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Abstract. Many useful applications of simulation in computational cell
biology, e.g. kinetic parameter estimation, Metabolic Control Analysis
(MCA), and bifurcation analysis, require a large number of repetitive
runs with different input parameters. The heavy requirements imposed
by these analysis methods on computational resources has led to an
increased interest in parallel- and distributed computing technologies.

We have developed a scripting environment that can execute, and
where possible, automatically parallelize those mathematical analysis
sessions transparently on any of (1) single-processor workstations, (2)
Shared-memory Multiprocessor (SMP) servers, (3) workstation clusters,
and (4) computational grid environments. This computational frame-
work, E-Cell SessionManager (ESM), is built upon E-Cell System Ver-
sion 3, a generic software environment for the modeling, simulation, and
analysis of whole-cell scale biological systems.

Here we introduce the ESM architecture and provide results from
benchmark experiments that addressed 2 typical computationally inten-
sive biological problems, (1) a parameter estimation session of a small
hypothetical pathway and (2) simulations of a stochastic E. coli heat-
shock model with different random number seeds to obtain the statistical
characteristics of the stochastic fluctuations.

1 Introduction

Computational biology requires high-performance computing facilities. There
are many parallel biological applications that can be used in PC cluster en-
vironments, e.g. HMMer, FASTA, mpiBLAST, PARACEL BLAST, ClustalW-
MPI[1], Wrapping up BLAST[2], and TREE-PUZZLLE[3]. We have developed
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an integrated software environment for computational cell biology, the E-Cell
System[4, 5, 6, 7]. It is an object-oriented software suite for modeling the simula-
tion and analysis of large-scale complex systems such as biological cells. E-Cell
has a hierarchical parallel computing scheme in which (1) simulation sessions
can be concurrently executed on remote computation nodes in grid or cluster
environments, and (2) each run of the simulator can be parallelized on a shared-
memory multi-processor computer employing multiple threads. Here we discuss
the scheme for session-level parallelism, or distributed computing. Elsewhere we
explained the other scheme, parallelization of Gillespie’s Stochastic Simulation
Algorithm (SSA) on E-Cell3[8], or simulator-level parallelism. As many simula-
tion applications in computational cell biology require repetitive runs of simu-
lation sessions with different model- and boundary parameters, the distributed
computation scheme is highly useful.

Some middleware to assign jobs to distributed environments is already avail-
able, e.g. the Portable Batch System (PBS, http://www.pbs.org/), Load Shar-
ing Facility (LSF, http://www.platform.com/), and Sun Grid Engine (SGE,
http://wwws.sun.com/software/gridware/) on the cluster level, and the Globus
toolkit[9] on the Grid level. While these low-level infrastructures are extremely
powerful, they are not compatible with each other nor are they readily acces-
sible to the average computational biologists. Some higher-level middleware fo-
cusing on the use of bioinformatics applications has been developed. For ex-
ample, the Discovery Net System[10] is an application for Genome Annotation,
Talisman[11] is a component of the myGrid[12] project that provides a frame-
work to produce web-based applications, OBIGrid[13] accommodates BLAST
tasks in a grid environment, OBIYagns is a grid-based simulation environment
for parameter estimations[14], and Nimrod/G is a job-scheduler system on dy-
namic global resources[15]. Many other projects are ongoing under the BioGrid
project (http://www.biogrid.jp/). A distributed version of E-Cell, E-Cell2D[16],
which has a client-server architecture where the client uses a Web browser, has
been developed. Although this version of E-Cell is useful for classroom applica-
tions, it lacks the scripting feature necessary for the automation of mathematical
analysis sessions.

Here we report the development of a distributed computing module of E-
Cell System Version 3 (E-Cell3), E-Cell Session Manager (ESM), which can
transparently support PC-, SMP-, cluster-, and grid environments. We present
performance evaluations of parallel computations using ESM, (1) a parameter
estimation of a small hypothetical pathway and (2) simulations of a stochastic
E. coli heat-shock model with different random number seeds to obtain the
statistical characteristics of the model.

