantification

In addition, tracer
experiments with
radioactive or stable
isotope-labeled
metabolites

The number of analyzed
metabolites is restricted
in exchange for precise
guantification of
metabolite mass
isotopomers




Quatitative metabolite profiling by mass
Isotopomer ratios

Box 1. Experimental set-up of mass isotopomer ratio

orofiling A: a yeast parent strain is grown

'‘Mon-sample’ control
(internal standard®)

on pure U-C13-glucose in
synthetic defined media (red)

B: an identical culture is
prepared with unlabeled glucose
(blue)

C: experiments on different
strains or treatments are

(b) | W performed with unlabeled
'- W SN A L?belliﬁg CGﬂtr?l carbon sources (blue). Equal
(© | (reference sample) amounts of culture A are
ST ERURSNE, | combined with samples of B or
-, ]l R Samples of interest C. Labeled samples serve as
- - N v (treatments) analytical internal standards and
- ' a: . (strains) are typically monitored by “non-
- — | () sample” controls. The labeling
- - ¢ control B checks for inherent

TRENDS in Biotechnology

changes owing to C13-
labeling.Relative changes in
metabolite pool size are
determined by mass isotopomer
ratio, as exemplified in Box 3



Comparison of gas chromatography-mass spectrometry
(GC-MS) spectra from separate 13C-labeled and 12C-
metabolite preparations

Box 2. Head to tail comparison of gas chromatography-mass spectrometry (GC-MS) spectra from separate '*C-labeled and

?C-metabolite preparations

In Figure Il mass spectra show the number of carbon atoms in all those
mass fragments which originate from metabolites.
1: High labeling efficiency is essential because the chances of

Succinic acid (C4yHzOy) (2TMS)

obtaining a fully labeled mass isoctopomer decrease when atom 14 70 12¢
numbers increase (see Glossary). Up to Cue, we found unambiguous 1004 73b 247
mass isotopomer distribution in metabolites from yeast grown on = 504
pure U-"*C-glucose (99 atom %). =
2: Incomplete labeling, although insufficient for the determination of = 0 - g
high carbon numbers, still enables quantification by mass isotopomer :: 504
ratios. For high molecular weight metabolites, in vivo labelling of less =N
abundant elements, for example M, chemical tagging or analysis of 100 73 251
low molecular weight constituents is advisable, such as are employed 147 10 x “C
in proteome analysis [41,42]. T T T T
3: Addition of unlabeled essential vitamins and auxotrophic sup- 50 100 150 200 250 300 350 400
plements to micrebial cultures causes respective products to be i i .
unlabeled. For example, we found NAD Y to be fully labeled at the 16 Glycine {C;H;NO,) (3TMS)
carbon atoms which are ultimately synthesized from glucose. The 12
residual six carbon atoms resulting from the nicotinic acid vitamin 100 73 174 248 ©
supplement were unlabeled. = . 147 276
*The GC-MS metabo lite profiling requires chemical derivatization by + 504 L
M-methyl-N-(trimethylsilyl)-triflucroacetamide (MSETFA). This reagent 2 |. L A
introduces a specific number of trimethylsilyl moieties (TMS) to each 3 [ T T |' r r
metabolite molecule, as is indicated in brackets. E 504 147
bMassfragmcnts at 73 and 147 mass units are generated exclusively 100 273
from TMS muoieties. 73 175 L10 % |249 13
1 ] [] 1
50 100 150 200 250 300 350 400
Glutamic acid (CsHgNOy) (3TMS)
12,
-5 128
L 504 147 348
5 LSEE
Y N P Y T . b,
(&
c 5 368
g ar 250 33
100
T3 10 x *C
T T T T
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Mass to charge ratio (méz)

Figure I1.

TRENDS in Biotechnology



Quantification by gas chromatography- mass spectrometry
mass isotopomer ratio profiling

Box 3. Quantification by gas chromatography—-mass spectrometry mass isotopomer ratio profiling

(a) (b}
_Succinic acid ]
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& 247
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TRENDS in Bictechnaiogy

Figure Il (a)shows fragmant pairs of labeled and unlabeled mass isotopomers representing the same matabolite. lon currents reflect the relative changes in metabolite
abundance. (b) Plotof labeled over unlabeled metabaolite fragments from a mass isotopomer ratio profile, demonstrating that yeast cultures - inthis case overnight batch
cultures - exhibit small but perceptible changes in metabalite levals upon in viva '3C labeling [ This plot represants the labealing control experiment shawn in in Bax 1),
IMass fragments which represent the *C-labeled mass isotopomer, that is, the specific internal standard for this metabalite.

