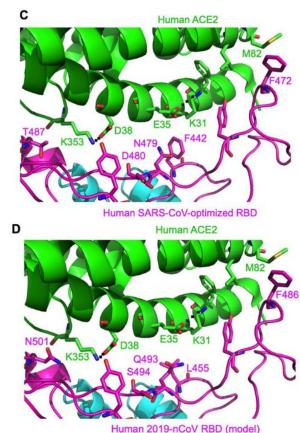
Studying ACE2 orthologs in various species to determine binding interactions to 2019-nCoV

Madeleine King, Maya Paniagua, Karina Vescio, and Lizzy Urbina

BIOL368/S20 Department of Biology Loyola Marymount University 30 April 2020

Outline

- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.


Outline

- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.

Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV

 SARS-CoV and 2019-nCoV share 77% sequence similarities, which suggests they may bind to the same receptor, ACE2.

 SARS-CoV and 2019-nCoV are similar in structure and binding.

Wan et al. (2020) found five important amino acid residues in ACE2 receptor orthologs

- Changes in these residues can either enhance or inhibit 2019-nCoV binding to ACE2.
- Mouse and Rat are the two predicted species that 2019-nCoV could not bind to.

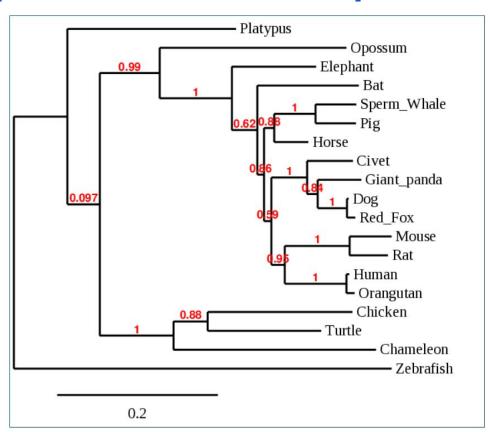
Α

ACE2	31	35	38	82	353
Human	K	E	D	М	K
Civet	Т	E	E	Т	K
Bat	K	K	D	N	K
Mouse	N	E	D	s	Н
Rat	K	E	D	N	Н
Pig	K	E	D	Т	K
Ferret	K	E	E	Т	K
Cat	K	E	Е	Т	K
Orangutan	K	E	D	М	K
Monkey	K	Е	D	М	K

The Main Question

Can 2019-nCoV bind to certain species ACE2 receptor?

Outline


- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.

Species with ACE2 receptor were discovered using Uniprot

- ACE2 was entered into Uniprot to find orthologs in different animal species.
- 19 species were obtained to compare conservation of ACE2
 - Includes mammals, reptiles, birds, fish, etc.

Ş ¹	Angiotensin- converting enzyme 2	ACE2, UNQ868/PRO1885	Homo sapiens (Human)	805
☆	Angiotensin- converting enzyme 2	Ace2	Mus musculus (Mouse)	805
₽	Angiotensin- converting enzyme 2	Ace2	Rattus norvegicus (Rat)	805
☆	Angiotensin- converting enzyme 2	ACE2	Paguma larvata (Masked palm civet)	805

No pattern was observed in phylogeny using the entire sequence of ACE2 receptor

iCn3D was used to find the sequence of the ACE2 α helix that 2019-nCoV binds to

 Wan et al. (2020) PDB ID was inputted into iCn3D viewer to determine where 2019-nCoV binds to ACE2.

- $\underline{\alpha}$ helix sequence:
 - STIEEQAKTFLDKFNHEAEDLF YQSSLASWNYN

Pink: ACE2 Tan: 2019-nCov

Residue differences in Mouse ACE2 $\underline{\alpha}$ helix could account for differences in binding

 Binding helices of human and mouse species were compared for similarity.

Human S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Mouse

S<mark>LT</mark>EENAKTFL<mark>NN</mark>FN<mark>Q</mark>EAEDL<mark>S</mark>YQSSLASWNYN

 6 residues were found that could cause differences in binding.

Outline

- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.

Five animals were chosen to compare ACE2 $\underline{\alpha}$ helix sequence to human

- Animals with close relation to Wan et al. (2020) species were chosen from phylogenetic tree.
- Focused on 6 residues which differed between mouse and human.
 - Positions 2, 3, 12, 13, 16, and 22

Animal	Sequence
Horse	STTEDLAKTFLEKFNSE AEELSHQSSLASWSYN
Platypus	K-PEEEARQFLTQFNKQ AEDLSYQSSLASWEYN
Civet	STTEELAKTFLETFNYE AQELSYQSSVASWNYN
Bat	STTEDEAKMFLDKFNTK AEDLSHQSSLASWDYN
Orangutan	STIEEQAKTFLDKFNHE AEDLFYOSSLASWNYN

Some residues are conserved in Horse

I→ **T**= nonpolar to polar

D→ E= both - charged

H→ S= + charged to polar

F→ S= nonpolar to polar

Human

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Horse

S<mark>TT</mark>EDLAKTFL<mark>EK</mark>FN<mark>S</mark>EAEEL<mark>S</mark>HQSSLASWSYN

