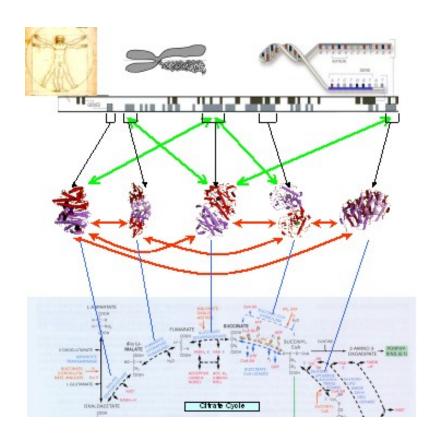
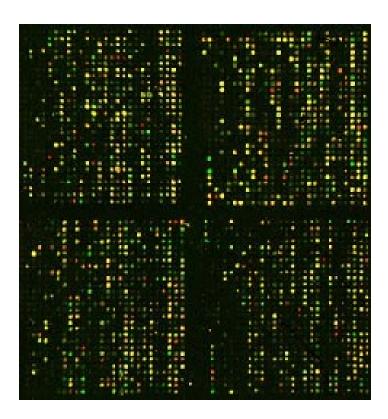
Theoretical aspects of C13 metabolic flux analysis with sole quantification of carbon dioxide labeling

Guangquan Shi 04/28/06

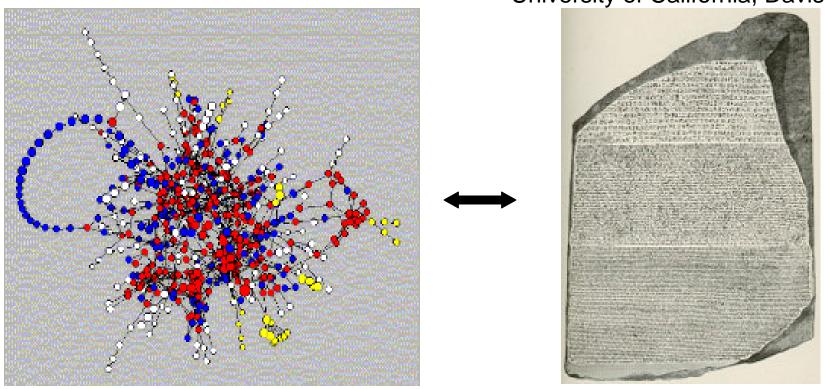
Omes?


 One June 26, 2000 President Clinton, with J. Craig Venter, left, and Francis Collins, announces completion of "the first survey of the entire human genome."



http://www.ornl.gov/TechResources/Human_Genome/home.html

Proteomics



Networks in the cell appear at many levels. They include protein-protein interaction networks (red-lines), protein-gene intereactions (green-lines) and metabolic networks (bottom). They together form what is often called the "cellular network."

Metabolomics

• Genomics and proteomics tell you what might happen, but metabolomics tells you what actually did happen.

- Bill Lasley-University of California, Davis

The topology of the metabolic network of the yeast cell

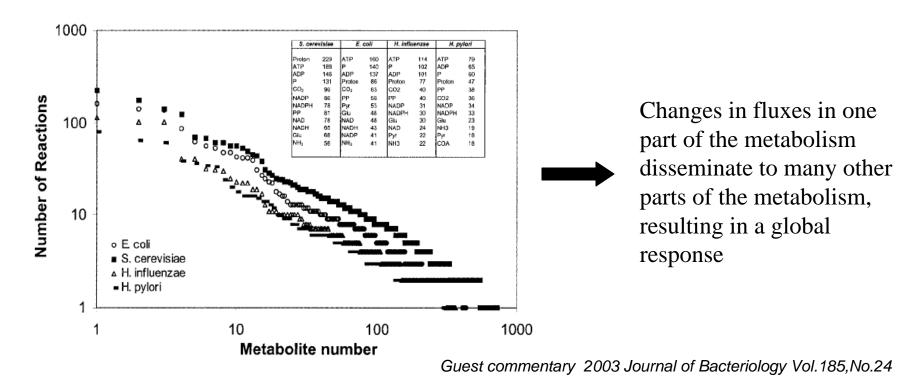
The Rosetta Stone

Metabolomics

Jens Nielsen Professor, dr. techn., Ph.D. • The fraction of open reading frames (ORFs) in a given genome directly involved in cellular metabolism is relatively low

TABLE 1. Overview of reactions, metabolites, and ORFs in reconstructed metabolic networks^a

Organism	No. of reactions	No. of metabolites	No. of metabolic ORFs	Total no. of ORFs	% of ORFs involved in metabolism
H. pylori	444	340	268	1,638	16
H. influenzae	477	343	362	1,880	19
E. coli	720	436	695	4,485	15
S. cerevisiae	1,175	584	708	5,773	12^{b}


^a The reconstructed networks are described in references 6, 8, 17, and 18.

Guest commentary 2003 Journal of Bacteriology Vol.185,No.24

^b The value is based on a recent gene count (3).

Metabolomics

• The reconstructed networks clearly illustrate how the different parts of the cellular metabolism are interconnected, particularly due to usage of common factors like ATP, ADP, NADH, and NADPH .it is not only these factors that ensure a tight connection among the different branches of the metabolic network.

