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Abstract: The elucidation of organism-scale metabolic
networks necessitates the development of integrative
methods to analyze and interpret the systemic properties
of cellular metabolism. A shift in emphasis from single
metabolic reactions to systemically defined pathways is
one consequence of such an integrative analysis of meta-
bolic systems. The constraints of systemic stoichiometry,
and limited thermodynamics have led to the definition of
the flux space within the context of convex analysis.
The flux space of the metabolic system, containing all
allowable flux distributions, is constrained to a convex
polyhedral cone in a high-dimensional space. From
metabolic pathway analysis, the edges of the high-
dimensional flux cone are vectors that correspond to sys-
temically defined “extreme pathways” spanning the ca-
pabilities of the system. The addition of maximum flux
capacities of individual metabolic reactions serves to fur-
ther constrain the flux space and has led to the develop-
ment of flux balance analysis using linear optimization to
calculate optimal flux distributions. Here we provide the
precise theoretical connections between pathway analy-
sis and flux balance analysis allowing for their combined
application to study integrated metabolic function. Shifts
in metabolic behavior are calculated using linear optimi-
zation and are then interpreted using the extreme path-
ways to demonstrate the concept of pathway utilization.
Changes to the reaction network, such as the removal of
a reaction, can lead to the generation of suboptimal phe-
notypes that can be directly attributed to the loss of path-
way function and capabilities. Optimal growth pheno-
types are calculated as a function of environmental vari-
ables, such as the availability of substrate and oxygen,
leading to the definition of phenotypic phase planes. It is
illustrated how optimality properties of the computed
flux distributions can be interpreted in terms of the ex-
treme pathways. Together these developments are ap-
plied to an example network and to core metabolism of
Escherichia coli demonstrating the connections between
the extreme pathways, optimal flux distributions, and
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phenotypic phase planes. The consequences of changing
environmental and internal conditions of the network are
examined for growth on glucose and succinate in the
face of a variety of gene deletions. The convergence of
the calculation of optimal phenotypes through linear pro-
gramming and the definition of extreme pathways estab-
lishes a different perspective for the understanding of
how a defined metabolic network is best used under dif-
ferent environmental and internal conditions or, in other
words, a pathway basis for the interpretation of the
metabolic reaction norm. © 2001 John Wiley & Sons, Inc.
Biotechnol Bioeng 71: 286-306, 2000/2001.
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INTRODUCTION

Automated sequencing and high-throughput experimental
techniques to analyze cellular functions at the genomic level
are beginning to reveal the full complexity of living sys-
tems. The implication of dealing with complex systems is
that their properties are not predictable from the complete
description of their components, leading to the concept of
emergent properties of living systems (Bhalla and Iyengar,
1999; Palsson, 1997; Weng et al., 1999). To understand the
complexity inherent in cellular networks, approaches need
to be implemented that focus on the systemic properties of
the network. Subsequently, these approaches must be ap-
plied to complete cellular systems. Our focus then shifts
from a reductionist to a holistic approach for understanding
the interdependence of gene function and the role of the
gene in the context of multigenetic cellular functions or
genetic circuits.

The multigeneic nature of cellular functions presents a
significant challenge in extracting phenotypic information
from the genotype. Both experimental and theoretical
methods that overcome this challenge will contribute sig-
nificantly toward extracting valuable information from ge-
nomic data. Nowhere is this contribution more apparent



than in cellular metabolism where it is now possible to
reconstruct detailed metabolic networks from annotated ge-
nome sequences, and experimentally characterize metabolic
phenotypes using functional genomic technologies such as
whole-genome expression profiling and protein character-
ization. Furthermore, there exists a history of studying the
systemic properties of metabolic networks. This history in-
cludes approaches such as metabolic control analysis (Fell,
1996; Heinrich and Rapoport, 1974; Kacser and Burns,
1973), flux balance analysis (Bonarius et al., 1997; Edwards
et al., 1999; Varma and Palsson, 1994b), pathway analysis
(Clark, 1988; Liao et al., 1996; Mavrovouniotis et al., 1990;
Schilling et al., 2000a; Schuster et al., 1999; Seressiotis and
Bailey, 1988), cybernetic modeling (Ramakrishna et al.,
1996; Varner and Ramkrishna, 1998, 1999), biochemical
systems theory (Savageau, 1969a, 1969b, 1970), and tem-
poral decomposition (Palsson et al., 1987).

Although the ultimate goal may be the development of
dynamic models for the complete simulation of metabolic
systems, the success of such approaches is severely ham-
pered by the current lack of kinetic information on the dy-
namics and regulation of metabolic reactions. In the absence
of kinetic information it is still possible to accurately assess
the theoretical capabilities and operative modes of meta-
bolic systems using steady-state analysis. Steady-state
analysis is based on the stoichiometry of the metabolic re-
actions, which is a structural invariant of the metabolic net-
work.

In recent years, an approach known as flux balance analy-
sis has been developed to describe metabolic physiology in
a quantitative manner (Bonarius et al., 1997; Edwards and
Palsson, 1998; Edwards et al., 1999; Sauer et al., 1998;
Schilling et al., 1999a; Varma and Palsson, 1994b). Flux
balance analysis is based on the fundamental law of mass
conservation and the application of optimization principles
to predict the optimal distribution of metabolic resources
within a network. It thus provides insightful information
about the systemic constraints placed on metabolic function.
The analysis is performed under steady-state conditions and
it only requires information about the stoichiometry of
metabolic pathways and on metabolic demands. This ap-
proach is particularly applicable for postgenomic analysis,
because the stoichiometric parameters can be defined from
the annotated genome sequence of a particular organism
(Edwards and Palsson, 1999, 2000; Schilling and Palsson,
2000b). Flux balance analysis is distinguished from meta-
bolic flux analysis (MFA) where fluxes are experimentally
measured and used to reduce the underdetermined nature of
a metabolic system to allow for the calculation of all the
unknown fluxes under steady-state conditions without in-
voking optimization principles (Stephanopoulos et al.,
1998).

Flux balance analysis has recently been applied to ana-
lyze and predict the metabolic genotype—phenotype relation
from a reaction-based perspective, in which flux activities
for individual reactions are examined (Edwards and Pals-

son, 1998, 1999, 2000; Schilling et al., 1999a). The ability
to interpret predicted metabolic phenotypes from a pathway
perspective in addition to an individual reaction-based per-
spective might shed new light on the complexity of the
genotype—phenotype relationship. A pathway perspective
will provide flux activities for systemic metabolic pathways
that are comprised of balanced sets of reactions. These path-
ways are characterized based on their functional and struc-
tural relevance within the system as opposed to their pattern
of historical discovery. Recent approaches have been devel-
oped to perform detailed pathway decompositions of meta-
bolic networks that hold promise in providing the pathway
perspective that is currently sought to complement flux bal-
ance analysis and related optimization techniques.

The pathway analysis of metabolic networks has pro-
gressed itself over the years from simply analyzing wall
charts of metabolic reactions to the recent development of
detailed theories for the in-depth study of the structure of
metabolic networks (for a recent review, see Schilling et al.
[1999b]). The definition of systemic pathways in metabo-
lism is essential for providing a pathway-oriented perspec-
tive to overall metabolic functions and phenotypes. One of
the more promising approaches for performing this identi-
fication and analysis has capitalized on the principles of
convex analysis. These principles include the closely related
concepts of elementary modes (Schuster et al., 1996, 1999)
and extreme pathways (Schilling et al., 2000a), which can
both be used to define the limitations and production capa-
bilities of metabolic systems. These approaches to pathway
analysis share a common underlying mathematical frame-
work with flux balance analysis. Although this connection
has been noted by a number of investigators, a clear defi-
nition and illustration of the formal relationships between
these two approaches is lacking.

In this article we illustrate the precise relationships that
bind metabolic pathway analysis to flux balance analysis,
and illustrate their combined use to interpret shifts in meta-
bolic routing that may occur in response to environmental
and internal/genetic challenges. The combination of these
two approaches allows for a clear interpretation of meta-
bolic phenotypes and flux distributions from the traditional
reaction-based perspective and now from a pathway-
oriented perspective. Many of the relations are illustrated
initially through the use of a hypothetical reaction network
to assist in developing a core understanding of both ap-
proaches and their connections. We then apply the com-
bined approach for the detailed study of the central meta-
bolic network of Escherichia coli. The comprehensive
collection of calculations, and illustrations generated for the
work presented is available on-line along with addi-
tional supportive material to assist the reader (http://
gcrg.ucsd.edu/supplementary data/Pathway FBA/
default.htm). The complementarities of flux balance and
pathway analysis for studying metabolic systems along with
the combination of emerging genome-scale experimental
technologies should serve to form a useful platform from
which to study the complexity inherent in cellular metabo-
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lism for both basic scientific and applied purposes of meta-
bolic engineering (Stephanopoulos, 1999; Yarmush and
Berthiaume, 1997) and biocommodity engineering (Lynd et
al., 1999).