Platypus showed differences in every residue

 $T \rightarrow - = loss of polar A.A.$

I → P = both hydrophobic, change of shape

D→T = - charged to uncharged

 $K \rightarrow Q = +$ charged to uncharged

H→ K = both + charged, change of shape

 $F \rightarrow S = hydrophobic to polar$

Human

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Platypus

K-PEEEARQFLTQFNKQAEDLSYQSSLASWEYN

Only one residue was preserved in Civet

 $I \rightarrow T = nonpolar to polar$

D→ E = both - charged

 $K \rightarrow T = + \text{ charge to polar}$

 $H \rightarrow Y = + \text{ charge to polar}$

 $F \rightarrow S = nonpolar to polar$

Human

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Civet

S<mark>TT</mark>EELAKTFL<mark>ET</mark>FN<mark>Y</mark>EAQEL<mark>S</mark>YQSSVASWNYN

Half of the residues are conserved in Bat

 $I \rightarrow T = nonpolar to polar$

 $H \rightarrow T = + charged to polar$

 $F \rightarrow S = nonpolar to polar$

Human

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Bat

S<mark>TT</mark>EDEAKMFL<mark>DK</mark>FN<mark>T</mark>KAEDL<mark>S</mark>HQSSLASWDYN

Entire $\underline{\alpha}$ helix is conserved in Orangutan

Human

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

Orangutan

S<mark>TI</mark>EEQAKTFL<mark>DK</mark>FN<mark>H</mark>EAEDL<mark>F</mark>YQSSLASWNYN

ACE2 orthologs are both conserved and varied

ACE2	2	3	12	13	16	22
Human	Т	I	D	K	Н	F
Horse	Т	Т	E	K	S	S
Platypus	-	Р	Т	Q	K	S
Civet	Т	Т	E	Т	Y	S
Bat	Т	Т	D	K	Т	S
Orangutan	Т	I	D	K	Н	F

Outline

- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.

Can 2019-nCoV bind to these species?

 Our established criteria assumed that 3 or more conserved residues most likely allows 2019-nCoV to bind to the ACE2 receptor.

Species	Conserved Residues	Able to bind to receptor
Horse	3	Yes
Platypus	None	No
Civet	1	No
Bat	3	Yes
Orangutan	All	Yes

Position 13 is important for binding of SARS-CoV

- Wan et al. (2020) found that position 13 is a hotspot for binding interactions
 - Lys forms a salt bridge with a neighboring Glu ⇒
 leads to favorable interactions

 Residue differences in position 13 agree with our predictions

ACE2	13
Human	K
Horse	K
Platypus	Q
Civet	Т
Bat	K
Orangutan	K

Discussion

- Horses can be infected with Equine Coronavirus which also support our predictions.
- SARS-CoV-1 was able to bind to civets' ACE2 receptor.
 - However, Wan et al. predicted that civet receptor does not have favorable interactions with 2019-nCoV.
 - Cases of other cat species infected with the novel virus are known.
- Orangutans and Humans share 97% of DNA with humans.
- Predictions could change due to adaptations of the virus to bind to host.

Future Research

- Study how certain species can block SARS-CoV-2 using their ACE2 receptor.
 - o Could be useful in developing a mechanism to treat species that can be infected.

 Analyze why SARS-CoV-1 was able to mutate and bind to the ACE2 receptor in civets, but not SARS-CoV-2.

• Analyze whether residues in $\underline{\alpha}$ helix are important hotspots for 2019-nCoV binding.

Summary

- Wan et al. (2020) used predictive framework to develop a model for 2019-nCoV.
- Wan et al. (2020) found five important amino acid residues in ACE2.
- Can 2019-nCoV bind to certain species ACE2 receptor?
- Species that have ACE2 receptor were obtained from Uniprot.
- Phylogenetic tree was made to determine relatedness between species.
- iCn3D viewer was used to find ACE2 binding sequence.
- Related species were compared to ACE2 $\underline{\alpha}$ helix of human and mouse.
- Different residues were analyzed for structure-function relationships.
- We predict that bat, orangutan, and horse should all be able to bind to 2019-nCoV due to residue analysis.
- Future research is needed to determine sequence-structure-function relationship of ACE2 orthologs to 2019-nCoV.

Acknowledgements

We would like to thank:

Wan et al. (2020)

Dr. Dahlquist

BIOL368/S20

LMU Biology Department

References

- *Home ORFfinder NCBI. (n.d.). Retrieved April 22, 2020, from https://www.ncbi.nlm.nih.gov/orffinder/
- *NCBI Protein Domains and Macromolecular Structures. (n.d.). Retrieved April 27, 2020, from https://www.ncbi.nlm.nih.gov/Structure/index.shtml
- *Phylogeny.fr: Home. (n.d.). Retrieved April 27, 2020, from http://www.phylogeny.fr/
- *OpenWetWare. (2020). BIOL368/S20:Week 14. Retrieved April 27 2020, from https://openwetware.org/wiki/BIOL368/S20:Week 14
- *RCSB Protein Data Bank. (n.d.). Homepage. Retrieved April 27, 2020, from https://www.rcsb.org/
- *UniProt Consortium European Bioinformatics Institute Protein Information Resource SIB Swiss Institute of Bioinformatics. (n.d.). UniProt Consortium. Retrieved April 27, 2020, from http://www.uniprot.org/
- *Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7). DOI: 10.1128/JVI.00127-20.