The Analyzing tools

- Not only need to accommodate the high diversity of biomolecules but also need to cover the vast dynamic range
- Extreme care and fast inactivation of all biochemical reactions during sampling vs. Proteome &. Transcriptome
- **Dynamic Range**: The range of concentrations, between detection limit and maximum amount of a substance to be quantified by one analytical technology
- Spectroscopy fingerprint at infrared (IR), near infared (NIR), or UV, GC-MS, LC-ESI-MS, CE-MS, LC-NMR-----No single analytical platform for the complete metabolome

(Metabolome analysis, trends in biotechnology, vol.23 No.1 Jan 2005)

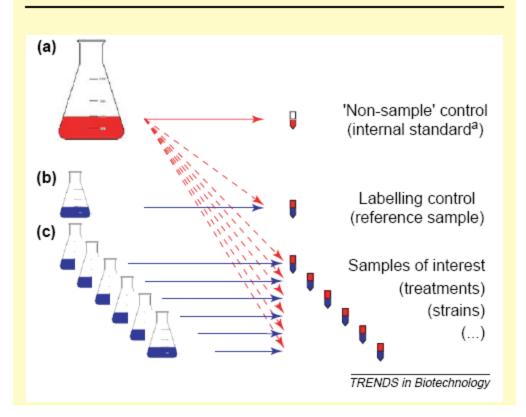

The Analyzing Tools

Table 1. Overview of the four general variants in the toolbox of metabolome analyses. Properties of fingerprinting, profiling, pool size and flux analysis are described for typical analyses

	Fingerprinting	Profiling	Pool size analysis	Flux analysis	
Major field of	Functional genomics,	Functional genomics,	Biochemistry,	Biotechnology, modeling	
application	diagnostics	molecular physiology	biotechnology,		
			molecular physiology		
Major result	Sample classification	Relative quantification of	Absolute quantification	Quantification of	
	based on apparent	changes in metabolite pool	of metabolite pools	metabolite flux	
	metabolite pattern	size, identification and			
		discovery of novel			
		metabolites			
Sample	High complexity (minimal pre-purification)		Low complexity (partial	High complexity	
composition			or highly selective	(minimal prepurification)	
			purification)	possible	
Sample	High	High-medium	Low (might be extremely	Medium-low	
throughput			high when dedicated to		
A	Na abaabaa da da abaabaa la alaa	Uharahara da da aharaharaharah	a single metabolite)		
Analytical	Nonhyphenated technologies	Hyphenated technologies	Combination of hyphenated or nonhyphenated technologi		
technology	possible	required	(dependent on the means of prepurification)		
Metabolite		abolite extraction and analytical	Preconceived, that is, limited to a predefined set of targeted		
coverage	technology		metabolites		
	Fingerprinting	Profiling	Pool size analysis	Flux analysis	
Metabolite	Identification of	Identification of as many	Unambiguous metabolite	Unambiguous metabolite	
identification	metabolites not required	metabolites as possible	identification required	and mass isotopomer	
				identification required	
Metabolite	The concentration of the most abundant metabolite determines		Prepurification enables concentration of trace metabolites and		
concentrations	the highest possible sample load. The dynamic range of the instrument defines the detection limit of coanalyzed minor metabolites		thus adaptation to the sensitivity range of the analytical instrument. The dynamic range of instrumental analysis is thus nonlimiting.		
Required	Detector response is	In addition, analysis of	In addition,	In addition, tracer	
control	corrected for the initial	recovery, detection limits	quantitative	experiments with	
experiments	amount of sample and total	and linearity of detector	calibration of the	radioactive or stable	
	losses of material during	response of all known	detector response by	isotope-labeled	
	sample preparation and	metabolites	dilution of a series	metabolites	
	handling		of pure metabolites		
Analytical	The precision of	Absolute quantification is	The number of analyzed	The number of analyzed	
trade-off	metabolite identification	substituted for relative	metabolites is	metabolites is restricted	
	and quantification is	quantification in exchange	restricted in exchange	in exchange for precise	
	sacrificed for optimised	for full metabolite	for precise	quantification of	
	sample through-put.	coverage and medium to	quantification	metabolite mass	
		high sample throughput		isotopomers	

Quatitative metabolite profiling by mass isotopomer ratios

Box 1. Experimental set-up of mass isotopomer ratio profiling

A: a yeast parent strain is grown on pure U-C13-glucose in synthetic defined media (red)

B: an identical culture is prepared with unlabeled glucose (blue)

C: experiments on different strains or treatments are performed with unlabeled carbon sources (blue). Equal amounts of culture A are combined with samples of B or C. Labeled samples serve as analytical internal standards and are typically monitored by "nonsample" controls. The labeling control B checks for inherent changes owing to C13labeling.Relative changes in metabolite pool size are determined by mass isotopomer ratio, as exemplified in Box 3

Comparison of gas chromatography-mass spectrometry (GC-MS) spectra from separate 13C-labeled and 12Cmetabolite preparations

Box 2. Head to tail comparison of gas chromatography-mass spectrometry (GC-MS) spectra from separate ¹³C-labeled and ¹²C-metabolite preparations

In Figure II mass spectra show the number of carbon atoms in all those mass fragments which originate from metabolites.

1: High labeling efficiency is essential because the chances of obtaining a fully labeled mass isotopomer decrease when atom numbers increase (see Glossary). Up to C28, we found unambiguous mass isotopomer distribution in metabolites from yeast grown on pure U-13C-glucose (99 atom %).

2: Incomplete labeling, although insufficient for the determination of high carbon numbers, still enables quantification by mass isotopomer ratios. For high molecular weight metabolites, in vivo labelling of less abundant elements, for example N, chemical tagging or analysis of low molecular weight constituents is advisable, such as are employed in proteome analysis [41,42].

