Diatom-associated bacteria?

Crashing phenomenon and the late 70's paper.

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1978, p.791-796 0099-2240/78/0035-0791\$02.00/0 Copyright © 1978 American Society for Microbiology

Vol. 35, No. 4

Printed in U.S.A.

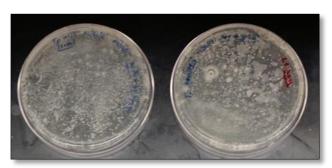
Interactions Between the Diatom *Thallasiosira pseudonanna* and an Associated Pseudomonad in a Mariculture System

KATHERINE H. BAKER* AND DIANE S. HERSON

Cell and Molecular Biology Section, School of Life and Health Sciences, University of Delaware, Newark, Delaware 19711

Received for publication 12 October 1977

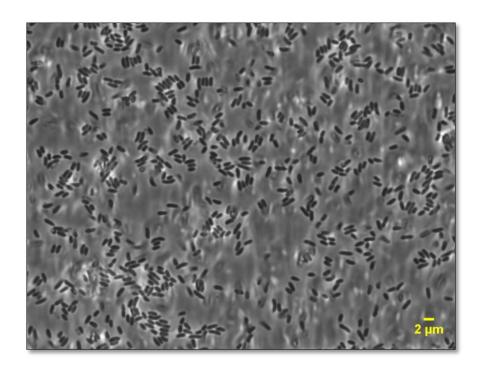
Pseudomonas T827/2B


- competition and indirect parasitism
- "harmful proteinaceous excrete"

Glassy, shiny morphology.

Plating *T. pseudonana* at high densities.

L1, 1.5 % agar



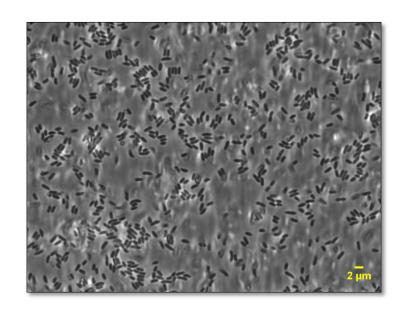
Gene gun experiment last summer.

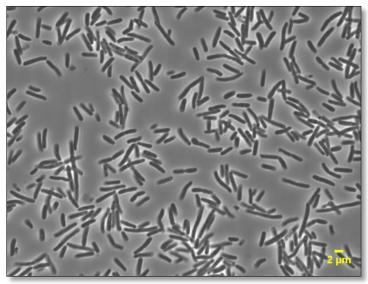
Karas et al. (2015)

Light microscopy of the bacteria

Behavior of the cells on a glass slide (I have a movie as well).

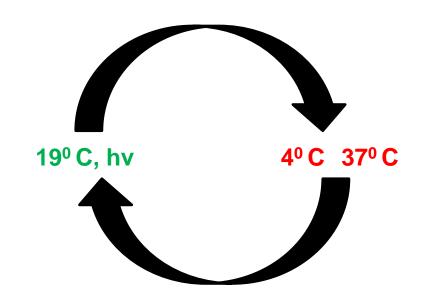
This activity might indicate they're in search of a certain (diatom-derived?) chemical signal → chemotaxis assays with a library of potential infochemicals?

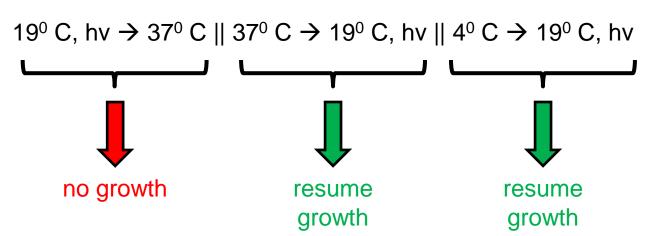

The bacteria swims and doesn't settle down

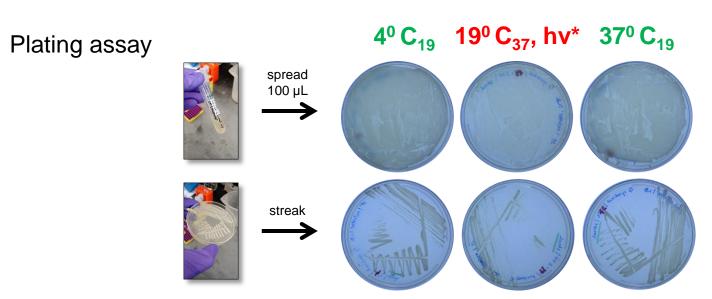

The culture turbid after being unperturbed for ~7 days at 4° C.

