The human B—globin as a model to study quality control
of gene expression in the nucleus
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Gene expression as a multistep process
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Thalassemia like human f-globin transcripts
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Retention in the nucleus of incorrectly processed transcripts

Working Hypothesis: A quality control mechanism must exist in the nucleus
to retain the incorrectly processed transcripts

Goals of the work: Elucitate this quality control mechanism

1) Determine the intranuclear localisation of the retained transcripts
2) Identify the molecular players responsible for the retention

Model system: MEL cells stable transfected with the human -globin gene
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Human p-globin RNA is detected at the transcription site

A human f-globin gene
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Inefficient processing impairs release of RNA from
the site of transcription

Wild-type B-globin transcripts are
no longer detected in nuclear foci
after actinomycin D treatment
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The quality control mechanism responsible for the nuclear retention of
incorrectly processed transcripts operates at the site of transcription

Custédio N. et al, EMBO J (1999)



What are the molecular players involved in the quality control mechanism

that operates at the transcription site?

Proteins essential for the release and/or transport of the transcripts from
the gene locus are not recruited to mutant transcripts

The retention is mediated by proteins that are bound to the nascent
transcripts and become stalled due to incomplete processing
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The processing mutants analyzed are able to assemble at least partially the processing machinery



Transcription cycle and pre-mRNA processing
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Splicing and 3’ processing factors associate with the CTD of RNA Pol Il large subunit
Du and Waren et al., JCB (1997)

The release of the mutant transcripts from the transcription site could be blocked by
the stalled or abnormal processing machinery associated with the CTD

Establishment of MEL cell clones expressing a-amanitin resistant

RNA Pol Il LS with mutated versions of the CTD
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A31 CTD truncation impairs release of BWT RNA from the transcription site
but has no effect on the retention of the splicing-defective RNA
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Why are transcripts synthesized by RNA Pol Il A31 retained at
the site of transcription?

Truncation of the CTD reduces the efficiency of capping, splicing and
3’ end cleavage.

McCracken et al, Nature (1997)

McCracken et al, G&D (1997)

Fong & Bentley G&D (2001)

Are the RNA Pol Il A31 transcripts correcly processed?




RNA transcribed by RNA Pol Il LS A31 is spliced
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RNA transcribed by RNA Pol Il LS A31 is 3’ end cleaved

and polyadenylated

RNase protection assay Poly(A) tail length analysis
(LM-PAT assay)

human p-globin
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The CTD repeats missing in the A31 mutant are required for transcription
site release but not for pre-mRNA processing

Custédio N. et al., JCB (2007)



The CTD is necessary for recruitment of splicing factors to sites of
transcription in vivo.

Misteli and Spector, Mol Cell (1999)

Are the missing repeats in CTD A31 preventing the recruitment )

“of proteins required for release of the transcripts?

In vivo recruitment of exon-junction complex proteins to
transcription sites in the nucleus
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Nonsense-mediated mMRNA decay

Current Opinion in Cell Biology
Tange T@ et al Curr Opin Cell Biol., (2004)



EJC proteins are recruited to nascent transcripts

synthesized by RNA Pol. Il LS A31
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In yeast, transcription site retention of abnormally processed

transcripts requires the nuclear exosome subunit Rrp6.
Hilleren et al., Nature (2001) Libri et al., MCB (2002)

The exosome is a complex of 3’ to 5’ exoribonucleases

Initially identified as an activity required for the 3'-end processing of rRNA precursors
Components named Rrp (rRNA-processing) proteins

Participates in most nuclear and cytoplasmic 3’ to 5 RNA -degradation and -processing pathways

Domains S. cerevisiae“ Human®
Exosome core RNasePH Rrpd1p (Ski6p) hRrpd1 (hSki6; EXOS4)
Rrp42p hRrp42 (EXO0S7)
Rrp46p hRrpd6 (EXOS5)
Rrp43p hRrp43 (OIP2; EXOS8)
Mtr3p hMtr3 (EXOS6)
Rrpd5p hRrpd5 (Pm/Scl-75; EXOS9)
S1 and KH domains Rrpdp hRrp4 (EXOS2)
Rrp40p hRrpd0 (EXOS3)
Csldp hCsl4 (EXOS1)
RNase Il Rrpd4p (Dis3p) hRBrpd4 (hDis3)
RNase D hRrp6 (PM/Scl-100; EXOS10)
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PM/Scl-100 (hRrp6) exosome subunit is recruited to nascent

transcripts synthesized by RNA Pol. Il LS A31
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Recruitment of neither EJC proteins nor nuclear exosome Rrp6 class of proteins to
nascent mMRNA is sufficient for its release from the site of transcription

Working hypothesis

The A31 CTD truncation mutant may be impaired to recruit protein factors
required to complete the maturation of spliced and 3’ end processed mRNA
into export-competent mMRNPs.

wt CTD A31 CTD




Conclusions
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Retention near the transcription site

| Retention near the transcription site ] of fully processed mRNA
Custédio N et al EMBO J (1999) Custédio N et al JCB (2007)

MRNA release from the site of transcription is an important step in mMRNA biogenesis
and an important checkpoint for mRNA integrity

The CTD is involved in processes that control the release of the mRNA from
the site of transcription by a mechanism independent of pre-mRNA processing

Quality Control of mRNA biogenesis
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Checkpoints are operating in the nucleus to ensure the quality of the mRNA that
cross the NPC and reach the translation machinery in the cytoplasm

What are the molecular mechanisms for this checkpoints?
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