3: Addition of unlabeled essential vitamins and auxotrophic supplements to microbial cultures causes respective products to be unlabeled. For example, we found NAD+ to be fully labeled at the 15 carbon atoms which are ultimately synthesized from glucose. The residual six carbon atoms resulting from the nicotinic acid vitamin supplement were unlabeled.

^aThe GC-MS metabolite profiling requires chemical derivatization by N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA). This reagent introduces a specific number of trimethylsilyl moieties (TMS) to each metabolite molecule, as is indicated in brackets.

bMass fragments at 73 and 147 mass units are generated exclusively from TMS moieties.

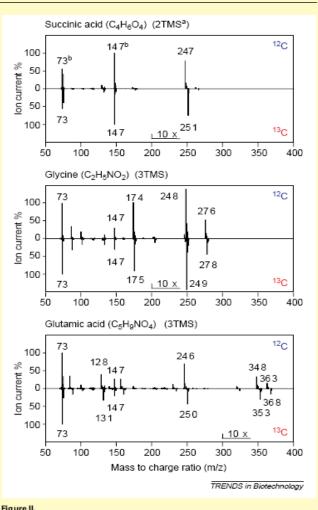


Figure II.

Quantification by gas chromatography- mass spectrometry mass isotopomer ratio profiling

Box 3. Quantification by gas chromatography-mass spectrometry mass isotopomer ratio profiling

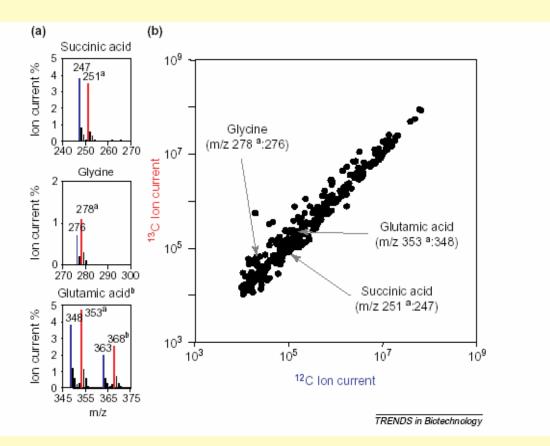


Figure II. (a) shows fragment pairs of labeled and unlabeled mass isotopomers representing the same metabolite. Ion currents reflect the relative changes in metabolite abundance. (b) Plot of labeled over unlabeled metabolite fragments from a mass isotopomer ratio profile, demonstrating that yeast cultures – in this case overnight batch cultures – exhibit small but perceptible changes in metabolite levels upon in vivo ¹³C labeling (This plot represents the labeling control experiment shown in in Box 1).

*Mass fragments which represent the ¹³C-labeled mass isotopomer, that is, the specific internal standard for this metabolite.

Metabolites can be monitored by one or multiple mass isotopomer pairs for quantification and confirmation.

Cabeled mass isotopomers, especially those with fewer than three carbon atoms, are best corrected for natural stable mass isotopes.

Where for labeling analysis?

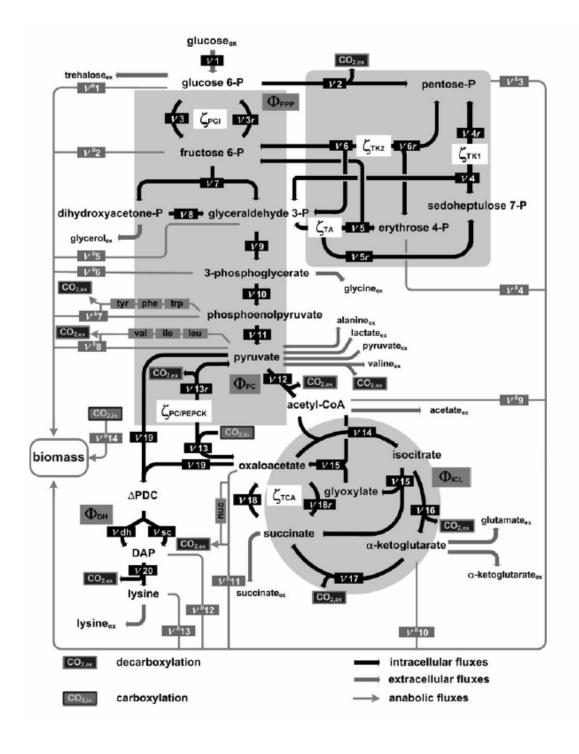
- Target 1----Cellular constituents formed during growth of the examined cells. Like amino acids from the cell protein, nucleotides from DNA, or monomers from glycogen
- Non-growing cells, eg. In production processes of primary or secondary metabolites
- Target 2---Secreted products
- This requires sufficient amounts of the products to be analyzed, no interference with medium components and case-specific development of analytical protocols for the analytes of interest

Labeling analysis of CO2

The use of membrane serving as a gas inlet for a mass spectrometer

The sample passes continuously along a microporous PTEE-membrane separating the liquid from the gaseous phase

Volatile substances (CO2) contained in the solution evaporate through the membrane pores in the vacuum system of the analyser


Membrane inlet mass spectrometry

Capillary inlet mass spectrometry

Membrane inlet system

Tae Hoon Yang et.al Computational biology and chemistry 29 (2005) 121-123

- Metabolic network model of *C. glutamicum*
- Definitions for the flux parameters (Φi, ζi) are given in Table 2. v, fluxes; vb, anabolic fluxes
- The subscript 'ex' indicates extracellular pools of substrates and products.