Light microscopy of the bacteria

Side by side comparison with *E. coli*.


E. coli EPI300 w/ pTA-MOB & pTpPuc3


The bacteria is heterotrophic and mesophilic


after ~14 h incubation

Switch conditions for ~24 hours

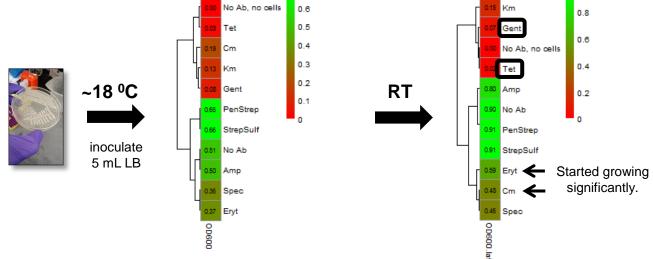
Definitely heterotrophic and mesophilic

Liquid culture assay (OD₆₀₀)

 $\overline{green} = 0.64 \pm 0.07$ $\overline{red} = 0.33 \pm 0.06$

after additional ~28 h incubation (compare to slide 5)

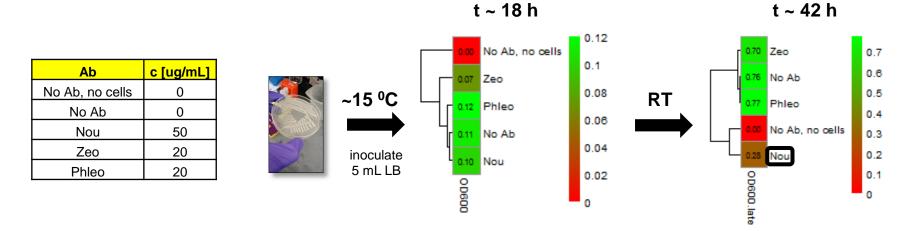
The bacteria sensitive to Gent, Tet (and Km)


Plating assay*

t ~ 36 h

Liquid culture assay (OD₆₀₀)

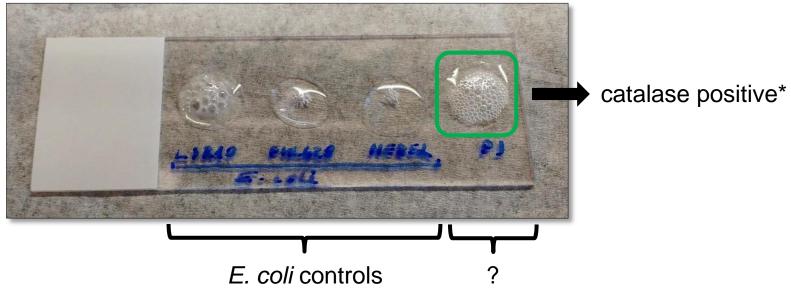

Ab	c [ug/mL]
No Ab, no cells	0
No Ab	0
Amp	50 or 100
Km	50?
Gent	20
Cm	25
PenStrep	1x
Spec	50
Eryt	50
Tet	15
Strep	100


Clusters don't really make a lot of sense.