“Metabolites can ba monitered by one or multiple mass isotopomar pairs for quantification and confirmation.

“Labeled mass isotopomars, especially those with fewar than three carbon atoms, are best corrected for natural stable mass isotopes.



Where for labeling analysis?

Target 1----Cellular constituents formed during growth of
the examined cells. Like amino acids from the cell
protein, nucleotides from DNA, or monomers from
glycogen

Non-growing cells, eg. In production processes of
primary or secondary metabolites

Target 2---Secreted products

This requires sufficient amounts of the products to be
analyzed, no interference with medium components and
case-specific development of analytical protocols for the
analytes of interest



Labeling analysis of CO2

The use of membrane serving as a gas inlet
for a mass spectrometer

The sample passes continuously along a
microporous PTEE-membrane separating the
liquid from the gaseous phase

Volatile substances (CO2) contained in the
solution evaporate through the membrane
pores in the vacuum system of the analyser

' =

Membrane inlet mass spectrometry

Capillary inlet mass spectrometry Membrane inlet systern

Tae Hoon Yang et.al Computational biology and chemistry 29 (2005) 121-123



glucose,

v

trahalos e
IIIIH“ glucose 6-F lﬂ * pentose-P —E—
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decarboxylation ms  intracellular fluxes
m—i  @xtracellular fluxes
carboxylation —3 anaholic fluxes

Metabolic network model
of C. glutamicum

Definitions for the flux
parameters (Pi, (i) are
given in Table 2. v,
fluxes; vb, anabolic
fluxes

The subscript ‘ex’
Indicates extracellular
pools of substrates and
products.

Tae Hoon Yang et al.
Computational Biology and
chemistry 29 2005 121-133



Modeling of respirometric C13

metabolic flux analysis

Table 1

Decarboxylation and carboxylation reactions in catabolic and anabolic pathways of O glwtamicem including corresponding precursor/product, enzyme, the
atom mapping matrix { AMM) for the carbon atom transfer from the precursor to €04 and the stoichiometric consumption/production during biomass formation

Decarboxylation

Pathway

Precursor

Enzyme

a2
vz

3y

Vs

vy

20

Valineay

|-E_ {Tyrosine)

u_&, {Phenylalanine)
v8 ( Tryptophan)
vl (Valine)

|'E {lsoleucine)

1] i Leucine)

|'l|"I [MNucleotides)

Carboxylation

Glucose 6-P
Pyruvate
Onaloacetate/malate

Isocitrate
a-Ketoglutarate
mieso-Diaminopimelate
Pyruvate
Phosphoenolpyruvate
Phosphoenolpyruvate
Phosphoenolpyruvate
Pyruvate

Pyruvate

Pyruvate (2 mol)

Owaloacetate

G-Phosphogluconate dehydrogenase
Pyruvate dehydrogenase complex
Phosphoenolpyruvate carboxykinase/malic
enzyme, oxaloacetate decarboxylase
Isocitrate dehydrogenase
a-Ketoglutarate dehvdrogenase
mevo-Diaminopimelate decarboxylase
Acetohydroxy acid synthase
Prephenate dehydrogenase

Prephenate dehydrogenase
Indoleglycerol phosphate synthase
Acetohydroxy acid synthase
Acetohydroxy acid synthase

Acetohydroxy acid synthase
Isopropyhmalate dehydrogenase

Orotidine monophosphate decarboxylase during

pyrimidine nucleotide biosynthesis

AN Production®
{jpumol’g dew)

[100000]

[100]

[0001]

(00000 1]

[10000]

[0000001]

[100]

[100] 81

[100] 133

[100] 54

[100] 284

[100] 202

[100] 4440

[100] 440

[1O00] alo

Pathway Product Enzyme Consumption®
{pmolg dow)

V13 Oxaloacetate Pyruvate carboxylase/phosphoenolpyruvate carboxylase

1-?_1 Arginine Carbamoyl-P-synthase 189

1-?_1 DNA, RNA Phophoribosylaminoimidazole carboxylase during purine nucleotide, T30

carbamoyl-P-synthase during pyrimidine nuclectide biosynthesis

Since C02 has only one carbon atom, the carbon atom transition irvolved in each pathway from a precursor with # carbons to OO is represented by an AMM

with | % m dimension. The numbering of the reactions corresponds to the metabolic network used ( Fig. 1).
4 Amount of carbon dioxide produced or consumed for 1 g of biomass synthesis for O glutamicum (Marx et al., 1996).