Tae Hoon Yang et al.
Computational Biology and
chemistry 29 2005 121-133

Modeling of respirometric C13 metabolic flux analysis

Table 1

Decarboxylation and carboxylation reactions in catabolic and anabolic pathways of *C. glutamicum* including corresponding precursor/product, enzyme, the atom mapping matrix (AMM) for the carbon atom transfer from the precursor to CO₂ and the stoichiometric consumption/production during biomass formation

Pathway	Precursor	Enzyme	AMM	Production ^a (μmol/g dew
ν ₂	Glucose 6-P	6-Phosphogluconate dehydrogenase	[100000]	
ν12	Pyruvate	Pyruvate dehydrogenase complex	[100]	
ν _{13r}	Oxaloacetate/malate	Phosphoenolpyruvate carboxykinase/malic enzyme, oxaloacetate decarboxylase	[0001]	
ν_{16}	Isocitrate	Isocitrate dehydrogenase	[000001]	
ν_{17}	α-Ketoglutarate	α-Ketoglutarate dehydrogenase	[10000]	
ν_{20}	meso-Diaminopimelate	meso-Diaminopimelate decarboxylase	[0000001]	
Valine _{ex}	Pyruvate	Acetohydroxy acid synthase	[100]	
ν ^b ₇ (Tyrosine)	Phosphoenolpyruvate	Prephenate dehydrogenase	[100]	81
ν ⁶ ₇ (Phenylalanine)	Phosphoenolpyruvate	Prephenate dehydrogenase	[100]	133
ν ^b ₇ (Tryptophan)	Phosphoenolpyruvate	Indoleglycerol phosphate synthase	[100]	54
ν ₈ (Valine)	Рутиvate	Acetohydroxy acid synthase	[100]	284
ν ₈ (Isoleucine)	Pyruvate	Acetohydroxy acid synthase	[100]	202
ν ₈ (Leucine)	Pyruvate (2 mol)	Acetohydroxy acid synthase	[100]	440
		Isopropylmalate dehydrogenase	[100]	440
ν_{11}^{b} (Nucleotides)	Oxaloacetate	Orotidine monophosphate decarboxylase during pyrimidine nucleotide biosynthesis	[1000]	310
Carboxylation				
Pathway	Product	Enzyme		Consumption ⁱ (µmol/g dcw)
ν ₁₃	Oxaloacetate	Pyruvate carboxylase/phosphoenolpyruvate carboxylase		
v_{14}^{b}	Arginine	Carbamoyl-P-synthase		189
ν ^ĥ .	DNA, RNA	Phophoribosylaminoimidazole carboxylase during purine nucleotide, 730 carbamoyl-P-synthase during pyrimidine nucleotide biosynthesis		730

Since CO_2 has only one carbon atom, the carbon atom transition involved in each pathway from a precursor with n carbons to CO_2 is represented by an AMM with $1 \times n$ dimension. The numbering of the reactions corresponds to the metabolic network used (Fig. 1).

^a Amount of carbon dioxide produced or consumed for 1 g of biomass synthesis for C. glutamicum (Marx et al., 1996).

The Key Model Paraters

- Measurable extracellular fluxes
- Anabolic fluxes

$$v^b$$

Intracellular fluxes

$$u^{
m var}$$

$$z_{f} = (\Phi_{1}, \Phi_{2}, \dots | \zeta_{1}, \zeta_{2}, \dots | \nu_{1}^{\text{ext}}, \nu_{2}^{\text{ext}}, \dots | \nu_{1}^{\text{b}}, \nu_{2}^{\text{b}}, \dots)^{\text{T}}:$$

$$v^{\text{var}} = N_{v}(z_{f}). \tag{1}$$

Here, $N_{\nu} = (n_{\nu,1}, n_{\nu,2}, \ldots, n_{\nu,m})^{\mathrm{T}}$ is a system consisting of particular analytical expressions $(n_{\nu,i})$ for each flux. To exclude a physiologically meaningless range of the fluxes, $\nu < 0$, the range of the independent variables is set by $z_{\mathbf{f}} = \{z_{\mathbf{f}} \in \Re^k | \forall z_{\mathbf{f},i} \geq 0 \land \forall n_{\nu,i}(z_{\mathbf{f}}) \geq 0\}$ with k being the dimension of $z_{\mathbf{f}}$.

- Flux partitioning ratio Φi
 with respect to net flux
 distributions around the key
 branch points of metabolism
- Reaction reversibilities ζi
 with respect to the
 reversibilities of reactions of
 interest without varying their
 net fluxes

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Definitions and literature values of key flulx parameters of the wild type C.glutamicum ATCC 12032 and the lysine-producing mutant C.glutamicum ATCC 21526.