DESCRIBING METABOLIC SYSTEMS

A metabolic network is a collection of enzyme-catalyzed
reactions and transport processes that serve to dissipate sub-
strate metabolites and generate final metabolites. To de-
scribe metabolic networks in a quantitative manner, dy-
namic mass balances are written for each metabolite in the
network, which generates a system of ordinary differential
equations that describe the transient behavior of metabolite
concentrations:
dX,;

i (D

S,-j v;
where v; corresponds to the jth metabolic flux, [X;] repre-
sents the concentration of the metabolite, and the stoichio-
metric coefficient, S,-j, stands for the number of moles of
metabolite i formed (or consumed) in reaction j. As we are
often interested in the structural characteristics or invariant
properties of the reaction network (Reder, 1988), it is rea-
sonable to place the metabolic system into a steady state,
thus reducing the set of differential equations to a set of
linear homogeneous equations, written in matrix nota-
tion as:

S-v=0 2)

Although the system is effectively closed to the passage
of certain metabolites, others are allowed to enter or exit the
system via exchange fluxes (or pseudoreactions [Clarke,
1980]). These fluxes generally do not represent biochemical

conversions or transport processes like those of internal
fluxes, but can be thought of as representing the inputs and
outputs to the system. For example, the demand for a me-
tabolite for incorporation into cellular biomass creates an
exchange flux on the intracellular metabolite from the meta-
bolic network. The availability of a substrate in the extra-
cellular environment creates an exchange flux on the extra-
cellular metabolite that represents a source. Thus, all me-
tabolites are internal to the system and a distinction is made
between intracellular and extracellular metabolites within
the system, closing the material balance to all metabolites,
as indicated in Eq. (2).

To complete the description of the metabolic network we
must include the constraints that are placed on fluxes due to
reaction thermodynamics and the systemic characteristics
(input/output) of the network. To simplify matters, we can
decompose all reversible internal reactions into a separate
forward and reverse flux. This decomposition will create a
general constraint that all internal fluxes must be greater
than zero, such as in the directed graph of Figure la. For
exchange fluxes we can set upper and lower bounds on the
constraints that represent the corresponding metabolites’
ability to enter or exit the system. (For a more detailed
discussion see Schilling et al. [2000a].)

At this point, we introduce the reaction network shown in
Figure 1a to illustrate these mathematical network descrip-
tions and to provide a simplified example for many of the
theoretical concepts that will be illustrated in what follows.
The system is comprised of five metabolites that are oper-
ated on by seven internal fluxes. Note that fluxes v; and v,
can be viewed as the decomposition of a reversible reaction
into a forward and a backward reaction. Also, the stoichi-
ometry on flux v, converts 2 mol of D into 1 mol of E.
Therefore, metabolite C can be directly converted into E

(a) Example Metabolic
Reaction Scheme
(Free Outputs)
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(b) Mathematical

Internal Fluxes R, .

v Ao B epresentation

v: B C Steady State Mass Balances

v;: B> D

ve: D> B A: -v-b;=0

v: C—>D B: v, +tv-w,-v=0

ve: C—o E C: ovy-vs-vg-b, =0

v;: 2D - E D: wytvs-w-2v;-by;=0
E: wy+v,-b,=0

Flux Constraints
A -
C = 0< v,.v <+
D - -0 < bj <0
E - -0 £ by, < 4o
0< by <+
0< by <40

(a) Example metabolic reaction network consisting of 5 metabolites and 11 fluxes (7 internal fluxes, 4 exchange fluxes) listed along with the

individual reactions. (b) Mathematical description of the reaction network in the form of steady-state mass balances (linear equalities) and flux constraints
imposed on the network (linear inequalities). Together this system of linear equalities/inequalities defines the region of admissible flux vectors.
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through vg4; however, if vs and v, are used, the efficiency is
cut in half, analogous to a physiological situation in which
carbon may be lost as CO, due to an alternative route to
produce a metabolite. We allow metabolites C, D, and E to
exit the system as products of the network (either as bio-
mass precursors or final metabolic products). To represent
substrates available to the system we allow metabolites A
and C to enter the system. These potential sources and sinks
on the system create four exchange fluxes operating on the
system. Note that the exchange fluxes are defined as out-
ward, thus the value of the flux is negative when the me-
tabolite is entering the system and positive when it is
formed as a product of the system. The steady-state mass
balances are provided in Figure 1b along with the general
constraints that are placed on both the internal and exchange
fluxes. Each of the steady-state mass balances corresponds
to a row of the stoichiometric matrix. This set of linear
homogeneous equations and linear inequalities describes the
metabolic system under steady state.

CONVEX ANALYSIS

As a result of the inequality constraints placed on various
fluxes traditional linear algebra can no longer be used to
handle such a mathematical system of equalities/inequal-
ities, forcing the use of convex analysis to study the prop-
erties of the solution space for this problem. From convex
analysis the solution space for any system of linear homo-
geneous equations and inequalities is a convex polyhedral
cone emanating from the origin. We refer to this region of
admissible steady-state flux vectors as the flux cone (C). All
possible solutions, and hence flux distributions, that the sys-
tem can operate in a steady state are confined to the interior
of the flux cone. To uniquely describe a convex cone we
must identify the set of extreme rays/generating vectors (p,)
that span the cone (similar to the edges of a pyramid). In the
context of metabolic systems we refer to these edges as
extreme pathways, as each vector corresponds to a particu-
lar pathway or active set of fluxes that satisfy Eq. (2) and the
inequality constraints placed on the system. Every point (v)
within the cone can be written as a nonnegative linear com-
bination of these extreme pathways as:

k
C={VZV =Ewip[,wi20\7’i} 3)

i=1

Recently, we presented the detailed theoretical framework
and algorithm used for the rapid identification of the set of
extreme pathways for any metabolic system (Schilling et al.,
2000a). It addition to being unique for a particular system
the set of extreme pathways is the absolute minimal set of
pathways that can be used to span the flux cone in a convex
manner. This set of pathways generating the flux cone may
also be referred to as a convex basis, and is more properly
said to form the conical hull of the flux cone. As an aside,
for those familiar with elementary modes, the extreme path-
ways are a subset of the elementary modes of a reaction

network (Schuster et al., 1999). For a more thorough expla-
nation of the similarities and differences between these ap-
proaches one is referred to Pfeiffer et al. (1999) and Schil-
ling et al. (2000a).

The set of extreme pathways for the reaction network
described in Figure 1 is provided in vector form in Table I
with each pathway illustrated in Figure 2. There are eight
extreme pathways (py, . .., Pg). Two of the pathways (p;,
ps) display no active exchange fluxes, and thus correspond
to internal cycles within the network of which pg is simply
a result of decomposing a reversible reaction into two op-
posite reactions. Using the classification scheme developed
previously (Schilling et al., 2000a), these pathways corre-
spond to type III pathways, whereas the remaining six path-
ways all describe functional pathways through the network
(type I) and together represent the true systemic functions or
capabilities of the network. Their combined activity can be
used to describe any flux distribution of the network as in
Eq. (3).

The set of extreme pathways is conically or systemically
independent, in analogy to the concept of linear indepen-
dence from linear algebra. Mathematically this means that
the pathways cannot be formed by a positive combination of
any other vectors or pathways in the flux cone. From a
functional point of view this means that every flux distri-
bution can be reached by either switching pathways off or
turning them on to a certain level (this is analogous to
having a dial controlling the activity of each extreme path-
way). We will illustrate this notion in more detail in the
following sections.

EFFECTS OF BALANCED DEMANDS ON
PATHWAY STRUCTURE

Under changing substrate/supply conditions metabolic net-
works are continuously faced with a balanced set of bio-
synthetic demands (i.e., production of amino acids, nucleo-
tides, phospholipids, as well as energy and redox potential).
This means that the network must generate a balanced ac-

Table I. The eight extreme pathway vectors for the example network
with free outputs.”

Internal fluxes Exchange fluxes

Pathway

number  v; Vv, V3 Vv, Vs Vg V; by b, by b,
P 1 1 0 0 0 0 0 -1 1 0 0
P> 1 0 1 0 0 0 0 -1 0 1 0
P 2 0 2 0 0 0 1 =2 0 0 1
P4 0 0 0 0 1 0 0 0o -1 1 0
Ps 0 0 0 0 2 0 1 0o -2 0 1
Ps 0 0 0 0 0 1 0 0 -1 0 1
p, 0 0 1 1 0 0 0 0 0 0 0
Ps 0 1 0 1 1 0 0 0 0 0 0

“The first six pathways are type I pathways (see Fig. 2). The last two
pathways are type III pathways that represent internal cycles in the network
(i.e., zero weights on all exchange fluxes). For definition of the pathway
classification scheme see Schilling et al., (2000a).
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>

Figure 2. Routing patterns for the six type I extreme pathways calculated
for the example reaction network. Detailed pathway vectors indicating the
individual flux levels in each pathway are provided in Table 1.

tivity through the exchange fluxes for the particular metabo-
lites required to meet these demands. What are the impli-
cations of these aggregate demands on the pathway struc-
ture of a network?

To assess the systemic performance of a network in meet-
ing biosynthetic demands an exchange flux is introduced
into a network representing the aggregate relative demand
of the biomass precursors (analogous to an objective func-
tion [Varma and Palsson, 1993a]). Additional constraints
must also be added to the network to effectively close the
material balances on the metabolites participating in the
biosynthetic demand (or growth) flux. The introduction of a
new exchange flux and the associated restriction of existing
exchange fluxes will alter some of the mass balances and
linear inequalities of the network. A new pathway structure
can be determined based on these changes to the systemic
constraints that is functionally related to the original set of

pathways, as demonstrated in what follows. To distinguish
between the two different forms of output for a system [(1)
all material balances closed with an aggregate demand/
growth flux included versus (2) no aggregate demand/
growth flux and material balances not closed on biosyn-
thetic precursor outputs] we consider the system without a
biosynthetic demand flux (as discussed in the previous sec-
tion) to have free outputs, and the system with balanced
network demands is referred to as having linked outputs.