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133



The Key Model Paraters

Measurable extracellular
fluxes

Vext
Anabolic fluxes
V b
Intracellular fluxes
var
= (P Pa .o oo SN L ||'lf'. |lj" . .]T:
e N

Here, Ny ={(nu1, Hu2. - oo Bom s a system consisting of

particular analvtical expressions (i, ;) for each flux. To ex-
clude a physiologically meaningless range of the fluxes,
v=0, the range ol the independent variables is set by
zr={zre MWWz = 0 AR, (25 = 0} with & being the dimen-

sion of zy.

o Flux partitioning ratio @i

with respect to net flux
distributions around the key
branch points of metabolism

Reaction reversibilities (i
with respect to the
reversibilities of reactions of
interest without varying their
net fluxes

Tae Hoon Yang et al.
Computational Biology and
chemistry 29 2005 121-133



Definitions and literature values of key flulx parameters of the wild type
C.glutamicum ATCC 12032 and the lysine-producing mutant
C.glutamicum ATCC 21526.

Table 2
Definitions and literature values (Wittmann and Heimnzle, 2002) of key flux parameters of the wild type C. glutamicum ATCC 13032 and the lysine-producing
mutant C. glutamicum ATCC 21526, mcluding flux partitioning ratios (&) and reversibilities (¢;)

Flux parameters C. glutamicum ATCC 13032 C. glutamicum ATCC 21326
Flux partitioning ratio
EMP and PP pathway: ®ppp=12/(v2+v3 — v3;) 0.32 0.61
Anaplerosis and TCA: dpc =(v1z —visr)(vi2 +vis — vi3) 0.18 0.28
Glyoxvlate shunt and TCA: d1c1 =vi5/(vi5 +vig) 0 0
Succinylase and dehydrogenase pathway: @pg = v/ (Vay + Vse) 0.23 0.11
Reversibility
Glucosephosphate 1somerase i EMP: fpgr= v /(vy — vy 6.9 1.3
Byruvate m EMP < oxaloacetate in TCA: {pcpeper = viz/(vi3 — Mi3r) 1.3 0.8
Transketolase 1 1n PP pathway: {p = var/(vg — vyp) 2.5 2.5
Transketolase 2 in PP pathway: {TK2 = var/(vs — vér) 0.5 0.5
Transaldolase m PP pathway: {14 = vs;/(vs — vsp) 1 1
Oxaloacetate < succiate in TCA: ¢Tca =vigd/(vig — vigr) 25 g.1

The reaction numbering corresponds to the metabolic network n Fig. 1.

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133



Isotopomer network

Each compound with n carbons exhibits2" possible
labeling states, so these models are inherently complex
IDV --- Isotopomer distribution vectors

IMM --- iIsotopomer mapping matrices

AMM --- atom mapping matrices



Atom Mapping Matrices

OBA »-Citrate
4

V4

ACCDAY s AR A [ e e Filty Acicls

)
A ’ [A>Cly; describes transfer of carbon from A to C
v
1 Vol GOy Vs {A>Dlg describes transfer of carbon from A o D
Pyruvale Hexanaate [B} Clg deseribes transfer of carbon from B to C

Figure 1. Bimple metabolic network for modeling AcCod
metaholism. V.- V; represent fluxes (typical unite: millimolesr
cellhour’. Pyruvate and hexancate are potentially labelad
aubstates ‘based on metwork analyzed by Blum and Stein

A+B—=>C+D

Vo

— '\"E

{B=D]g describes transfer of carbon from B to D

{19820
(A>ClgA + [B>ClgB = C
[A=DlgA + [B=DlgB = D
Pyx(1} AcCoAi1)
Pyr = |Pyr(2} | AcCoh = ACCGAEE'J]
Pyr{2)
[ Hex(1)
Hex(2)
| Hex(3) _ [AcCoay(D)
Hex = Hex(4) AeCoAy = [AQCGAH(E}
Hex(5)
| Hex(8),|

Zupke,C.& Stephanopoulous Biotechnol. Prog.1994,10,489-498



Atom Mapping Matrices

SAA = Citrats

4
V4
Vg

v
ACCOA) g ARO[ Falty Acidls

A '3
¥y

o

Pyruvale Haxangale

Figure 1. Bimple metabolic network for modeling AcCod
metaholism. V.- V; represent fluxes (typical unite: millimolesr
cellhour’. Pyruvate and hexancate are potentially labelad
aubstates ‘based on metwork analyzed by Blum and Stein
{19820

The dimensions of the mapping matrices are determined
by the number of carbonsg in the reactant and product.

