Module 2 overview

lecture

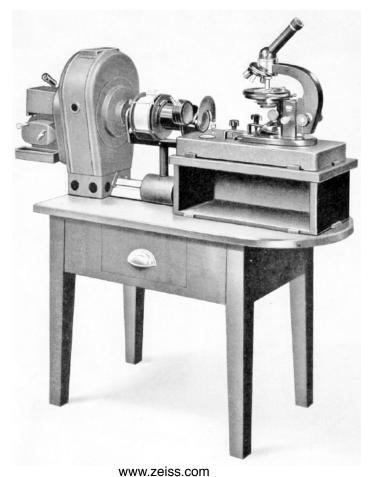
- 1. Introduction to the module
- 2. Rational protein design
- 3. Fluorescence and sensors
- 4. Protein expression

SPRING BREAK

- 5. Review & gene analysis
- 6. Purification and protein analysis
- 7. Binding & affinity measurements
- 8. High throughput engineering

lab

- 1. Start-up protein eng.
- 2. Site-directed mutagenesis
- 3. DNA amplification
- 4. Prepare expression system
- 5. Gene analysis & induction
- 6. Characterize expression
- 7. Assay protein behavior
- 8. Data analysis

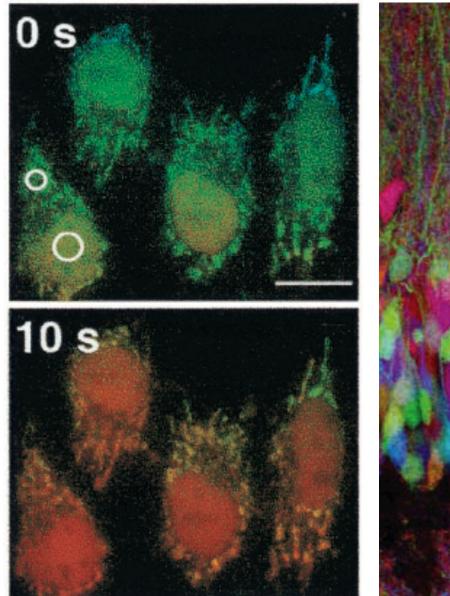

Lecture 3: Fluorescence and sensors

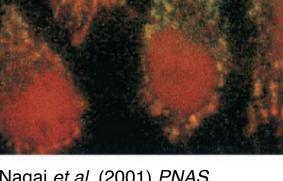
- I. Basics of fluorescence
 - A. Important applications
 - B. Energy levels and spectra
 - C. Emission, quenching, and energy transfer
- II. Fluorescent calcium sensors
 - A. Properties of calcium sensors
 - B. Applying Ca²⁺ sensors in cells
 - C. In vivo limitations and remedies
 - D. Advantages of genetically-encoded sensors