2 Architecture

2.1 E-Cell3 and ESM

E-Cell3 is comprised of 3 layers: 1). a class library for cell simulation (libecs)
and its C++ API (libemc), 2) a Python language wrapper of libemc, PyEcs
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Fig. 1. ESM Architecture. The bottom layer includes a class library for cell simulation
(libecs) and its C++ API (libemc). The top layer represents python front-end utilities
such as SessionManager, GUI, and analysis tools.The middle layer (PyEcs, python
interpreter, and pyecell) is the interface connecting the bottom and top layers

and pyecell, and 3) a library of various front-end and utility modules written
in Python (Fig. 1). The pyecell library defines an object class called Session,
which represents a single run of the simulator. ESM, constructed on top of
the pyecell layer, enables the user to easily script procedures of mathematical
analysis methods that instantiate many Session objects.

2.2 ESM Design

The fundamental design of ESM is shown in Fig. 2 as a class diagram. It is
comprised of 3 classes, the SessionManager-, SessionProxy-, and SystemProxy
class. The SessionManager class provides the user with a basic API to create
and run simulation sessions. SessionManager generates and holds a SystemProxy
object; it represents and communicates to the computing environment on which
ESM is running (such as PC, SMP, cluster, or grid). On request, SystemProxy
generates instances of SessionProxy; it corresponds to a process on PC- and SMP
environments or a job on cluster- and grid environments, and holds the status
of the process or job (waiting, running, recoverable error, unrecoverable error,
or finished). The status chart of SessionProxy is shown in Fig. 3.

As depicted in Fig. 2, subclasses of Session and SystemProxy are instanti-
ated and used by the SessionManager class according to the environment. For
example, a pair of LocalSystemProxy and LocalSessionProxy is selected when
the system is running on a single CPU PC or a SMP machine; the system uses
SGESystemProxy and SGESessionProxy when the user request is to parallelize
the computation on an Sun Grid Engine (SGE) parallel-batch system. On an
SMP or a PC computer, they spawn ordinary processes in the local computer
and use system calls to manage the tasks. On cluster and grid environments,
these classes make contact with the system that manages the computing envi-
ronment to submit jobs and obtain the job status.



Distributed Cell Biology Simulations with E-Cell System 23

Fig. 2. ESM Design. The SessionManager class provides an API for user scripting.
SystemProxy is a proxy of the computing environment such as the cluster- or grid
environment. SessionProxy corresponds to a process or a job. LocalSystemProxy and
LocalSessionProxy are used both on SMP- and single-CPU PC environments

Fig. 3. Status chart representation of SessionProxy. (1) A SessionProxy is created when
a job is registered; the initial status is ’waiting’. (2) It changes to ’running’ when the
registered job is dispatched to acomputation node to run, if the run is suspended,
it returns to ’waiting’. (3) When a recoverable error occurs, the status changes to
’recoverable error’, and the system retries the run until it reaches a user-specifiable
limit. If the retry limit is reached, the job goes to ’unrecoverable error’. (4) A job
terminates in either the ’finished’ or ’unrecoverable error’ status, depending on its
exit status. (5) Users can terminate the job by invoking the clear() method of the
SessionProxy

2.3 ESM Processing Scheme

At least 3 types of files are necessary to run ESM; (1) a model file (EML, or
E-Cell model description language file), (2) a session script file (ESS, or E-Cell
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Fig. 4. Running ESM from command-line: This figure has three example
command-lines that run the ecell3-session-manager command. ’–environment=’and
’–concurrency=’ command-line arguments specify the computing environment and
concurrency, respectively. (1) Local environment (single-CPU PC or SMP). The de-
fault concurrency in this example is 1. This can be changed by explicitly giving the
-concurrency= argument. (2) An SGE run with 30 CPUs. (3) A Globus run. The num-
ber of simultaneous executions of jobs is limited to 100. All runs execute the EMS file
’ems.py’

session script file), and (3) a Session Manager script file (EMS, or E-Cell ses-
sion manager script file). Simple examples of command lines, an EMS, and an
ESS are presented in Fig. 4, Fig. 5, and Fig. 6, respectively. Below we explain
a typical flow of procedures in an EMS. Items (2) to (4) correspond to the bold
comment lines in the script of Fig. 5.