' The number af columna equats the numhber of Atnma in
the reactant, while the number of rows equale the
number of carbons in the product. The element in the
ith row and the jth eclumn of the mapping matrix

gpecifies the

thera i3 a definite and unique mapping of reactant
carbong to product carbons, so that the elements of the
mapping matrix are uzually 0 or 1. However, fractional
elaments ara pozaible.

[Pyr>AcCoAflpp = [

o 1 a]ff¥ril)
(Byr>AcCoarlenPyr = 0 o ] /Prie | -
Pyr(3)
Pyr(2)) _ [AcCoA (1)) _
[Pyn{:a)] = {ACUGAILEJ] = AcCos,
:MGDAI:}&CCDAH]HMEI s

[AcCoAq> AcCOALy g = [é ‘i']

[Hex> AcCoA A, =

o el

aj=
[ I WL | ]

L=
Pon IR P |

= ] | S

Zupke,C.& Stephanopoulous Biotechnol. Prog.1994,10,489-498



Atom Mapping Matrices

QAR r’, = Citrata
V4
Ve
¥

AcCoAy _**T_,_Accnal;__ﬁ_..-ﬂ Fatty Acids

k d
¥y ({' GO0 Vs
Pyruvale Haxangale

Figure 1. Bimple metabolic network for modeling AcCod
metaholism. V.- V; represent fluxes (typical unite: millimolesr
cellhour’. Pyruvate and hexancate are potentially labelad
aubstates ‘based on metwork analyzed by Blum and Stein
{19820

flux into AcCod; = V| [Pyr>AcColA |, Py +
VilAcCoA, > AcCoAl . nAcCoA
The flux of label out of AcCoA; is
flux out of AcCod; = (V, + V, JAeCoA;

Equating egs 18 and 20 gives the steady state isotope
balance for AcCoAr

(V; + ViAeCod; = V [Pyr>AcCoAlppPyr +
ViacCod, > AcCoAl,, .nAcCoA,

Sirﬂlarly, the steady state isotope belance for AcCodp
18
':Va L+ VﬁjﬁcCDﬂu -
V,[AeCoA> AeCoAg],  AcCoA; +
VE[HEI'J’EEGDAI]MHEI

Decouple the generation of the steady state quations from the details
of the transfer of carbon atoms from reactants to products

Zupke,C.& Stephanopoulous Biotechnol. Prog.1994,10,489-498



Cl3vs Cl4
(eg. Acetate molecule)

I 1

@@ @@
.

. / .

Figure 1. Twao different isotopomer mixtures of a two carbon atom mo-
. . - .
lecule. The shaded carbon atoms are labeled with either YC or MO,

Schmidt., K, Carsen.M, Nielsen.,J.Villadsen. Biotechnol.Bioeng 55:831-840,1997



Isotopomer distribution vectors

The IDV of glucose has 2° = 64 clements. The first

element of this column vector 1s indexed 0, 1.e.. specified as

Ly 0). The zeroth element of the glucose IDV will contain I (0) 1,1 (000000,5,)

a number between 0 and 1, representing the fraction of Ly (1) [, (000001 )
glucose molecules, showing the labeling pattern 000000, foo ) e ) ] L0000y,
(unlabeled). The element at mdex | contams the mole frac- = lere ) late Q000 ) J
tion of glucose molecules labeled according to the bmary L (63 L (111119
number 00000 1,;,, meaning a single “C isotope in the sixth g; | - ™
position m the glucose molecule. The mole fraction of with D lge (i) =1, (1)
[1-7C]glucose is found at index 32 of the vector, because o

3215 the decimal representation of the bmary number (and where ly,(i) is the vector element at index i of the glucose

. , . e DV
labeling pattern) 100000, By simple conversion of binary

to decimal numbers, labeling patterns can easily be found
for given mdex numbers and vice versa. The complete glu-

cose [DV 1s given as



|Isotopomer mapping matrices

0
f_‘.H,-ll'.—E—f_‘.uA
acetyl-CoA
oy coo
COO - P } - i:ﬂ Fy

d—p (l: ' —}

r.' tH el

! oo

Loy
oxaloacetaie ex-ketog|uiaraie

Figure 2. Entry of acetyl-CoA into the TCA eyele. iy is the molar rate of

production and r is the molar rate of consumption of a-ketoglutarate.