For the example system in Figure 1, we introduce an
exchange flux that represents an aggregate demand on the
network requiring 1 mol of metabolite C and D along with
2 mol of metabolite E. This flux serves as a balanced drain
on the network and is written:

b:C+D+2E— 4)

Note that the growth flux only involves metabolites that
were previously allowed to exit in the system with free
outputs and subsequently to have a preexisting exchange
flux. Otherwise, the input and output characteristics of the
two representations are no longer compatible and the path-
way results will not be complementary. Furthermore, the
exchange fluxes for C, D, and E are no longer allowed to
serve as direct outputs for the system. This condition will
force b, to take on a negative value while constraining b
and b, to zero (see Fig. 3).

The set of extreme pathways for this system is provided
in Table II (the schematic illustrations of each pathway are
available on-line). We can see that there are ten pathways in
total (eight functional pathways of type I, and two type III
cyclic pathways identical to those from the free output sys-
tem in Table I). All functional pathways utilize either A or
C, or A and C, to produce the balanced set of demands
represented by the growth flux.

(a) Example Metabolic

Intemal Fluxes

(b) Mathematical

Reaction Scheme _ Representation
vw: A—> B
(Linked Output) v;: B> C Steady State Mass Balances
vw: B->D ] B
vw: D> B Ar -y -by =0
v;: C—> D B: v, +w,-v,-v;=0
vs: C > E g’ Vy-vs-vs-by 0 =0
\J - D E DoVt -v, -2y, -by 0 =0
< b A > B E V7 - E: wv;+w -b, =0
i :
- Exchange Fi .
i . XCAange TIXes Flux Constraints
, £ s b;: Ao
AT o h: C — 0 < v,y £ 4
. System Boundary I.I '--.....1\:§b:(> bj: D w0 < b <0
1;3U z b,: E >
Figure 3. (a) The example network presented in Figure 1 with the addition of an aggregate demand flux that requires 1 mol of metabolite C and D for

every 2 mol of metabolite E. (b) Mathematical description of the network with the changes from Figure 1b indicated in gray type. All changes are a result
of the inclusion of the demand exchange flux (a linked output) and the associated alterations to the exchange flux constraints of the participating metabolites.
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Table II.

The ten extreme pathway vectors for the example network in Figure 1 with a linked output.”

Internal fluxes

Exchange fluxes

Pathway Pathway equivalences
number vy vy Vs vy Vs Ve vy b, b, by b, b, linked ~ free
p; 5 0 5 0 0 0 2 -5 -1 0 0 1 P~ P>+ 2p;
P> 1 0 1 0 0 2 0 -1 -3 0 0 1 P>~ P>+ 2pg
P; 0 0 0 0 5 0 2 0 -6 0 0 1 P; ~ P4+ 2Ps
| 0 0 0 0 1 2 0 0 -4 0 0 1 P4~ Ps+ 2P
ps 6 1 5 0 0 0 2 -6 0 0 0 1 P5~p, + P, +2p;s
Ps 4 3 1 0 0 2 0 -4 0 0 0 1 P~ 3P, + P>+ 2pg
P, 6 6 0 0 5 0 2 -6 0 0 0 1 p; ~6p, + Py + 2ps
P 4 4 0 0 1 2 0 -4 0 0 0 1 Ps~4p; +Pa+ 2P
Ps 0 0 1 1 0 0 0 0 0 0 0 0 Po~ P
Pio 0 1 0 1 1 0 0 0 0 0 0 0 Pio~Psg

“The first eight pathways correspond to type I pathways, whereas the last two pathways are type III. Pathway equivalencies between the free and linked

output representations are provided for each pathway.

If only the growth flux is added to the free output system,
and no additional constraints are placed on the exchange
fluxes, the set of extreme pathways would include all of the
extreme pathways listed in Tables I and II (16 total). By
adding one additional flux the dimension in which the flux
cone resides has increased by one (from R'' to R'?), and the
cone has gained six additional edges. If we project the flux
cone down onto the original dimensions in R'" it is seen that
the six additional pathways all reside within the interior of
the flux cone described by the pathway vectors in Table I.
Importantly, these new pathways can be interpreted as posi-
tive combinations of the extreme pathways from the free
output representation that generates the cone as described in
Eq. (3).

To determine the appropriate combination of extreme
pathways we have to redistribute the values for the growth
flux back to the original exchange fluxes of the various
metabolites. This redistribution can be achieved by multi-
plying the growth flux value by the stoichiometric coeffi-
cient of each of the metabolites in the reaction and then
adding this value to the appropriate exchange fluxes. The
values for the internal fluxes remain unchanged. This op-
eration is purely mathematical and does not affect the func-
tionality of the system. Thus, for pathway p; the value for
the exchange fluxes would shift from [-6,0,0,0,1] for b,, b,,
bs, b,, and b, to [-6,1,1,2,0]. From this we can determine
that pathway (ps) for the linked output system is equivalent
to the following combination of pathways for the free output
system: p, + p, + 2 * p5. The equivalencies between all of
the free and linked output pathways are provided in Table II.

Outlining the pathway equivalencies offers the ability to
interpret flux distributions in terms of the pathways for the
linked outputs that represent global metabolic routing pat-
terns used to meet balanced sets of demands, and then fur-
ther decomposes these patterns into the individual pathways
that comprise such a distribution pattern. These comple-
mentary perspectives for interpreting metabolic function
will be illustrated in the following two sections where we
focus on the interpretation of optimal flux distribution cal-
culated using flux balance analysis.

CALCULATING OPTIMAL FLUX DISTRIBUTIONS

The performance capabilities of any metabolic network re-
side in the flux cone that we have now seen described by the
set of extreme pathways. In fact, the answer to any question
related to the general structure and fitness of the network
lies within this cone. The pathways offer a convenient way
of interpreting metabolic function, but how do we best ex-
plore the capabilities and functioning of a metabolic net-
work?

One approach that has recently been used to explore the
relationship between the metabolic genotype and phenotype
for a number of organisms is flux balance analysis (Edwards
and Palsson, 1998, 1999, 2000; Schilling et al., 1999a,
2000). This approach uses linear optimization techniques to
determine the optimal flux distributions within a network so
as to maximize/minimize a particular objective function.
The standard form of a linear programming problem is as
follows, where a linear objective function is maximized or
minimized subject to a series of linear equalities and in-
equality constraints:

Maximize/minimize Z= Ecjvj
J

ajSijBj 5)

subject to ES,jvj =b,
iy
Note that Eq. (5) is analogous to the system of linear equali-
ties/inequalities that forms the general description of the
metabolic network in Figure 1, where all the components of
the b vector are zero. In fact, this system of equations is
merely a special case of the general system defined by the
mass balances and physicochemical constraints (as shown
in Fig. 1b). Linear programming will determine the optimal
value for an objective that lies within the flux cone spanned
by the extreme pathways. Furthermore, the foundations of
linear programming are built on the principles of convex
analysis, which can be used to link the pathway analysis of
metabolic networks outlined earlier with flux balance analy-
sis.
For metabolic applications, the linear objective function
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(Z) to be maximized or minimized can correspond to a
number of diverse objectives ranging from particular meta-
bolic engineering design objectives (energy and metabolite
production) to the maximization of cellular growth (in a
manner similar to that seen in the previous section). Re-
gardless of the objective function chosen, the optimal solu-
tions will lie within the flux cone that is defined by the mass
balance and physicochemical constraints (i.e., linear in-
equalities) placed on the system. Otherwise, the solution to
the optimization problem will be infeasible. This solution
space is virtually the exact same flux cone that we have just
seen described in the previous section in terms of the set of
extreme pathways for the linked output system. The only
difference is that the flux cone must become bounded (a
bounded polytope) to calculate an optimal solution.

We consider the growth exchange flux introduced in Eq.
(4) as the objective function. To determine the optimal uti-
lization of the metabolic network (so as to maximize the
objective function), additional physicochemical constraints
must be considered. Specifically, in this example system,
the upper bound on the exchange fluxes for metabolites A
and C must be set to limit the amount of metabolites A and
C available for intake by the network. Physiologically, these
constraints may correspond to limited substrate availability
or maximal uptake rates or even maximum rates of
diffusion-mediated transport. These maximum capacity
constraints serve to place certain bounds on the flux cone
such that it is no longer an unbounded polyhedral cone.
Regions of the flux cone become bounded by the hyper-
planes defined from these constraints. Without these con-
straints the maximum value of any flux in the network could
be infinite, and the linear programming problem is un-
bounded.

Mathematically, the solution space is the sum of a convex
polytope (closed surface) and a new polyhedral cone (un-
bounded) formed by a subset of the original extremal rays
(see Appendix for details). The conical hull of the polyhe-
dral cone now corresponds to the pathways that are unaf-
fected by the added constraints, and the convex hull of the
polytope is essentially generated from the remaining path-
ways that have now been constrained. Importantly, all of the
vertices of the polytope correspond to bounded feasible so-
lutions of the linear programming problem, whereas the
edges of the flux cone correspond to the unbounded feasible
solutions. Both the polytope and the polyhedral cone are
contained within the original flux cone, which allows for the
interpretation of any point in the solution space using the
original set of extreme pathways from the linked output
system as well as the free output system through their
equivalencies, as we will now illustrate.