(1) Set System Parameters
At least 2 system parameters, the computing environment and the concurrency,
should be set when running ESM. The computing parameter specifies what type
of facilities the ESM should use to run and control the jobs. The concurrency
parameter specifies the maximum number of CPUs that the system can use si-
multaneously. These parameters are usually given as command-line arguments
to the ’ecell3-session-manager’ command, which runs an EMS indicated by the
user. (Fig. 4)

(2) Register Jobs
The registerEcellSession() method in EMS registers a job. It accepts 3 argu-
ments, (1) the session script (ESS) to be executed, (2) the optional parameters
given to the job, (3) the input files to the script (at least the model file) that
must be available to the ESS upon execution. In the example in Fig. 5, 100
copies of the session script ’runsession.py’ are registered with a model file ’sim-
ple.eml’. An optional parameter to the script, ’VALUE−OF−S’ is also given to
each session in the range 1, 2, ..., 100. The parameter is available to the ESS as
a global variable. When a job is registered to the system, a SessionProxy object
for the job is instantiated with a unique ID.

(3) Run
When the run() method is called, the registered jobs start executing. In this
step, SystemProxy transfers the ESS file and all the other files to the execution
environment (either a directory in the local machine or a remote computation
node). Next, SessionProxy starts execution of the job. When SystemProxy con-
firms that all jobs are either finished or have an unrecoverable error, the run()
method returns. It is also possible to use an asynchronous scheme in which the
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Fig. 5. A sample EMS (E-Cell Session Manager Script): This script runs the session
script ’runsession.py’ 100 times with a changing parameter ’VALUE−OF−S’

Fig. 6. A sample E-Cell session script (ESS): This script runs a simulation model for
200 sec and outputs the value of the variable ’Variable:/:S’ of the model after the
simulation. The initial value of the variable is changed to the value ’VALUE−OF−S’
given by the EMS

run() method returns immediately and the user must check the status of the
jobs explicitly.

(4) Examine the Results
After running the simulation sessions, simulation results are obtained and ex-
amined. The example script in Fig. 5 prints the output of the simulations to the
screen; getStdout(aJobID) shows the standard-out of the job specified by a job
ID. If more runs of the simulation are necessary, go to (2).

3 Results

This section demonstrates and evaluates the performance of ESM with 2 types
of simulation experiments in computational cell biology. The first example is an



26 M. Sugimoto et al.

automatic estimation of 4 kinetic parameters in a hypothetical small metabolic
pathway. The second demonstration runs a stochastic model of the E. coli heat-
shock response repeatedly with different random number seeds to obtain statis-
tical features of the trajectory yielded by the model. Both types of numerical
experiments are representative of the numerical experiments most commonly
conducted in computational cell biology research projects.

3.1 Kinetic Parameter Estimation Using Genetic Algorithms (GA)

In computational cell biology, it is often the case that some model parameters,
e.g. rate constants, are unknown while other experimental data, e.g. concen-
trations at steady states and time-courses of concentrations of some molecular
species, are available. We developed a parameter-estimation tool that runs on
ESM. This program implements a variation of GA that is an evolutionary al-
gorithm to search the global minimum of a given multi-variate fitness function
avoiding local minima[17]. A brief overview of the procedures used in this GA
program is as follows: (1) Generate individuals and randomly distribute them
over the search space. (2) Evaluate each individual with a user-defined fitness
function. A square-error function between given and simulation-predicted trajec-
tories is often used as the fitness function. (3) Select a couple of individuals from
the group of individuals according to some probability, and (4) crossover the
individuals. (5) Mutate each individual. (6) Go to (2), unless the fitness of the
best individual meets a user-specified condition. In this study, the master-slave
parallel GA was employed. The individuals are evaluated on parallel computa-
tional resources in procedure (2); other procedures are conducted on the master
node.