Table 2
Definitions and literature values (Wittmann and Heinzle, 2002) of key flux parameters of the wild type C. glutamicum ATCC 13032 and the lysine-producing mutant C. glutamicum ATCC 21526, including flux partitioning ratios (Φ_i) and reversibilities (ζ_i)

Flux parameters	C. glutamicum ATCC 13032	C. glutamicum ATCC 21526	
Flux partitioning ratio			
EMP and PP pathway: $\Phi_{PPP} = v_2/(v_2 + v_3 - v_{3r})$	0.52	0.61	
Anaplerosis and TCA: $\Phi_{PC} = (v_{13} - v_{13r})/(v_{12} + v_{13} - v_{13r})$	0.18	0.28	
Glyoxylate shunt and TCA: $\Phi_{ICL} = v_{15}/(v_{15} + v_{16})$	0	0	
Succinylase and dehydrogenase pathway: $\Phi_{DH} = v_{dh}/(v_{dh} + v_{sc})$	0.23	0.11	
Reversibility			
Glucosephosphate isomerase in EMP: $\zeta_{PGI} = v_{3r}/(v_3 - v_{3r})$	6.9	7.5	
Pyruvate in EMP \leftrightarrow oxaloacetate in TCA: $\zeta_{PC/PEPCK} = \nu_{13r}/(\nu_{13} - \nu_{13r})$	1.3	0.8	
Transketolase 1 in PP pathway: $\zeta_{TK1} = v_{4r}/(v_4 - v_{4r})$	2.5	2.5	
Transketolase 2 in PP pathway: $\zeta_{TK2} = v_{6r}/(v_6 - v_{6r})$	0.5	0.5	
Transaldolase in PP pathway: $\zeta_{TA} = v_{5r}/(v_5 - v_{5r})$	1	1	
Oxaloacetate \leftrightarrow succinate in TCA: $\zeta_{TCA} = v_{18r}/(v_{18} - v_{18r})$	25	8.1	

The reaction numbering corresponds to the metabolic network in Fig. 1.

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Isotopomer network

- Each compound with *n* carbons exhibits 2ⁿ possible labeling states, so these models are inherently complex
- IDV --- isotopomer distribution vectors
- IMM --- isotopomer mapping matrices
- AMM --- atom mapping matrices

Atom Mapping Matrices

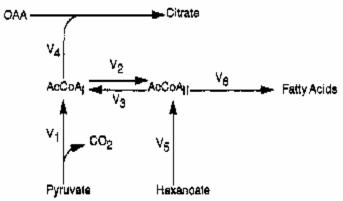


Figure 1. Simple metabolic network for modeling AcCoA metabolism. V_1-V_8 represent fluxes (typical units: millimoles/cell/hour). Pyruvate and hexanoate are potentially labeled substates (based on network analyzed by Blum and Stein (1982)).

$$\begin{aligned} \mathbf{Pyr} = \begin{bmatrix} Pyr(1) \\ Pyr(2) \\ Pyr(3) \end{bmatrix} & \mathbf{AcCoA_{I}} = \begin{bmatrix} AcCoA_{I}(1) \\ AcCoA_{I}(2) \end{bmatrix} \\ \mathbf{Hex} = \begin{bmatrix} Hex(1) \\ Hex(2) \\ Hex(3) \\ Hex(4) \\ Hex(5) \\ Hex(6) \end{bmatrix} & \mathbf{AcCoA_{II}} = \begin{bmatrix} AcCoA_{II}(1) \\ AcCoA_{II}(2) \end{bmatrix} \end{aligned}$$

$$A + B \xrightarrow{E} C + D$$

 $[\mathbf{A} \geq \mathbf{C}]_{\mathbf{E}}$ describes transfer of carbon from A to C

 $[A>D]_E$ describes transfer of carbon from A to D

 $[\mathbf{B} \geq \mathbf{C}]_{\mathbf{E}}$ describes transfer of carbon from B to C

 $[\mathbf{B} \geq \mathbf{D}]_{\mathbf{E}}$ describes transfer of carbon from B to D

$$(\mathbf{A} \cdot \mathbf{C})_{\mathbf{E}} \mathbf{A} + [\mathbf{B} \cdot \mathbf{C}]_{\mathbf{E}} \mathbf{B} = \mathbf{C}$$
$$[\mathbf{A} \cdot \mathbf{D}]_{\mathbf{E}} \mathbf{A} + [\mathbf{B} \cdot \mathbf{D}]_{\mathbf{E}} \mathbf{B} = \mathbf{D}$$

Atom Mapping Matrices

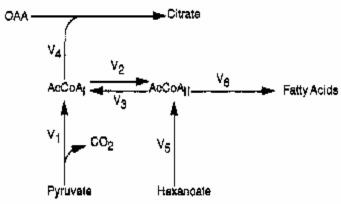


Figure 1. Simple metabolic network for modeling AcCoA metabolism. V_1-V_8 represent fluxes (typical units: millimoles/cell/hour). Pyruvate and hexanoate are potentially labeled substates (based on network analyzed by Blum and Stein (1982)).

The dimensions of the mapping matrices are determined by the number of carbons in the reactant and product. The number of columns equals the number of atoms in the reactant, while the number of rows equals the number of carbons in the product. The element in the ith row and the jth column of the mapping matrix specifies the amount of the ith carbon of the product that is derived from the jth carbon of the reactant. Typically, there is a definite and unique mapping of reactant carbons to product carbons, so that the elements of the mapping matrix are usually 0 or 1. However, fractional elements are possible.

$$[\mathbf{Pyr} > \mathbf{AcCoA_I}]_{\mathbf{PD}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} \left[\mathbf{Pyr} > \mathbf{AcCoA_I}\right]_{\mathbf{PD}} \mathbf{Pyr} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{Pyr}(1) \\ \mathbf{Pyr}(2) \\ \mathbf{Pyr}(3) \end{bmatrix} = \\ \begin{bmatrix} \mathbf{Pyr}(2) \\ \mathbf{AcCoA_I}(1) \end{bmatrix} &= \mathbf{AcCoA_I} \end{split}$$

$$[\mathbf{AcCoA_{i}} > \mathbf{AcCoA_{ii}}]_{transi} = \\ [\mathbf{AcCoA_{ii}} > \mathbf{AcCoA_{i}}]_{transii} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$[\mathbf{Hex} > \mathbf{AcCoA_{II}}] \beta_{ox} = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix}$$