t ~ 62 h

The bacteria resistant to all Abs for work with diatoms

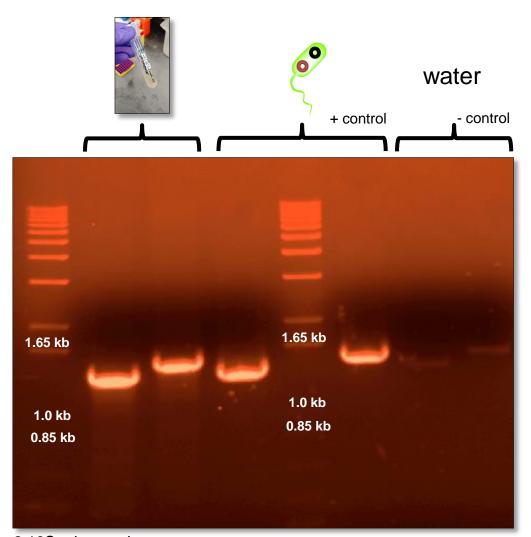
Liquid culture assay (OD₆₀₀)



Catalase assay

<u>Catalase:</u> a common enzyme found in nearly all living organisms exposed to oxygen. It catalyses the decomposition of hydrogen peroxide to water and oxygen.

$$2H_2O_2 \rightarrow 2H_2O + O_2 \longrightarrow \underbrace{Source.}$$


3 wt. $\% H_2O_2$ in H_2O

^{*}Characteristic of *Pseudomonas* sp. → <u>link</u>.

16S sequencing

2 16S primer pairs

Control

- Escherichia and Shigella species

Experiment

- Pseudomonas sp.
- rpoD-based PCR (Mulet et al., 2009)


rpoD sequencing

An *rpoD*-based PCR procedure for the identification of *Pseudomonas* species and for their detection in environmental samples

Magdalena Mulet a, Antonio Bennasar , Jorge Lalucat b, Elena García-Valdés a, b, *

Molecular and Cellular Probes (2009)

760 bp long amplicon based on the internal conserved sequences of 33 selected *rpoD* gene sequences (the sigma 70 factor subunit of the DNA polymerase) of *Pseudomonas* type strains.

^a Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain

^b Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain

Paper associated with the *Pseudomonas* hit

Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment

Víctor Gonzalo Arnau,¹ Leandro Arturo Sánchez¹ and Osvaldo Daniel Delgado²

International Journal of Systematic and Evolutionary Microbiology (2015)

Facts

- 1] Pseudomonas known to be involved in diatom-bacteria interactions (Baker et al., 1978; Amin et al., 2012).
- 2] Half of the algal kingdom are vitamin B_{12} auxotrophs, including *T. pseudonana* (Croft *et al.*, 2005).
- 3] Methionine synthase (MetH) in T. pseudonana requires vitamin B_{12} (Croft et al., 2005).
- 4] Pseudomonas denitrificans used for industrial-scale vitamin B₁₂ production (Xia et al., 2015).

Hypothesis: The bacteria produces vitamin B₁₂ and feeds it to *T. pseudonana*

At least 2 recent publication are strengthening my hypothesis

Cryptic carbon and sulfur cycling between surface ocean plankton

Bryndan P. Durham^a, Shalabh Sharma^b, Haiwei Luo^b, Christa B. Smith^b, Shady A. Amin^c, Sara J. Bender^d, Stephen P. Dearth^e, Benjamin A. S. Van Mooy^d, Shawn R. Campagna^e, Elizabeth B. Kujawinski^d, E. Virginia Armbrust^c, and Mary Ann Moran^{b,1}

^aDepartment of Microbiology, University of Georgia, Athens, GA 30602; ^bDepartment of Marine Sciences, University of Georgia, Athens, GA 30602; ^cSchool of Oceanography, University of Washington, Seattle, WA 98195; ^dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and ^eDepartment of Chemistry, University of Tennessee, Knoxville, TN 37996

PNAS (2015)

LETTER

doi:10.1038/nature14488

Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria

S. A. Amin^{1,2}, L. R. Hmelo³, H. M. van Tol¹, B. P. Durham⁴, L. T. Carlson¹, K. R. Heal¹, R. L. Morales¹, C. T. Berthiaume¹, M. S. Parker¹, B. Djunaedi¹, A. E. Ingalls¹, M. R. Parsek³, M. A. Moran⁵ & E. V. Armbrust¹

Nature (2015)