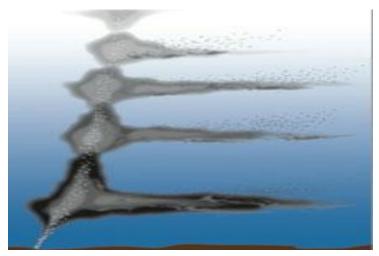
Healthy Planet

Sarah Wright, Madeline O'Grady, Hao Xing, Ishwar Kohale, Shruthi Narayanan, Jiaqi Xie

Three Ideas Presentation March 13, 2013


Break it Down

Engineering bacteria to undergo programmed cell death after breaking down hydrocarbons from oil spills.

Importance

- Oil spills cause extensive environmental damage
- Increase in offshore drilling
- Stratification causes multiple layers of damage

Impact

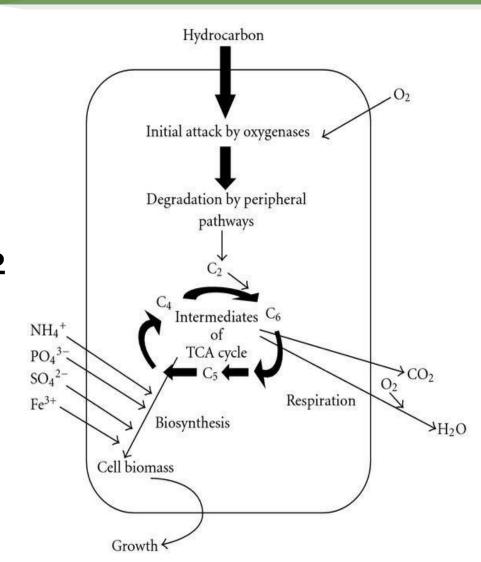
- Break down to non-toxic compounds
- Acceleration of a natural process
- Less negative effects than current methods

Competition

Skimmers

Burning

Chemical Dispersants



Competition: Bioremediation

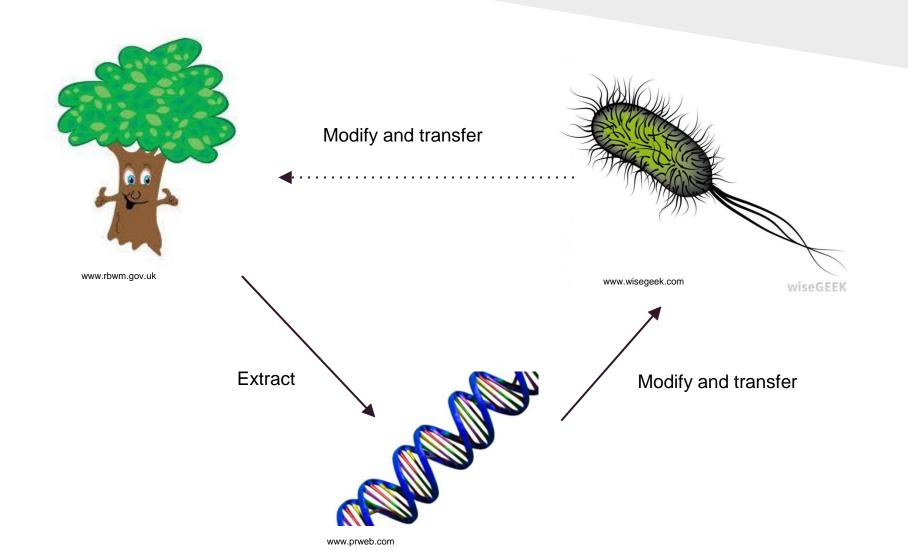
- Bacteria naturally break down hydrocarbons
- BUT
 - Current techniques require the addition of nutrients
 - No way to eliminate bacteria after spill is cleaned up

- Many microorganisms break down hydrocarbons
- Bacteria convert hydrocarbons into CO2
- Increased efficiency is possible
- Cell death can be triggered by color recognition

Unknowns

- How often would bacteria have to be added?
- How much bacteria would we need?

What process would we use to trigger cell


death?

Dust-Free

Programmed plant genes that produce more leaf oil and resin to trap PM 2.51 from the air in urban area.

Big Picture

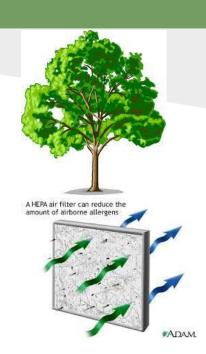
Importance

Desertification

http://www.marketplace.org/topics/sustainability/what-would-your-city-look-beijings-air-smog-simulator

Respiratory Diseases

http://en.paperblog.com/are-dust-mites-causing-your-child-s-allergies-155569/


Impact

- Reduce the incidence of respiratory diseases
- Relieve visual impairment

• Relieve Global Warming

Competition

- Natural solution
 - Low efficiency
 - Limited space in urban area
- Filters
 - Costly
 - Limitation to individuals
- Standard emission for engines
 - Emission still existing

- The common constituents of resin: terpenes
- Pathway for resin production in conifers
- Success in transformation of genes that can synthesize resins (monoterpene) into bacteria₂
- Organs for producing leaf oil: pellucid glands₃
- Pathway of oil accumulation and biosynthesis,

Unknowns

- Efficiency of the cleaning
- Method of transferring modified genes back to plants
- Impact on ecosystem (insects, birds)
- Type of tree (evergreen)
- The amount that leaves can absorb before the pores fail to perform its function.