Atom Mapping Matrices

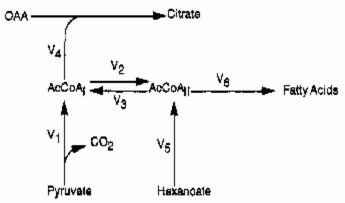


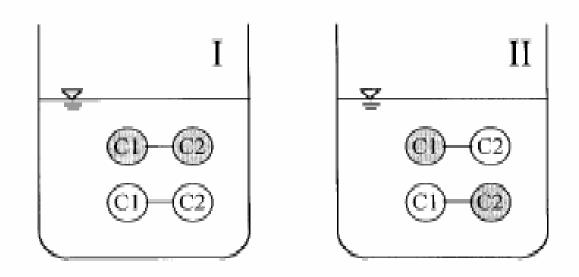
Figure 1. Simple metabolic network for modeling AcCoA metabolism. V_1-V_8 represent fluxes (typical units: millimoles/cell/hour). Pyruvate and hexanoate are potentially labeled substates (based on network analyzed by Blum and Stein (1982)).

$$\begin{aligned} \text{flux into } \mathbf{AcCoA_I} &= V_1 [\mathbf{Pyr} \mathbf{>} \mathbf{AcCoA_I}]_{\mathbf{PD}} \mathbf{Pyr} + \\ &V_3 [\mathbf{AcCoA_H} \mathbf{>} \mathbf{AcCoA_I}]_{\mathbf{transII}} \mathbf{AcCoA_H} \end{aligned}$$

The flux of label out of AcCoA_I is

flux out of
$$AcCoA_I = (V_2 + V_4)AcCoA_I$$

Equating eqs 19 and 20 gives the steady state isotope balance for AcCoA_I:


$$(V_2 + V_4)$$
AcCoA_I = V_1 [Pyr > AcCoA_I]_{PD}Pyr + V_2 [AcCoA_{II} > AcCoA_I]_{transII}AcCoA_{II}

Similarly, the steady state isotope balance for $AcCoA_{II}$ is

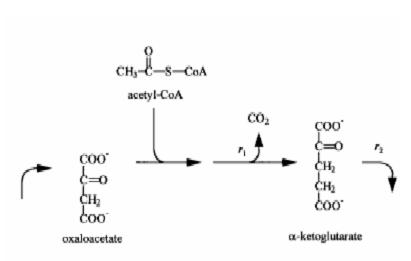
$$(V_3 + V_6)$$
AcCoA_{II} =
$$V_2[AcCoA_1 > AcCoA_1]_{transI}$$
AcCoA_I +
$$V_6[Hex > AcCoA_1]_{gox}Hex$$

Decouple the generation of the steady state quations from the details of the transfer of carbon atoms from reactants to products

C13 vs C14 (eg. Acetate molecule)

Figure 1. Two different isotopomer mixtures of a two carbon atom molecule. The shaded carbon atoms are labeled with either ¹³C or ¹⁴C.

Schmidt., K, Carsen.M, Nielsen., J. Villadsen. Biotechnol. Bioeng 55:831-840,1997


Isotopomer distribution vectors

The IDV of glucose has $2^6 = 64$ elements. The first element of this column vector is indexed 0, i.e., specified as $I_{glc}(0)$. The zeroth element of the glucose IDV will contain a number between 0 and 1, representing the fraction of glucose molecules, showing the labeling pattern 000000_{bin} (unlabeled). The element at index 1 contains the mole fraction of glucose molecules labeled according to the binary number 000001_{bin} , meaning a single 13 C isotope in the sixth position in the glucose molecule. The mole fraction of $[1-^{13}C]$ glucose is found at index 32 of the vector, because 32 is the decimal representation of the binary number (and labeling pattern) 100000_{bin} . By simple conversion of binary to decimal numbers, labeling patterns can easily be found for given index numbers and vice versa. The complete glucose IDV is given as

$$\begin{split} \mathbf{I}_{\text{glc}} &= \begin{pmatrix} \mathbf{I}_{\text{glc}} \left(0 \right) \\ \mathbf{I}_{\text{glc}} \left(1 \right) \\ \mathbf{I}_{\text{glc}} \left(2 \right) \\ \mathbf{I}_{\text{glc}} \left(3 \right) \\ & \dots \\ \mathbf{I}_{\text{glc}} \left(63 \right) \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{\text{glc}} (000000_{\text{bin}}) \\ \mathbf{I}_{\text{glc}} (000001_{\text{bin}}) \\ \mathbf{I}_{\text{glc}} (000011_{\text{bin}}) \\ & \dots \\ \mathbf{I}_{\text{glc}} (1111111_{\text{bin}}) \end{pmatrix}, \\ \text{with } \sum_{i=0}^{63} \mathbf{I}_{\text{glc}} \left(i \right) = 1, \end{split} \tag{1}$$

where $I_{glc}(i)$ is the vector element at index i of the glucose IDV.