We conducted a benchmark experiment using the pathway model shown in
Fig. 7. This tiny model of a hypothetical metabolic pathway contains 5 molec-
ular species and 5 reactions, one of which is a positive feedback reaction. Each
reaction is represented using an irreversible Michaelis-Menten equation. This
requires 2 rate constants, the Michaelis constant KmS, and the catalytic con-
stant Kcf . Four of the 10 parameters are unknown and to be predicted by the
parameter estimation tool.

The results are shown in Table 1 and Fig. 8. We measured the time required
for the relative square-error between the given and the predicted trajectories to
reach the levels of 10%, 7.5%, 5.0%, and 2.5%. We show 10, 20, and 30 CPU
cases for each level of the relative error. An SGE system running on a Linux
cluster was used for all timings.

3.2 Stochastic Simulation of E. coli Heat-Shock Response

Many cellular phenomena require stochastic simulations whose results must be
discussed by means of statistical measures. Therefore it is common for a numer-
ical simulator to run a model repeatedly with different random number seeds.
We conducted numerical experiments to measure the time taken to run an E.
coli heat-shock model[18] on ESM.
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Fig. 7. An example model: S1, S2, S3, S4, and S5 are metabolites; E1, E2, E3, E4,
and E5 are enzymes. All reactions are formulated by using Michaelis-Menten equations
that have 2 parameters each, KmS and Kcf . The parameters for enzymes E1 and E5
are unknown and to be predicted

Table 1. Timings from the parameter estimation experiment using the GA. Of 10 rate
constants in the model in Fig. 7, 4 are unknown. Four sets of training time-courses
of concentrations of the 5 molecular species were given. The number of individuals is
100. Each row shows the times in sec required to reach 2.5%, 5.0%, 7.5%, and 10% of
the relative error level between the given and the predicted time-courses. Each row has
from 10 to 60 CPU cases, therefore, the table shows 24 results. A 40-node, 80-CPU
Linux cluster running SGE was used. The CPUs were Pentium 4 Xeon 2.0GHz. Each
node was connected by a 1000BaseT local area network

Relative CPUs(Time s)
Error % 10 20 30 40 50 60

2.5 11499 6022 4412 3354 2541 2089
5.0 1915 997 732 524 467 419
7.5 1273 604 474 373 304 283
10 627 346 250 183 152 147

The results are shown in Table 2. We measured the time required to run 100,
200, and 300 queries of 100-, 200-, and 300-sec simulations on a single CPU PC,
a dual-CPU SMP machine, and a Linux cluster, setting concurrency to 1, 2, 5,
10, 20, and 30. The table, showing a total of 72 cases (3 x 3 x 8), indicates that
timing increases roughly linearly with the number of queries on all the machine
configurations. In the case with the shortest simulation time (100 sec), a 5-CPU
run of the cluster runs as fast as the single-CPU PC; longer simulation times
(500 and 1000 sec) lower the equilibrium point somewhere between 1 and 2-CPU
runs of the cluster.

3.3 Discussions

The results of the numerical experiments presented in the previous section clearly
show the benefits of using distributed computation in computational cell biology.
Only when a small number of CPUs were used did the performance suffer from
the overhead of parallel computing (see Table 2). This unacceptable overhead
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Fig. 8. Performance graph of the GA parameter estimation. Relative error levels of
10%, 7.5%, 5.0%, and 2.5% cases are shown with 10 to 60 CPU runs. The graph
demonstrates that computation time increases steeply as the required relative error
level decreases. See also Table 1

Table 2. Benchmark results of the stochastic heat-shock response model. We ran 100,
200, and 300 queries of simulations for 100-, 500-, and 1000 sec on a PC, a dual SMP,
and 1, 2, 5, 10, 20, and 30 CPUs of a SGE Linux cluster. The CPUs, memory, and
other hardware configurations were identical in all cases. The workstation cluster used
for this experiments was the same as that used in section 3.1