LINKING FLUX BALANCE ANALYSIS WITH
PATHWAY ANALYSIS

Consider three cases that represent different environmental
and internal challenges that the example network may face
in meeting its demands: case 1, only metabolite A is avail-

able to the network to meet the demands of the growth flux
in Eq. (4); case 2, only metabolite A is available, but the
internal flux, v, is not functional and is thus constrained to
equal zero; and case 3, only metabolite C is available to the
network to meet the demands of the growth flux. In each
case, we will arbitrarily constrain the input of the available
substrate metabolite to a value of 1 (to obtain substrate
normalized distributions). We can consider the shift from
case 1 to case 2 as a sudden challenge to the internal struc-
ture of the network due to a loss of function, and the shift
from case 1 to case 3 represents an environmental challenge,
namely a change in substrate availability.

Using a commercially available linear programming
package (Lindo Systems Inc., Chicago, IL) the optimal flux
distributions for these three cases were calculated and are
presented in Figure 4. We see that the loss in function of vq
in case 2 decreases the maximum value of the objective
function by 33% from 0.25 to 0.17, essentially forcing the
network to perform suboptimally. There is a subsequent
shift in the utilization of the metabolic pathways that occurs
between case 1 and case 2, and to a more severe extent in
the shift from case 1 to case 3 due to the change in substrate.
It is these shifts in metabolic routing that we seek to inter-
pret from a pathway perspective using the set of extreme
pathways and equivalencies provided in Table II.

In each case, the flux distribution corresponds to an exact
scalar multiple of one of the extreme pathways for the
linked output system in Table II, implying that the solutions
are on the extreme edges of the flux cone. As the environ-
mental/genetic conditions change, the corresponding opti-
mal pathway utilizations shift accordingly across faces of
the flux cone. If a reaction is eliminated or constrained to
zero, all of the pathways that utilize this reaction will be
eliminated. From basic principles of vector addition it be-
comes apparent that the utilization or weight (w;) on an
extreme pathway in comprising a flux distribution must
equal zero if the pathway utilizes the internal flux/reaction
that has been eliminated. Therefore, every extreme pathway
in the system that has a positive flux value for the elimi-
nated reaction will have w; = 0 in Eq. (3). This is the
situation in case 2 where all of the pathways that can pro-
duce metabolite E optimally have been eliminated by the
loss of v, leading to the utilization of other pathways to
meet the demands of the system.

The changes in pathway utilization allow for the inter-
pretation of metabolic shifts in terms of the underlying path-
ways of the network. These example cases offer an illus-
tration of how pathways may be switched on and off to
achieve different flux distributions in a network. Using the
equivalencies in Table II we can generate pathway signa-
tures or profiles based on the utilization of pathways for the
free output representation as shown in the lower portion of
Figure 4. These signatures offer the visual interpretation of
pathways being “switched” on and off in order to establish
the optimal flux distributions. Taken together, this illus-
trates how flux distributions and associated metabolic phe-
notypes can be interpreted from a pathway-based perspec-
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(a) Case 1: Flux Distribution

constraints: -4 <b, <0; 0<b,, b, <+w
primal: [1,3/4,1/4,0,0,1/2,0|-1,0,0,0, 1/4]

(b) Case 2: Flux Distribution

constraints: -4 <b, <0; 0<bh, b, <+w; v;=0
primal: [1, 1/6, 5/6,0,0,0,1/3|-1,0,0, 0, 1/6]

(¢) Case 3: Flux Distribution

constraints: 0<bh,, b, <+w0;-4<h, <0
primal: [0, 0,0,0,1/4,1/2,0]0,-1,0,0, 1/4]

Objective value = 0.25 AI Objective value = 0.17 1 Objective value = 0.25
(C+D+2E) : {C+D+2E) H %Y (C+D+2E)
e - I e g Ty S T * . . R s
...,....9;3.3..>
s ‘
025 E p4
v
Pathway Distribution Pathway Distribution Pathway Distribution
L0 (y=3/4p, + 14 p,+ 112 pg) 101 (v=1/6p, + 1/6 p, + 1/3 py) 1.0 (v="1/4p,+1/2 py)
0.8

pt p2 p3 p4d p5S pbé pl p2 p3

Figure 4. Flux distributions and pathway signatures for the three cases considered. (a) For case 1, only metabolite A is allowed to enter the system leading
to an optimal yield of 0.25 with the complete primal solution to the optimization provided. Flux levels through b, are redistributed back to the original
exchange fluxes and the flux distribution is illustrated. The extreme pathways for the free output system utilized to achieve the flux distribution are overlaid
onto the reaction network with their relative magnitudes provided in the pathway signature charts. (b) In case 2, the internal flux, vy, is restricted to zero
with metabolite A remaining as the only substrate. (c) For case 3, the activity of v is restored while the substrate availability is switched from metabolite

Ato C.

tive. To return to a reaction-based description, it is only
necessary to perform a coordinate transformation by multi-
plying the weights of the pathways by the pathway vectors.

From pathway analysis we arrive at a fundamentally dif-
ferent perspective from which to view metabolic behavior
such as that predicted through the use of flux balance analy-
sis. In addition to viewing the activity of individual reac-
tions we can effectively interpret metabolic function in
terms of the activity of individual pathways. The aforemen-
tioned example is useful in illustrating many of the theoret-
ical concepts for a pathway interpretation of metabolic func-
tion and, in what follows, we extend these concepts to ana-
lyze complex metabolic networks. Although linear
optimization is used to calculate flux distributions in all of
the subsequent examples, the concepts of pathway repre-
sentations of flux distributions are general to any flux dis-
tribution regardless of whether it is derived experimentally
or theoretically.

APPLICATION TO E. COLI
CENTRAL METABOLISM

The reconstruction of metabolic networks from annotated
genome sequence information is currently an active area of
research. From these reconstructions it is possible to study
the system characteristics and capabilities of metabolic net-

works and explore the metabolic genotype—phenotype rela-
tionship in fully sequenced organisms using both flux bal-
ance analysis and genome-scale pathway analysis. Using
flux balance analysis, in silico studies on the systemic prop-
erties of the Haemophilus influenzae (Edwards and Palsson,
1999) and E. coli (Edwards and Palsson, 2000) metabolic
networks have recently been completed. In addition, path-
way analysis has now been successfully applied to assess
the production capabilities and general fitness of a recon-
structed metabolic network for H. influenzae (Schilling and
Palsson, 2000b). In what follows, we will consider a sub-
system of the E. coli metabolic genotype comprised of the
central metabolic pathways. Flux balance analysis will be
used to explore the metabolic capabilities and predicted
functions of this network under various substrate condi-
tions. Then flux balance analysis will be combined with
pathway analysis to provide a complete view of the capa-
bilities and steady-state behavior of the metabolic network
from a pathway-oriented perspective.

The schematic illustration of the reactions comprising the
central metabolic network of E. coli examined in what fol-
lows is shown in Figure 5 (the complete table of reactions is
provided on-line). Briefly, the network is comprised of the
complete set of glycolytic reactions, the pentose phosphate
shunt, and the tricarboxylic acid (TCA) cycle without the
glyoxylate shunt, along with the necessary transport reac-
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Figure 5. Central metabolic network of E. coli considered in the pathway and flux balance analysis. The system is comprised of 53 metabolites, 78 internal
fluxes, and 8 exchange fluxes. A complete list of the net reaction capable of occurring in the network is provided on-line with complete reaction names.

tions required to import and export metabolites from the
extracellular space. The necessary reactions of the electron
transport chain are included with the P/O ratio set to 4/3.
The system boundary is drawn around all of the reactions in
the network including the transport reactions. Exchange
fluxes have been included to allow for the supply of glucose
and succinate as carbon sources available to the system,
while ethanol and acetate are allowed byproducts of the
system. Oxygen, carbon dioxide, and inorganic phosphate
are free to enter and exit the system as needed. (Note that
this network does not completely describe central metabo-
lism in E. coli. We have chosen this representation as a
compromise between successful representation of the basic
aspects of central metabolism and providing a useful ex-
ample of the salient features of this combined approach for
studying metabolic systems.)

Pathway Analysis for the Free Output System

To study the pathway structure of the system with free
outputs it is necessary to include exchange fluxes for all of
the necessary precursors and cofactors that are utilized to
generate biomass. In this example we define the metabolic
demands as those provided in Table III, which were studied
in an earlier model of E. coli central metabolism (Varma
and Palsson, 1993a). The metabolic demands considered for
each metabolite are used to generate the growth flux used
when considering the linked output system. We focus first
on the free output system without the aggregate demand
flux.

For the case of free outputs we introduce an exchange
flux for each of the biosynthetic precursors that is con-
strained only to allow the metabolite to exit the system.
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Table III. Metabolic demands of precursors and energy/redox cofactors
required for the generation of 1-g biomass yield as used in Varma and
Palsson (1993a) and estimated from cellular composition data (Ingraham et
al., 1983).%

Metabolite Demand (mmol)
ATP 41.3
NAD* 35
NADPH 18.2
G6P 0.2
F6P 0.1
R5P 0.9
E4P 0.4
GA3P 0.1
3PG 1.5
PEP 0.5
PYR 2.8
ACCOA 3.7
OXA 1.8
AKG 1.1
SUCCOA (Trace)

“These demands do not include energy requirements for non-growth-
associated maintenance. The growth flux is a summation of the drains of
each metabolite multiplied by the demand weights given in the table.