Poly-B-Gone

Use naturally occurring compounds to break down plastics prevalent in landfills

Better Disposal of Plastics

 Recent increase in the drive to recycle plastics and produce new biodegradable plastics

 Long lasting plastics still clog up significant portions of landfills.

The Problem

• Polystyrene, the third most widely-used plastic, degrades very slowly and accumulates in landfills.

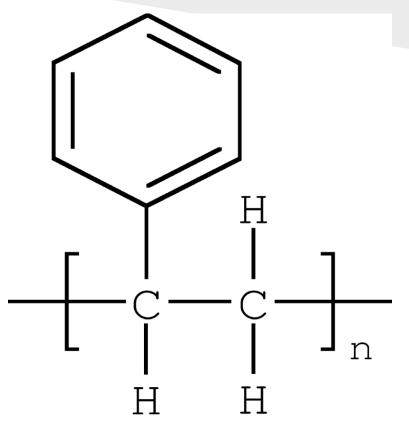
 Landfill plastics take up large amounts of space and leech toxins into the ground and water over time

POLYSTYRENE:

- takes over 500 years to decompose
- takes up 30% of our landfills
- Polystyrene
 manufacturers are the
 5th largest toxin
 producers in the world:
 this mean that
 polystyrene is very
 prone to leaking toxins

Solutions and Impact

 The key goal is to create a bacteria able to easily synthesize a compound that can down PS.


• We would be able to significantly reduce the amount of PS in landfills, as well as facilitate its recycling.

Competition

- Landfills are being treated with bacteria and fungitorial to break down other trash
- Biodegradable plastics
- Most plastics are high in energy and can be burned
- PS can be melted and reused: when PS is put in a vacuum, heated, and fed to a certain bacteria, the result is a new biodegradable plastic material

Polystyrene (PS)

• PS is recyclable, but the nature of most PS products makes it inefficient to collect them for recycling.

• PS converts into an easily transportable and recyclable gel when exposed to D-limonene, a molecule found in citrus fruits.

- Natural limonene synthesis pathway in citrus fruit
- The original compound (IPP) can be synthesized from Acetyl Co-A, a central molecule in the Krebs cycle
- Problem: 2012 iGem Wisconsin team tried this pathway to synthesize limonene in E.Coli and failed.

- Chemical synthesis of limonene
- Starting reactant, isoprene, can be produced by certain strains of bacteria (*Bacillus*)
- Problem: this requires high temperature

Unknowns

- What are the possible side effects of limonene and the recycled gel plastic?
- What other potentially negative effects could the bacteria producing the limonene have?
- What would the efficiency of the bacteria be? This is especially important as the 2012 iGem team produced a limonene yield of 0%.

Break It Down References

http://dx.doi.org/10.1016/j.techsoc.2010.10.010

Nilanjana Das and Preethy Chandran, "Microbial Degradation of Petroleum Hydrocarbon

Contaminants: An Overview," Biotechnology Research International, vol. 2011, Article ID 941810,

13 pages, 2011. doi: 10.4061/2011/941810

http://idosi.org/wasj/wasj17(6)12/19.pdf

http://water.usgs.gov/wid/html/bioremed.html

http://events.embo.org/12-cell-death/

http://www.hindawi.com/journals/btri/2011/941810/tab5/

http://journals2.scholarsportal.info/details.xqy?uri=/1687157x/v10i0002/185_tioaaiobsuib.xml

http://www.sciencedirect.com/science/article/pii/S0160791X10000771

Dust-Free References

- 1.Funk C, Croteau R.Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Institute of Biological Chemistry, Washington State University Pullman 99164-6340.
- 2.Phillips, M. A. (2000). *Monoterpene biosynthesis in loblolly pine (pinus taeda).* Washington State University). *ProQuest Dissertations and Theses*, , 135.
- 3.Ricardo V, Piero D, Gilda. Anatomical and chemical analyses of leaf secretory cavities of *Rustia formosa*(Rubiaceae) Am. J. Bot. December 2001vol. 88 no. 12 2151-2156
- 4.Slocombe SP, Cornah J, Pinfield-Wells H Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J. 2009 Sep;7(7):694-703. doi: 10.1111/j.1467-7652.2009.00435.x.

Poly-B-Gone References

http://www.usc.edu/CSSF/Current/Projects/S0626.pdf

http://en.wikipedia.org/wiki/Limonene

http://www.enzyscreen.com/AMB_2003_Duetz_et_al.pdf

http://2012.igem.org/Team:Wisconsin-Madison/lemon

http://woohooreport.com/2009/09/wci-student-isolates-microbe-that-lunches-on-plastic-bags/

http://www.ucd.ie/cscb/main_pages/news/news010306.htm

http://www.plantphysiol.org/content/117/3/901.full

http://openwetware.org/wiki/IGEM:MIT/2006/Blurb

http://www.chm.bris.ac.uk/motm/limonene/limoneneh.htm

http://academic.reed.edu/chemistry/alan/201_202/lab_manual/expt_limonene/background.html

http://link.springer.com/article/10.1007%2FBF00294190?LI=true

Acknowledgement

Thank you Ryan and Kristine!

Any questions?