Simulated Environments & CPUs (Time s)
Time #queries PC SMP SGE
(s) 1 2 1 2 5 10 20 30

100 302.8 153.4 1492.7 745.8 301.3 148.7 79.4 66.0
100 200 605.6 307.8 3006.7 1298.6 598.0 305.9 150.0 104.0

300 910.0 461.9 4501.3 2280.0 902.5 452.6 232.4 152.2
100 1117.8 557.0 1530.4 770.2 303.8 165.5 79.6 65.0

500 200 2223.4 1120.4 3011.7 1520.5 631.3 351.1 174.9 135.3
300 3332.4 1677.2 4571.8 2268.1 912.4 475.6 258.2 158.5
100 2106.0 1088.3 2992.1 1496.5 603.5 298.0 157.4 128.9

1000 200 4283.6 2186.5 6030.8 3011.7 1205.2 597.6 289.9 222.3
300 6571.8 3292.1 9039.8 4522.9 1802.1 912.5 463.7 312.6

is attributable to the processing times required for job submission, transfer and
data retrieval, however, these procedures are not necessary in PC- and SMP
environments.

ESM can distribute simulation sessions of E-Cell transparently on virtually
any distributed computation environments. All scripts can be written in Python
language utilizing ESM’s user-friendly API methods. In fact, the design of ESM
is so generic that it can run any ordinary Python scripts (not E-Cell sessions) if
the registerJob()- rather than the registerEcellSession() method is used.

In homogeneous parallel computing environments such as shared-memory ma-
chines and PC clusters, it is relatively easy to schedule jobs to minimize the
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total amount of processing time. In fact, even the simplest first-come-first-served
scheduling scheme, which is the current version of ESS implements, works suffi-
ciently well in many cases. However, heterogeneous environments like Globus Grid
require more sophistication in scheduling and synchronization because
remote computation nodes generally vary unpredictably with respect to their run-
ning and response times. Analysis methods that require all jobs to be finished con-
currently, e.g. MCA and bifurcation analysis, may suffer from this fundamental
weakness of the Grid. However, some other applications of cell biology simulation
of an asynchronous nature may be able to overcome this problem. For example,
the statistical computation of the stochasticmodel demonstrated here does not de-
mand that all dispatched jobs be finished before itwraps up the simulation andpro-
ceeds to the next step of the analysis of the results. The same strategy might apply
to GA parameter estimations if the algorithm is designed to allow evaluation of fit-
ness functions on an incomplete set of individuals in the population. Various kinds
of parallel GAs have already been developed[19, 20]. Island-type GAs[21], in which
each ’island’ has a subset of the whole population and evolves separately with
asynchronous exchanges of individuals, is an example of these types of method.

Various kinds of analysis scripts that run on ESM are now under develop-
ment. These include a program for the GA-based prediction of power-law based
(GMA or S-System) gene-networks[22], a sensitivity analysis toolkit based on
MCA[23], a bifurcation analysis toolkit that is used to estimate the stability
of non-linear models, and Genetic Programming (GP)[24] for prediction of bio-
chemical reactions mechanisms.

3.4 Conclusions

We developed a distributed computing module for E-Cell System, E-Cell Session
Manager, or ESM. This software hides the details of job creation and manage-
ment, and allows the user to write scripts of numerical experiments in Python
language that runs transparently on any local, cluster-, and grid computing en-
vironments. Using this software, we demonstrated the benefits of distributed
computation in computational cell biology research by presenting 2 demonstra-
tions of numerical experiments, (1) parameter estimation using a GA and (2)
stochastic simulation of the E. coli heat-shock response model. All software de-
scribed here is available at http://www.e-cell.org/, as part of E-Cell Simulation
Environment Version 3, which is OpenSource software under GNU general public
license (GPL) version 2.
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