Unconstrained exchange fluxes are added for currency me-
tabolites such as ATP, ADP, AMP, NADH, and NADPH.
Therefore, we expect to generate extreme pathways that
lead directly from a substrate to a particular precursor or
metabolic byproduct (type I pathways) along with a number
of pathways and cycles that interconvert only cofactors and
currency metabolites (type II pathways). In the case where
glucose is considered as the only available substrate the
total number of extreme pathways is 1093 (1053 type I, 10
type II, and 30 type III). For the case with succinate as the
only available substrate, the number of pathways reduces to
195 extreme pathways (155 type I, 10 type II, 30 type III).
These sets of pathways contain all of the optimal as well as
suboptimal conversion ratios of each substrate to all of the
precursors and can be used to interpret the specific capa-
bilities of the network and other systemic properties, as
previously demonstrated for H. influenzae (Schilling and
Palsson, 2000b). However, our interest is in studying the
phenotype or the utilization of the network to meet the
balanced set of precursor demands required to generate bio-
mass, rather than focusing on the production of particular
precursors of interest. Therefore, we now examine the
linked output system using pathway analysis initially, and
then combine this with flux balance analysis.

Pathway Analysis for the Linked Output System

For the case of linked outputs a growth flux is introduced
that represents the metabolic demands presented in Table I11
for generating 1 g of dry weight (DW) biomass. We also
remove the exchange fluxes for the precursors and currency
metabolites that were introduced in the free output system,
thus closing the mass balances on all of these metabolites.
The system now has eight exchange fluxes (extracellular

glucose, succinate, ethanol, acetate, carbon dioxide, oxygen,
inorganic phosphate, and the intracellular biomass). In all
further calculations, glucose and succinate are constrained
to only enter the system, whereas ethanol, acetate, and bio-
mass are constrained to only exit the system. The remaining
exchange fluxes are unconstrained (oxygen, carbon dioxide,
and inorganic phosphate). With the decomposition of re-
versible internal fluxes into a forward and reverse reaction
the system is comprised of 78 internal fluxes and 8 ex-
change fluxes. The extreme pathways for the linked output
system will involve flux distribution patterns that the system
can use to generate biomass, completely oxidize the carbon
source, or convert it into one of the byproducts.

First, we consider glucose to be the only substrate avail-
able to the network. In this case, there are a total of 115
extreme pathways (85 type I, 30 type III). The type III
pathways are all identical to those of the free output system
and no type II pathways remain as all of the cofactors are
now forced to balance. There are four futile cycles in the
system (sets of reactions that can utilize and convert ATP to
ADP and inorganic phosphate), those sets being (pfkA/fbp),
(pckA, ppc), (pykF, ppsA, adk), and the ATP drain flux,
which is used to represent non—growth-associated mainte-
nance.

After careful inspection of the 85 type I pathways it is
apparent that many of them are in sets of four pathways that
are identical, except for the utilization of a different futile
cycle for the dissipation of ATP so as to balance the net
production and consumption of ATP. All of these pathways
in a set exhibit the same values for the exchange fluxes,
illustrating their functional equivalence. To generate a re-
duced set of pathways that represents the full capabilities of
the network we retain only pathways from these sets that
utilized the ATP drain flux instead of one of the three futile
cycles listed earlier. The type III pathways, which are
mainly a consequence of the decomposition of reversible
reactions into a forward and a reverse reaction, are also
removed from consideration, as they show no activity in the
exchange fluxes. Following these reductions we are left
with 30 pathways. Table IV provides the details for the
exchange fluxes of these pathways normalized to the input
value for the substrate glucose.

The pathway analysis was also performed with succinate
as the sole carbon source for the system, generating the
complete set of 66 extreme pathways (36 type I, 30 type III).
Following the same simplification procedure just described,
areduced set of 12 pathways is generated from the complete
set (Table V). All of the detailed pathway vectors for the
complete and reduced sets in both cases are provided on-
line.

For both glucose and succinate as the sole carbon source
there are pathways that generate biomass and either produce
CO,, CO, and acetate, or CO, and ethanol as byproducts.
Similar pathways also exist for generating these byproducts
without generating biomass. It is important to note that the
network does not allow for the generation of formate or
succinate as metabolic byproducts, due to the increased
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number of pathways that would be generated based on these
conditions. This increase in pathway number is sufficient
enough to distract from the main theoretical issues being
illustrated herein, and was therefore not considered. For
glucose we see that the maximal yield of biomass in any
pathway is 0.105 g DW/mmol glucose (0.583 g DW/g glu-
cose), whereas the maximal yield of succinate is 0.051 g
DW/mmol (0.432 g DW/g succinate). These yields cannot
be exceeded, as the combination of any set of extreme path-
ways according to Eq. (3) will not surpass the ratio of bio-
mass/substrate of the optimal pathway. In each case, the
minimum biomass yield is zero, as pathways do exist that do
not produce biomass. For glucose, the range of oxygen con-
sumption to substrate uptake varies from 0.0 to 6.0 mol
O,/mol glucose, whereas, for succinate, the range narrows
from 0.5 to 3.5 mol O,/mol succinate. Any oxygen/substrate
consumption ratios outside of these ranges are infeasible.
Other similar systemic constraints can be defined from these
pathways that will set boundaries on the functional capa-
bilities of the network. Recall that these sets of extreme
pathways define the edges of the flux cone that contain all
of the possible metabolic phenotypes possibly displayed by
the network. Therefore, it is possible to bracket the behavior
of the network from the pathway analysis. Next, we illus-
trate how the pathways can be used to gain a deeper under-
standing of shifting metabolic behaviors as determined us-
ing flux balance analysis.

FLUX BALANCE ANALYSIS AND PHENOTYPIC
PHASE PLANES

Flux balance analysis can be used to examine quantitatively
the linked output system detailed earlier. Geometrically, the
constraints that are imposed on the input values of the ex-
change fluxes for the substrates will bound the flux cone
defined by the extreme pathways; thus resulting in a
bounded polyhedron. Optimal solutions within this space
will then lie on a vertex of the polyhedron. These are the
bounded feasible solutions of the linear programming prob-
lem. First, we calculate the optimal flux distributions for
growth on glucose and succinate normalized to 1 mmol of
substrate. Illustrations of the optimal flux distributions as
calculated for both conditions are provided on-line. The
optimal biomass yields determined with flux balance analy-
sis are 0.105 g DW/mmol glucose and 0.051 g DW/mmol
succinate, which are identical to the optimal yield calculated
from the pathways (pathway #2 for glucose, and pathway #1
for succinate). This result reveals that the optimal solution
lies directly on the vertex of the polyhedron that is defined
by the extreme pathway containing the optimal ratio of bio-
mass/substrate. In each case, the inclusion of any other path-
way into the solution will decrease the yield from the maxi-
mum ratios indicated earlier. (For comparison to unpub-
lished data, the experimental optimal yield that we have
achieved for growth of E. coli K-12 in batch culture on
glucose is 0.096 ¢ DW/mmol [n = 6, SD = 0.010]. For
growth on succinate the optimal yield is 0.050 g DW/mmol
[n = 13, SD = 0.006].)

All metabolic phenotypes (metabolic flux distributions)
attainable from a defined metabolic system are mathemati-
cally confined to the flux cone. Flux balance analysis is used
to search through the flux cone for a solution that maxi-
mizes/minimizes a given objective function. It has been
shown that, under nutritionally rich growth conditions (i.e.,
cell is not starved for phosphate or nitrogen), E. coli grows
in a stoichiometrically optimal manner (Varma and Palsson,
1994a); thus, setting the growth flux as the objective func-
tion produces physiologically meaningful results. The opti-
mal flux distribution is only meaningful when interpreted in
terms of the specific environmental conditions. Therefore,
phenotype phase planes (PhPPs) have been calculated to
define the range of optimal phenotypic behavior in the con-
text of a number of environmental parameters (Edwards and
Palsson, 1999; Varma et al., 1993b). These phase planes
illustrate how optimal phenotypic behavior is dependent on
the environmental conditions, and can be used to delineate
fundamentally different regions of metabolic behavior in a
multiparameter space. In what follows, we show that the
demarcations on the PhPP that are generated by flux balance
analysis (FBA) and linear programming are identical to the
projections of the extreme pathways onto the relevant sub-
space.

The methodology for defining PhPPs has been described
by Edwards et al. (currently in review by B & B). Herein,
we briefly describe the construction of PhPPs in the context
of the metabolic pathway analysis. The exchange flux or
nutrient uptake rates for two metabolites (such as the carbon
substrate and oxygen) can form two axes on an (x,y)-plane
(these exchange fluxes were two unit vectors in R”). The
optimal metabolic flux distribution is calculated for all
points in this plane using linear programming. Each of the
two exchange fluxes for the two metabolites considered in
the phase plane is set to equal a precise value based on the
coordinates in the plane, and optimal solutions are calcu-
lated. In other words, the maximum value of the objective
function is found as the position of the hyperplanes that
bound the flux cone in the respective directions is moved.