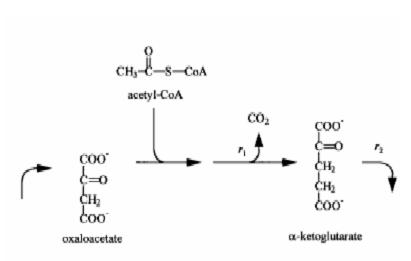

Isotopomer mapping matrices

Figure 2. Entry of acetyl-CoA into the TCA cycle. r_1 is the molar rate of production and r_2 is the molar rate of consumption of α -ketoglutarate.

- The number of rows in IMM equals the number of vector elements in the product IDV.
 The number of columns of an IMM equals the number of vector elements of the reactant IDV.
- In the following, IMM names will be specified by subscripts containing two acronyms

Isotopomer mapping matrices

Figure 2. Entry of acetyl-CoA into the TCA cycle. r_1 is the molar rate of production and r_2 is the molar rate of consumption of α -ketoglutarate.

- The number of rows in IMM equals the number of vector elements in the product IDV.
 The number of columns of an IMM equals the number of vector elements of the reactant IDV.
- In the following, IMM names will be specified by subscripts containing two acronyms

Isotopomer network

 The distribution of the C13 label within the metabolic network can be computed by solving a system of stationary isotopomer balance equations

$$F_X(x, v) = 0.$$

Here, $F_x = (f_{x,1}, f_{x,2}, \ldots, f_{x,n})^T$ is an equation system containing n isotopomer balances $(f_{x,i})$ and x is the set of unknown isotopomer distribution vectors (IDV), $x = (x_1, x_2, \ldots, x_n)^T$. Each x given above is constrained such that $x_i = \{x_i \in \Re^{2n_c} | \sum_{k=1}^{2^{n_c}} x_i(k) = 1 \land \forall k : 0 \le x_i(k) \le 1\}$, where n_c denotes the number of carbon atoms in the skeleton of a metabolite. A numerically stable and fast method for solving Eq. and thus calculating the isotopomer distributions for a given set of fluxes is described in Yang et al. (2004a).

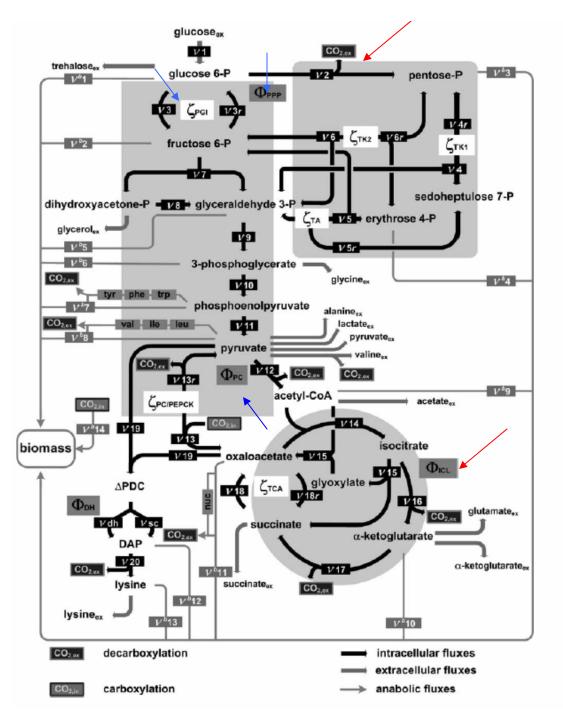
Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Respirometric network

$$\sum_{i=1}^{p} (v_{\text{CO}_2, \text{in}, i} s_i x_{\text{CO}_2, i}^{\circ}) - x_{\text{CO}_2} \sum_{j=1}^{q} (v_{\text{CO}_2, \text{out}, j} s_j) = 0,$$

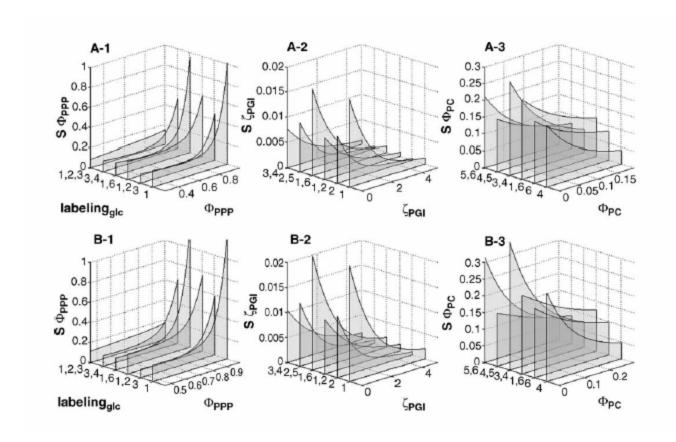
where $x_{\text{CO}_2}^{\circ}$ denotes the incoming IDV into the CO₂ pool, x_{CO_2} the IDV of CO₂, and s the stoichiometric coefficient of each reaction. Along with anabolic fluxes towards amino acids and macromolecules, carbon dioxide fluxes participating in those reactions can be directly calculated from the strain-specific data of precursor and carbon dioxide requirements (Table 1) (Neidhardt et al., 1990; Marx et al., 1996; de Graaf, 2000).