The number of rows in IMM
equals the number of vector
elements in the product IDV.
The number of columns of an
IMM equals the number of
vector elements of the reactant
IDV.

In the following, IMM names
will be specified by subscripts
containing two acronyms
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Isotopomer network

e The distribution of the e
C13 Iabel W|th|n the Here. Fy=(/x1, Jx2. .. . Jem s an equation system con-

. laining # isotopomer balances (fy;) and x is the set of
mEtabO|IC network can be unknown isotopomer distribution vectors (1DV), x=(xy.
. e s T .‘r,;.aT. Each x Eik’-,_"l‘l above is constrained such

Computed by SOlVIng a that x; = {x; eﬂiz”‘|£§:|_rﬂ;‘;‘] =1AVE: 0= xik) < 1},
. where a. denotes the number of carbon atoms in the

SyStem Of StatIOnaI‘y skeleton of a metabolite. A numerically stable and fast

method for selving Eqg. and thus calculating the iso-

|SOtO pOmer balan ce topomer distributions fora given set of fluxes is described in
. Yang et al. (2004a).
equations

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133



Respirometric network

n g
Zf VCOy.in,i%YC0,.4) — XC0; Z[ V0, out, 51 = U,
i=1 J=l

where .rED: denotes the mcoming 1DV into the COs pool,
xe, the DV of €O, and s the stoichiometric coeflicient
of each reaction. Along with anabolic fluxes towards amino
acids and macromolecules, carbon dioxide fluxes participat-
ing in those reactions can be directlv calculated from the
strain-specific data of precursor and carbon dioxide require-
ments ( Table 1) (Netdhardt et al., 1990; Marx et al., 199¢; de
Graaf, 2001)).

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133



Experiment design

« Single output sensitivity
m+1
[m+1] mass isotopomer fraction of CO2 (10, ) towards change

Of different key flux parameters in the central metabolism, i.e. partial
Derivatives of m+ fco,

* D- optimality criterion

E e — : where Ne is s S Tre nit variables considere
s Veim M of) TR E—— ._Imk Ng 1s the num.l el .ul .|mlk| k_mih.nl arial |'-.h.'-.'\ nﬁhlkml_
del Fishe™r, Feim. M - Zf) [he larger the relative information index resulting from an
experimental design, the more information can be predicted
with respect to the input labeling pattern used for the refer-
; Mce experiment.
: |_.'_:'Jl'l'r|' enee expe 5

H[.Tinp _ext

? . ( ”rcl'cr-:nuc
D

new design /

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133
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Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133



Primary identification of sensitive flux parameters by means of CO2
mass isotopomer analysis in the wild type C.glutamicum ATCC
13032(A-1,2,3), and the lysine-producing mutant C.glutamicum ATCC
21526 (B-1,2,3)
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Fig. 3. Superimposed contour plots of *+! fen, for simultaneous quantifi-
cation of two flux parameters by use of two different input substrates: val-
ues of "'"'""_J"'L-:]J resulting from [I,E-”E'g] glucose (solid line, black) and
[1.6-"C2] glucose (dotted line, gray) in the space of @ppp and ®pc of the
lysine-producing mutant C. glutamicum ATCC 21526, The real solution (@)
is located at {dPppp =0.28, dbpr =0.61) for the strain.
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Optimal experimental design
and relative information
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Optimal experimental design
and relative information

rel. Information Index

MNo. of experiments combined
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Optimal experimental design
and relative information
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Relative information index fr"-'i?z_m-f'-mr] in the space of @ppp and Ppe predicted for the combined multiple tracer experiments [l-”f]and [6-'3('] (A
and [1-13C], [6-13C] and [1,2-13C3] (B) for C. glutamicum ATCC 21526,
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Summarize

* The respirometric approach complements
existing methods for metabolic flux analysis. It is
especially attractive for studies of non-growing
cells. et.al.

 The accurate acquistion of production rates for
single mass isotopomers of CO2 can be done by
membrane inlet MS within a few minutes

* Applying miniaturized membrane probes, it
seems even possible to apply this type of
measurement to local determination of fluxes in
tissues, sediments or immobilized cell systems.



Question?