Through an examination of the shadow prices (linear pro-
gramming dual variable), it is determined that there is a
finite number of fundamentally different optimal metabolic
flux distributions present in such a plane (Varma et al.,
1993b). The shadow prices are measurements associated
with every metabolite in the network, and indicate the in-
trinsic value of the metabolite. They are calculated from the
dual problem of a linear optimization and are defined as
follows:

dz 6
'Yi=_dbi ( )

The shadow prices (vy;) essentially define the sensitivity of
the objective function (Z) to changes in the availability of
each metabolite/substrate, whereas b; defines the violation
of the mass balance constraint and is equivalent to an uptake
reaction. The shadow price can be negative, zero, or posi-
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tive, depending on the value of the metabolite to the objec-
tive function. Through observations of the shadow prices it
can be determined when a new basic feasible solution has
been introduced into the optimal solution. Because the ex-
treme pathways of the linked output system are equivalent
to the basic feasible solutions, this situation indicates a shift
in the metabolic behavior corresponding to a new extreme
pathway being utilized. Thus, the weight (w) on a particular
extreme pathway increases from zero to a positive value in
describing the flux distribution, as in Eq. (3). This procedure
leads to the demarcation of distinct regions, or “phases,” in
the plane where the same pathways are always being uti-
lized to varying extents. In each phase, the optimal use of
the metabolic network is fundamentally different, corre-
sponding to different optimal phenotypes.

In terms of the pathway analysis, the PhPP is basically
generated by the projection of selected edges of the flux
cone into a two-dimensional or, in some cases, a three-
dimensional space spanned by the fluxes used to generate
the particular phase plane. The boundaries of the phases
within the PhPP correspond to particular extreme pathways.
The entire region corresponding to a particular phase is
subsequently the positive combination of the two extreme
pathways that bound the phase. Thus, as we traverse
through the phase plane we are essentially moving along the
faces of the flux cone. In addition, the internal fluxes that
will define the distinct phenotypes in each phase can be
identified directly from the extreme pathways. The differ-
ence between the FBA phenotype phase plane and the ex-
treme pathway projection is that the phase plane analysis
only identifies the pathways that are used under optimal
conditions, whereas the extreme pathway analysis maps all
the pathways onto the same two-dimensional space. The
remaining pathways that do not generate the boundaries of
the PhPP represent suboptimal solutions or alternate optimal
solutions. We now illustrate these concepts for growth on
succinate using the succinate—oxygen PhPP.

SUCCINATE-OXYGEN PHENOTYPIC
PHASE PLANE

The succinate—oxygen PhPP contains four distinct meta-
bolic phenotypes (Fig. 6). The dark lines define the bound-
aries of each region in the phase plane as calculated using
linear programming, and the lighter lines are the additional
extreme pathways projected onto the two- and three-
dimensional spaces. There are several distinguishing char-
acteristics of the succinate—oxygen PhPP. First, the PhPP
illustrates that the metabolic network is unable to utilize
succinate as the sole carbon source for growth in an anaero-
bic environment, as evidenced by the PhPP only covering a
region of the positive quadrant and the fact that all extreme
pathways that generate biomass contain input exchange
fluxes for succinate and oxygen. Second, the PhPP has three
futile regions. (These are defined as regions where increased
uptake of one of the substrates has a negative effect on the
ability of the metabolic network to support growth [Ed-

wards et al., currently in review by B & B]: one where
oxygen is in excess [region 1]; and two where the carbon
source is in excess [regions 3 and 4].) The futile regions can
be identified as regions in which the slope of the isoclines is
positive, where the isocline is defined as the locus of points
for which the combination of the two exchange fluxes will
provide for the same optimal value of the objective function.
The succinate—oxygen PhPP also contains one dual-
substrate limitation region (region 2).

Region 1 (Fig. 6a) is an oxygen-excess-futile region. Ad-
ditional carbon is consumed to eliminate the oxygen that is
provided in excess. Therefore, this region is wasteful, and
less carbon is available for biomass production because it is
oxidized to eliminate the excess oxygen. The ability of the
metabolic network to produce high-energy phosphate bonds
is not limiting growth in the futile region. The pathways in
Table V are projected onto the phase planes based on the
ratio of oxygen uptake to substrate uptake (Fig. 6b). It is
seen that pathways #23 and #35, which project onto the
same line, bound region 1 at a maximum oxygen/succinate
uptake ratio of 6. These pathways do not generate biomass
and, subsequently, the biomass yield decreases as the oxy-
gen/succinate ratio increases moving the position in region
1 closer to the upper boundary than the lower boundary.

Separating region 1 from region 2 is a line defined as the
line of optimality. This line represents the optimal relation
between the two exchange fluxes. The biomass yield on the
line of optimality is 0.051 g DW/mmol succinate. The line
of optimality corresponds to the extreme pathway #1 in
Table V. The optimal utilization of the metabolic pathways
involves the cyclic operation of the TCA cycle, no flux in
the oxidative branch of the pentose phosphate pathway
(PPP), the utilization of the malic enzyme to produce py-
ruvate and NADPH, and CO, production as the only meta-
bolic byproduct. The metabolic flux distribution for a point
on this line is available on-line.

In region 2, the availability of succinate and oxygen is
limiting the biomass production. Thus, this region is con-
sidered a dual-substrate-limited region, and the dual limita-
tion is immediately apparent by the negative slope of the
isoclines in region 2. The optimal metabolic flux distribu-
tion in this region leads to acetate production, and thus an
extreme pathway that includes the acetate exchange flux is
turned on. The activated pathway is the extreme pathway
separating region 2 from region 3 and corresponds to path-
way #20 in Table V, which produces acetate and biomass
with a yield of 0.047 g DW/mmol succinate. Thus, every
point in region 2 is a positive combination of pathway #1
and pathway #20, which results in a biomass yield ranging
from 0.047 to 0.051 g DW/mmol succinate, and an acetate
production level ranging from 0 to 0.158 mmol acetate/
mmol succinate.

In regions 3 and 4, the uptake of additional succinate has
a negative effect on the objective function. The succinate
utilized by the metabolic network beyond the demarcation is
not utilized to increase the objective function. Rather, cel-
lular resources are required to eliminate the excess succi-
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Figure 6. Succinate—oxygen phenotypic phase plane. (a) Four regions of metabolic behavior are shown on the two- and three-dimensional phase portraits.
The isocline shading indicates regions in which the objective function (biomass yield) remains constant. (b) Projection of the 12 pathways in Table V onto
the phase planes. Pathways are plotted based on the slope of the line as determined from the ratio of the oxygen exchange flux versus the succinate exchange
flux. Bold lines and the corresponding bold pathway numbers indicate the pathways corresponding to the boundaries of the phases. Thin lines and
corresponding pathway numbers reveal the additional pathways that project onto either the interior of the cone or a face of the cone as evidenced in the

three-dimensional phase plane.

nate. Region 3 is bounded by pathway #20 and pathway
#19, which produces ethanol as a byproduct. Therefore, any
combination of these two pathways will lead to the com-
bined production of acetate (from pathway #20) and ethanol
(from pathway #19). Starting in region 2 and traversing into
region 3 the metabolic network will turn off pathway #1 and
turn on pathway #19. From the complete pathway vectors
that provide the flux values for the internal fluxes (provided
on-line), it is seen that the sucA and sucC reactions are
predicted to shut off and the adhE reaction is turned on,
while a number of other sets of reactions will carry increas-
ing or decreasing flux levels. Traversing into region 4, the
metabolic network will turn off pathway #20 and turn on
pathway #31, which generates ethanol and CO, with no
biomass production, thus serving to decrease the objective
function. When the oxygen/succinate uptake ratios de-
creases to 2.00 the network will utilize pathway #31 only,
and biomass production will reach zero. An oxygen/
succinate uptake ratio below 2.00 is considered infeasible
for network processing (these points will lie outside of the
flux cone).

By determining the extreme pathways that demarcate the
regions of the PhPP we are able to determine the precise
theoretical range of biomass yield, oxygen/substrate uptake
ratios, and the exact combination of pathways that charac-
terize the predicted optimal metabolic phenotypes in each
region. This pathway perspective may assist in the identi-
fication of pathways and associated reaction sets that are
predicted to be switched on/off during a metabolic transition
into an alternative functional modality.

GLUCOSE-OXYGEN PHENOTYPIC PHASE PLANE

The glucose—oxygen PhPP contains five regions (Fig. 7a)
also bounded by sets of extreme pathways (Fig. 7b). Region
1 is an oxygen-excess-futile region, similar to region 1 for
succinate. It is unlikely that the network would ever operate
in this region, as it is futile. Based on the positive slope of
the isoclines in this region we would expect the network to
decrease the oxygen uptake rate, which will increase the
biomass yield and bring the behavior closer to the line of
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Table V. Functional characteristics of the reduced set of 12 extreme pathways calculated for succinate as the sole carbon source for the E. coli metabolic network.*

300

Exchange fluxes®

ETHxt/ ACxt/ GRO/ PIxt/ CO2xt/ O2xt/
SUCCxt SUCCxt SUCCxt

SUCCxt/

Pathway

Net pathway reaction balance

SUCCxt SUCCxt

SUCCxt

SUCCxt

number

SUCCxt + 0.188 PIxt + 1.267 O2xt = 0.051 GRO + 1.825 CO2xt

-1.267
—-1.338
-1.142
-2.014
-2.062
-2.108
-2.144
-0.759
-3.500
—-1.500
—-0.500
-3.500