Experiment design


- Single output sensitivity [m+1] mass isotopomer fraction of CO2 ($^{m+1}fco_2$) towards change Of different key flux parameters in the central metabolism, i.e. partial Derivatives of $^{m+1}fco_2$
- D- optimality criterion

$$D(x^{\text{inp}}, y_{\text{sim}, M}^{\text{ext}}; z_{\text{f}}) = \frac{1}{\det \text{Fish}(x^{\text{inp}}, y_{\text{sim}, M}^{\text{ext}}; z_{\text{f}})},$$

$$\bar{I} = \left(\frac{D_{\text{reference}}}{D_{\text{new design}}}\right)^{1/2N_{\text{f}}},$$

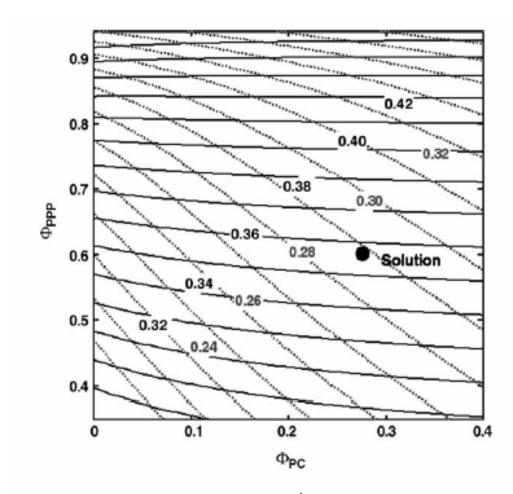
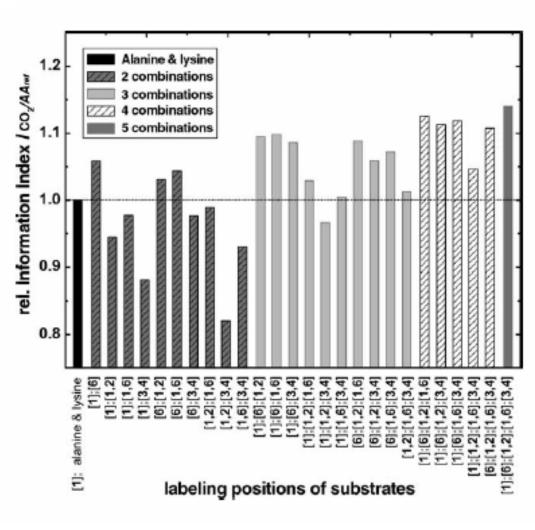

where $N_{\rm f}$ is the number of independent variables considered. The larger the relative information index resulting from an experimental design, the more information can be predicted with respect to the input labeling pattern used for the reference experiment.

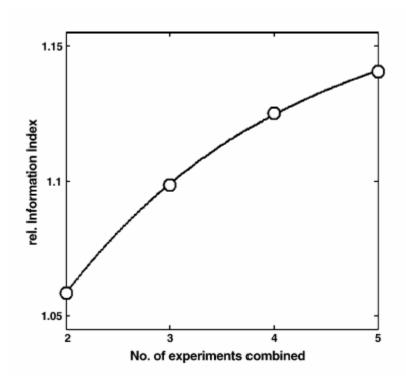
Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Primary identification of sensitive flux parameters by means of CO2 mass isotopomer analysis in the wild type C.glutamicum ATCC 13032(A-1,2,3), and the lysine-producing mutant C.glutamicum ATCC 21526 (B-1,2,3)

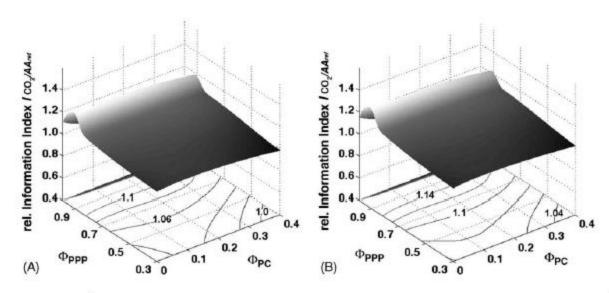
Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133


Fig. 3. Superimposed contour plots of $^{m+1}f_{\rm CO_2}$ for simultaneous quantification of two flux parameters by use of two different input substrates: values of $^{m+1}f_{\rm CO_2}$ resulting from [1,2- $^{13}{\rm C_2}$] glucose (solid line, black) and [1,6- $^{13}{\rm C_2}$] glucose (dotted line, gray) in the space of $\Phi_{\rm PPP}$ and $\Phi_{\rm PC}$ of the lysine-producing mutant C. glutamicum ATCC 21526. The real solution (\blacksquare) is located at ($\Phi_{\rm PPP}=0.28$, $\Phi_{\rm PC}=0.61$) for the strain.

Optimal experimental design and relative information

$$z_{\rm f} = T_{\to z_{\rm f}}(\Phi_{\rm PPP}, \Phi_{\rm PC}|\nu_1^{\rm ext}, \nu_2^{\rm ext}, \dots |Y_{\rm X/S})^{\rm T}.$$



Optimal experimental design and relative information

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Optimal experimental design and relative information

Relative information index $(I_{CO_2/AA_{ref}})$ in the space of Φ_{PPP} and Φ_{PC} predicted for the combined multiple tracer experiments [1-¹³C] and [6-¹³C] and [1-¹³C], [6-¹³C] and [1,2-¹³C₂] (B) for C. glutamicum ATCC 21526.

Tae Hoon Yang et al. Computational Biology and chemistry 29 2005 121-133

Summarize

- The respirometric approach complements existing methods for metabolic flux analysis. It is especially attractive for studies of non-growing cells. et.al.
- The accurate acquistion of production rates for single mass isotopomers of CO2 can be done by membrane inlet MS within a few minutes
- Applying miniaturized membrane probes, it seems even possible to apply this type of measurement to local determination of fluxes in tissues, sediments or immobilized cell systems.

Question?