1.825
1.895
1.696
2.553
2.600
2.644
2.679

—-0.188
-0.182
-0.172
-0.125
-0.121
-0.117
-0.114
-0.092

0.051

—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000
—1.000

SUCCxt + 0.182 PIxt + 1.338 O2xt = 0.049 GRO + 1.895 CO2xt

0.049
0.047

10
20

SUCCxt + 0.172 PIxt + 1.142 O2xt = 0.047 GRO + 1.696 CO2xt + 0.158 ACxt

SUCCxt + 0.125 PIxt + 2.014 O2xt = 0.034 GRO + 2.553 CO2xt
SUCCxt + 0.121 PIxt + 2.062 O2xt = 0.033 GRO + 2.6 CO2xt

0.158

0.034

0.033

SUCCxt + 0.117 PIxt + 2.108 O2xt = 0.032 GRO + 2.644 CO2xt
SUCCxt + 0.114 PIxt + 2.144 O2xt = 0.031 GRO + 2.679 CO2xt

0.032

12
16
19
23

0.031

SUCCxt + 0.092 PIxt + 0.759 O2xt = 0.025 GRO + 1.837 CO2xt + 0.549 ETHxt

SUCCxt + 3.5 O2xt = 4.0 CO2xt

1.837
4.000

0.025

0.549

SUCCxt + 1.5 O2xt = 2.0 CO2xt + 1.0 ACxt

2.000
2.000
4.000

0

1.000

27
31

SUCCxt + 0.5 O2xt = 2.0 CO2xt + 1.0 ETHxt

SUCCxt + 3.5 O2xt = 4.0 CO2xt

1.000

35

“Pathways ordered based on the activity of the growth flux normalized by the succinate uptake. Pathway numbers coincide with the original numbers of the pathway vectors retained from the complete set

(availabe on-line). All exchange flux values are normalized to the succinate intake level (negative values are relative uptake ratios, positive values are production ratios).

®SUCC, succinate; ETH, ethanol; AC, acetate; PI, inorganic phosphate; CO2, carbon dioxide; O2, oxygen; GRO, biomass/growth flux (see Table III).

optimality. The line of optimality corresponds to pathway
#2 from Table IV yielding 0.105 g DW/mmol glucose. The
optimal flux distribution is provided on-line.

An oxygen consumption decreases to below 1.376 mol
O,/mol glucose (the slope of pathway #2 in Fig. 7b), the
network moves into region 2, where acetate begins to be
secreted. Acetate secretion occurs due to the activation of
pathway #38 that bounds the right side of region 2. Tra-
versing through region 2 yields only a modest decrease in
the biomass yield from 0.105 to 0.101 g DW/mmol glucose.
As the oxygen consumption continues to decrease to below
1.226 mol O,/mol glucose, the phenotype moves from re-
gion 2 into region 3 and the network begins to secrete etha-
nol in addition to acetate, and the biomass yield decreases
further. In terms of the pathways, region 3 is bound to the
left by pathway #38 and to the right by pathway #44 (Fig.
7b). Therefore, moving from region 2 into region 3 shifts
the pathway utilization by inactivating pathway 2 com-
pletely while switching pathway #44 on to combine with
pathway #38. From the pathways it is seen that the neces-
sary reactions for ethanol production and transport are all
activated, whereas many of the reactions in the TCA cycle
(sucA, sucC, sdhAl, fumA, mdh, sdhA2) are inactivated as
the cycle is no longer used to generate energy and reductive
potential because the decreased oxygen availability has lim-
ited the use of the electron transport chain to generate ATP.

Region 4 is bracketed by pathway #44 and #45. As every
point in this region is a positive combination of these two
pathways the biomass yield will range from 0.078 to 0.095
g DW/mol glucose for an oxygen consumption range of
0.808 to 1.116 mol O,/mole glucose. The pykF reaction will
be activated while the ppsA reaction will be inactivated.
Moving below an oxygen consumption rate of 0.808 mol
O,/mol glucose places the network in region 5 where it is
completely oxygen limited, and the biomass yield drops
sharply as the oxygen availability decreases. Region 5 is
bounded by pathway #45 and #57 in Table IV. Note that
when the oxygen consumption rate is zero the network is
unable to produce biomass, and therefore the network pre-
dicts that completely anaerobic growth is unachievable.
This result is due to the fact that no oxygen is available to
consume the redox equivalents generated to produce the
biomass (as part of the objective function). If we include the
pyruvate formate lyase reaction in the network and allow
formate to be an allowed byproduct the network can support
anaerobic growth. In this case, the complete set of extreme
pathways would increase from 85 to 192 simply from the
addition of this one reaction. To avoid excessive numbers of
pathways in this introductory and conceptual investigation
we chose not to include this reaction. Therefore, the pre-
dicted inability to grow anaerobically is attributed to the
model construction that was simplified so as to demonstrate
many of the concepts just described without drowning the
reader in excessive information and excessive numbers of
pathways.

As in the previous section it is again seen that the extreme
pathways that span the flux cone demark regions of optimal
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Figure 7. Glucose—oxygen phenotypic phase plane. (a) Five regions of metabolic behavior are shown on the two- and three-dimensional phase portraits.
The isocline shading indicates regions in which the objective function (biomass yield) remains constant. (b) Projection of the 30 pathways in Table IV onto
the phase planes. Pathways are plotted based on the slope of the line as determined from the ratio of the oxygen exchange flux versus the glucose exchange
flux. Bold lines and the corresponding bold pathway numbers indicate the pathways corresponding to the boundaries of the phases. Thin-dashed lines
correspond to additional pathways that project onto either the interior of the cone or a face of the cone as evidenced in the three-dimensional phase plane.

metabolic utilization as calculated using linear program-
ming. Using phenotypic phase planes, it is realized how
pathways can be interpreted as being switched on and off as
environmental parameters change in time. This interpreta-
tion made use of the extreme pathways for the linked sys-
tem, which correspond to the basic feasible solutions of the
linear programming problem created through the introduc-
tion of maximum capacity constraints. As demonstrated ear-
lier, the extreme pathways for the linked output system that
are determined to comprise a flux distribution may be de-
composed into pathways calculated for free output descrip-
tion, which provides a more detailed look at pathway utili-
zation.

ALTERATIONS TO INTERNAL STRUCTURE OF
THE NETWORK

In the previous two sections, environmental challenges to
the metabolic network were considered through examina-
tion of the optimal network performance across a complete
parameter space for exchange fluxes. In this section the
focus shifts to assessing the effects of internal challenges to

the network on overall performance and pathway utiliza-
tion. All pathways in Tables IV and V that do not form the
boundary of a region in the PhPP for either glucose or
succinate (as shown in Figs. 6 and 7) are suboptimal path-
ways and will not be used under optimal conditions. These
suboptimal extreme pathways will be utilized when alter-
ations are made to the reaction network/metabolic genotype
that lead to the removal of one or more of the optimal
extreme pathways. Removal of internal reactions through
either gene deletions or a loss in enzymatic function has the
effect of completely eliminating any extreme pathway that
utilizes the reaction being removed.

To illustrate the correlation between removal of a reac-
tion and the corresponding impact on pathway structure and
optimal performance of the network, each reaction in Figure
5 was individually eliminated from the network and optimal
flux distributions were calculated using flux balance analy-
sis. This was performed for both substrate growth condi-
tions, and optimal biomass yields are provided in Table VI.
To determine the effects on the pathway structure, all ex-
treme pathways generating biomass that utilize the disabled
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reaction are indicated in Table VI. These pathways can no
longer be used by the system. If there are no extreme path-
ways remaining that can be utilized to generate biomass
then the network is completely disabled. However, in many
cases, there are viable pathways that remain intact despite
the loss of a reaction. From the remaining pathways, the one
with the highest biomass yield can be determined from the
information in Tables IV and V, and often it will be sub-
optimal with respect to a pathway that has been eliminated.
In comparing the optimal yields as calculated using linear
programming versus the extreme pathways available to the
system in the face of the internal challenges, it is seen that
the predicted optimal growth yield and flux distribution cor-
responds precisely with one of the remaining extreme

pathways that has the highest ratio of biomass to substrate
uptake. This gain provides a clear representation of the con-
nection between pathway analysis and flux balance analy-
sis. For a number of reactions the effects of removal are
identical due to the fact that a number of reactions belong to
the same reaction/enzyme subset (Pfeiffer et al., 1999;
Schilling and Palsson, 2000b). These subsets correspond to
reactions that always occur together in the same ratio in all
pathways in which they are active (i.e., they are dependent
on each other). Table VII lists the enzyme subsets for the E.
coli central metabolic network considered in both cases.
Internal challenges will also have a profound effect on
how the network responds in the face of environmental
challenges. To examine these combined challenges, the

Table VI. Pathway and flux balance analysis results associated with removal of individual reactions or genes.”
G (Succinate) Optimal (Glucose) Optimal
N;::; Pathways available Biomass Pathways available Biomass
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“Pathways that utilized the removed reaction are indicated in dark gray boxes, with the X indicating that they are no longer available due to the removal
of the reaction. Light gray boxes are pathways still available that generate a biomass yield. The pathway with the highest yield in each case is indicated
by the double-bordered boxes. Optimal biomass yields as calculated using linear programming are indicated for each deletion on both substrates in units

of grams dry weight per millimole of substrate.
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Table VII. Enzyme subsets calculated for the E. coli central metabolic
network considering both glucose succinate as possible substrates.

Reaction/enzyme subsets

(AC trx, ackA, pta)
(ETH trx, adhE)
(O, trx, cyoA)
(fba, tpiA)

(gapA, pgk)
(gpmA, eno)
(ppsA, adk)

(zwf, pgl, gnd)
(tktAl, talA)

(gltA, acnA, icdA)
(sucA, sucC)
(sdhAl, fumA, mdh, sdhA2)

PhPP studies examined in the previous section can be re-
peated for each of the network deficiencies examined in
Table VI. In Figure 8, the 12 extreme pathways for growth
on succinate are projected into the oxygen—succinate plane

and the regions of the phase plane are calculated using flux
balance analysis to determine the qualitatively different re-
gions of metabolic function. In comparing the wild-type
situation (Fig. 8a) to the deletion of any one of the genes
comprising the oxidative branch of the pentose phosphate
shunt (Fig. 8b), there is only one pathway that remains
capable of generating biomass, and this pathway forms the
boundary between the two regions of the phase plane. The
other two pathways that generate the boundaries do not
produce biomass. Figure 8c represents the loss of either the
sucA or sucC reaction. In this case, many of the original
pathways remain intact with the exception of the optimal
pathway utilized in the standard wild-type network. Only
one of the boundaries to the phase plane shifts, indicating
the utilization of a different pathway that is now optimal due
to the loss of the original optimal pathway. Taken together,
this illustrates how an internal challenge to a network forces
the utilization of a different set of pathways under changing
environmental conditions.
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Figure 8. Pathway projections and phase plane outlines for mutant strains with succinate as the substrate. For (a) wild-type, (b) zwf, pgl, or gnd deletion,
(c) sucA or sucC deletion, each of the pathways available to the network are indicated by the solid black lines, whereas those no longer available due to
the deletion are indicated by the solid gray lines. Points outlining the different regions of the phase plane for each case are indicated by the filled circles

as calculated using linear programming optimizing for the biomass yield.
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DISCUSSION

Using a simple example network and a detailed network of
E. coli central metabolism, we have illustrated how meta-
bolic phenotypes (flux distributions) and shifts in metabolic
behavior can be interpreted from a pathway-based perspec-
tive. From the physical principles of mass conservation and
the constraints of reaction thermodynamics, the mathemati-
cal concepts of convex analysis are used to define sets of
extreme pathways that span the entire flux space/cone for
complex metabolic networks. These pathways represent
balanced sets of metabolic reactions whose functional char-
acteristics together represent the capabilities of the meta-
bolic network. From a pathway-oriented perspective, sys-
tems can be studied in terms of their ability to generate
particular metabolic precursors (free outputs) or examined
for their ability to generate a balanced set of these biosyn-
thetic demands (linked outputs). For both approaches, net-
work flux distributions, such as those generated using op-
timization techniques (e.g., flux balance analysis), can be
interpreted as nonnegative combinations of the extreme
pathways as indicated mathematically in Eq. (3). These dif-
ferent approaches allow for two different pathway perspec-
tives (free versus linked outputs), which are related to each
other by precise pathway equivalencies (not to be confused
with equivalencies among reactions).

Using flux balance analysis, the complete range of opti-
mal metabolic phenotypes can be examined under defined
environmental and genetic conditions through the use of
phenotypic phase planes (PhPPs). For the E. coli network,
the PhPPs were generated for growth on succinate and glu-
cose spanning particular regions and dimensions of the flux
cone. Projecting the set of extreme pathways onto the PhPP
reveals the precise pathway utilizations that are occurring in
each region of metabolic behavior. The pathways serve to
bracket the behavior in each region, which creates ranges of
biomass yield along with oxygen and substrate uptake limi-
tations. In the face of internal challenges to the structure of
the network the set of viable extreme pathways is reduced,
in turn limiting the manner in which a network operates
under changing environmental conditions, leading to
changes in the phase plane. The flux cone becomes smaller
due to the loss of extreme pathways, which imposes further
constraints on its functional capabilities.

Using the pathways it is possible to translate back to a
reaction-based interpretation of the predicted metabolic
phenotypes. This reveals sets of reactions that are com-
pletely inactivated or activated as well as subtle changes in
either the increased or decreased utilization of various re-
actions. Combining flux balance analysis and pathway
analysis provides the ability to examine metabolic capabili-
ties and interpret optimal metabolic phenotypes from both
reaction- and pathway-oriented perspectives. Together these
approaches can be used to examine quantitatively the con-
straints placed on metabolic activity due to the structure and
connectivity of the reaction network and the physicochem-
ical principles that govern biological systems.

Ideally, we would like to study the pathway structure and

utilization for an entire organism with this combined ap-
proach. Flux balance analysis is easily capable of handling
large networks as linear programming has been designed
over the years to handle problems with millions of variables.
The same cannot be said for convex analysis algorithms
associated with enumerating pathways in networks in any
field. For small networks, such as the one in Figure 1,
computing the set of extreme pathways is quite trivial. How-
ever, as the size of the network increases in a linear fashion,
the time to calculate the extreme pathways as well as the
number of pathways increases in an exponential fashion. In
the traditional language of theoretical computer science the
problem of enumerating the vertices of a polyhedral cone is
referred to as an NP-hard problem, such as the “traveling
salesman” problem (Papadimitriou and Steiglitz, 1998). Al-
though it is feasible to construct comprehensive flux bal-
ance models for completely reconstructed metabolic geno-
types, it is not feasible to enumerate all pathways present in
such a network for interpreting metabolic function. A very
conservative estimate would place the number of pathways
in E. coli well over 10°. Although it is important to calculate
these complete sets for the identification of more detailed
systems properties related to the capabilities of the network,
the shear number of pathways may complicate the com-
bined pathway/flux balance analysis approach to an extent
that makes the interpretation overwhelming. This problem
of excessive pathways can be partially dealt with by either
focusing on particular situations (both environmental and
genetic) that would reduce the system as we have done in
this article, or to properly subdivide the metabolic system to
solve for pathways in each subsystem that may be pieced
together to interpret metabolic capabilities (Schilling and
Palsson, 2000b).

Neither flux balance analysis nor pathway analysis incor-
porates information on reaction kinetics and regulation, lim-
iting their insight into dynamic responses. From these ap-
proaches it is possible to realize some of the fundamental
constraints that metabolic systems are faced with and define
the flux cone that contains all admissible steady-state flux
vectors. As detailed information on in vivo reaction dynam-
ics is accumulated, the ability to analyze, interpret, and
perhaps predict dynamic responses of metabolic networks to
environmental and genetic perturbations using dynamic
modeling approaches may become more feasible. For the
optimal phenotypes calculated in a wild-type strain to be
realized in vivo a regulatory network that achieves this state
must be present. This would then assume that a regulatory
scheme has evolved to optimize the same parameters opti-
mized in the linear programming (i.e., growth). Although
this may or may not be the case, in general, regulatory
schemes and reaction dynamics will serve to further con-
strain metabolic behavior to operate in confined subspaces
of the flux cone. Identifying these regions from both the
theoretical and experimental side represents a challenge for
the future.

A number of experimental technologies have now made
the holistic study of biological systems feasible beyond the
theoretical realm. The ability to assimilate DNA chip-based
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Figure A1. A convex cone, a generic polyhedron, and a polytope.

and protein expression technologies providing genome-
scale information with computational methods for meta-
bolic network analysis will become important in advancing
the study of metabolic physiology and the practice of meta-
bolic engineering. Currently, the interpretation of high-
throughput experimental information on systemic behavior
is limited by a lack of analysis capabilities. Can systems-
based quantitative in silico approaches, such as flux balance
and pathway analysis, be used to assist in understanding this
flood of data? This is a question that will need to be an-
swered as interest builds in the genomics community for
quantitative systems analysis.

The authors thank the Whitaker Foundation for their support
through graduate fellowships in bioengineering.

APPENDIX

A convex polyhedron is a region in R"” determined by linear
equalities and inequalities (Fig. A1). One of the properties
of a polyhedron is convexity: Any line segment connecting
two points in the polyhedron is completely contained in the
polyhedron. If a polyhedron is bounded then it is called a
polytope. It is called a polyhedral cone if every ray through
the origin and any point in the polyhedron are completely
contained in the polyhedron.

A point V" in a polyhedron is called a vertex if it is not the
convex combination of two other points in the polyhedron.
[A convex combination of the points p” and ¢ has the form
0+ (1 —1)q, where 0 <r< 1.] Aray 7 is called an extremal
ray if no point on the ray is a positive linear combination of
points in the polytope but not on the ray. Note that a cone
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Figure A2. Vertices and extremal rays of a polyhedron.

FIgure A3. The sum of a polytope and a cone.

only has extremal rays and a polytope only has vertices (Fig.
A2).

The set of vertices and extremal rays is unique for any
polyhedron. In fact, any polyhedron (P) can be written
uniquely in the form:

P=Conv(v',...,v)+Cone(r'y,...,7) (A-1)

where the convex hull and the conical hull are defined as:

Conv(Vyseees ) = {10y + o 4 10001, = 0,1, + .+ 1, = 1}
Cone(;l,..., 7,) = {317’1 Ry — O} (A-2)

Note that {v',, ...,V ,} are the vertices, and {ry, ..., 7}
are the extremal rays of P. An alternate interpretation is that
very polyhedron is the sum of a polytope and a cone (Fig.
A3). Both vertices and rays can be found efficiently and
have significance in a variety of situations extending well
beyond biochemical reaction networks. In linear program-
ming, the vertices and rays are known as basic feasible
solutions. They have the property that any linear function on
a polyhedron achieves its maximum value at a vertex or it is
unbounded and lies on an extremal ray.
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