fluorescence/luminescence microscopy

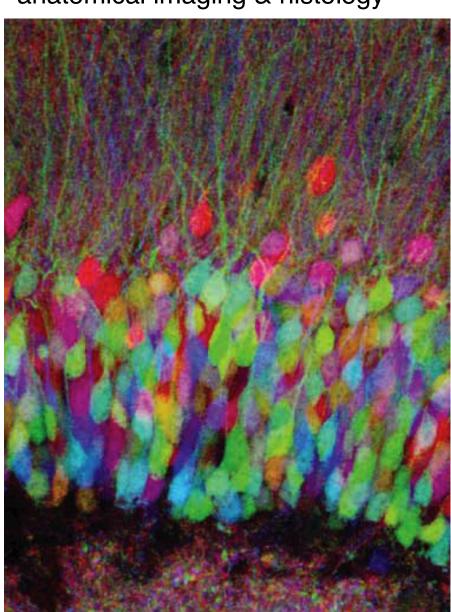
laser scanning microscopy

H. Lehmann & S. von Prowazek (1913)



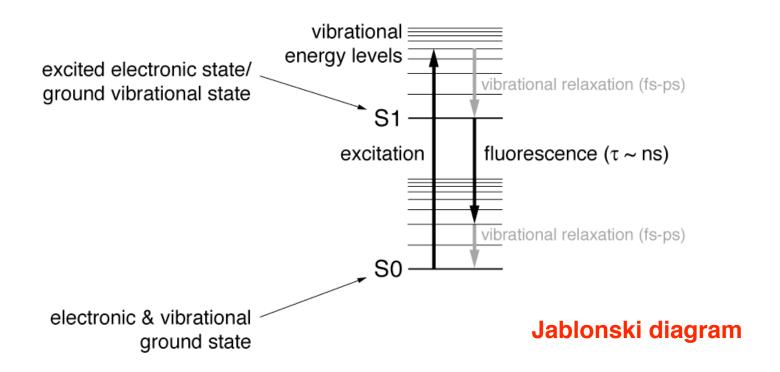

2-photon confocal ✓ PMT \ PH. DM-OBJ. SS

Denk & Svoboda (1997) Neuron

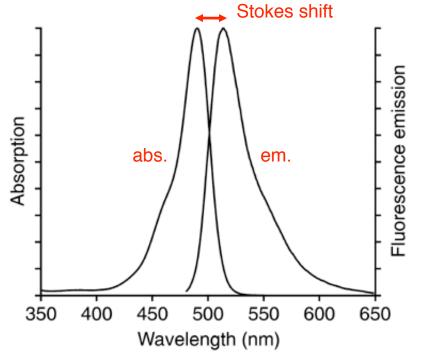

functional imaging

anatomical imaging & histology

Nagai et al. (2001) PNAS



Livet et al. (2007) Nature


Introduction to fluorescence

Fluorescence arises from transitions among molecular energy levels:

- electronic energy levels correspond to visible wavelengths,
- · vibrational energy levels correspond to infrared wavelengths, with
- rotational energy levels are coupled to vibrations and account for the smooth appearance of absorption/emission spectra

Fluorescence spectra for a typical fluorophore

probes.invitrogen.com

- small organics like fluorescein are the most common fluorophores
- in general, the larger the aromatic ring system, the longer the wavelength for excitation and emission
- quantum dots are ~10 nm particles that exhibit narrower emission bands and less "bleaching" than organic dyes
- some atoms (lanthanides) exhibit fluorescence as well

 $tetramethylrhodamine\ isothiocyanate \\ \lambda_{em} = 580\ nm$

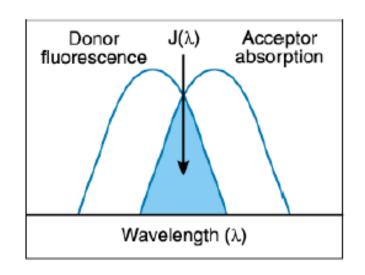
Decay of excited electrons can occur by **radiative and nonradiative processes**. If N is the fraction of fluorophore in the excited state, and Γ and k are radiative and nonradiative decay rates, respectively:

$$\frac{dN}{dt} = -(\Gamma + k)N$$

such that

$$N = N_0 e^{-(\Gamma + k)t} = N_0 e^{-t/\tau}$$

where τ is the **fluorescence lifetime**, incorporating both Γ and k:

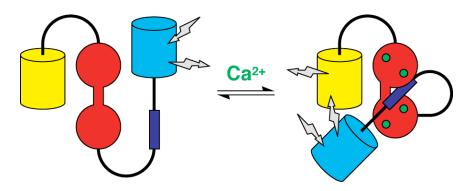

$$\tau = \frac{1}{\Gamma + k}$$

 τ_0 describes the fluorescence lifetime in the absence of nonradiative decay. The efficiency of a fluorophore is quantified by its **quantum yield** Q:

$$Q = \frac{\Gamma}{\Gamma + k} = \frac{\tau}{\tau_0}$$

One of the main routes of nonradiative decay is a process called **quenching**, which results in environmental sensitivity for many fluorescent molecules, and underlies the mechanism of several sensors

Fluorescence resonance energy transfer (**FRET**) can take place when the absorption spectrum of an "**acceptor**" overlaps with the emission spectrum of a "**donor**," and *geometry favors dipolar coupling between the fluorophores.*

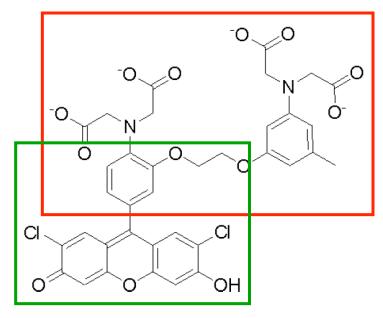


The distance at which 50% of excited donors are deexcited by the FRET mechanism is defined as the **Förster radius** (usu. 10-100 Å):

$$R_0 = \left[8.8 \times 10^{12} \cdot \kappa^2 \cdot n^{-4} \cdot QY_D \cdot J(\lambda) \right]^{1/6}$$

FRET **efficiency** is defined as:

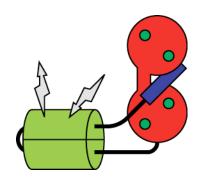
$$E = \left[1 + \left(r/R_0\right)^6\right]^{-1}$$


Fluorescent calcium sensors

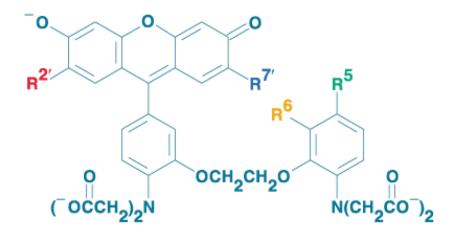
A wide variety of fluorescent calcium dyes are available. They differ along several axes:

- calcium affinity
- absorbance and emission properties
- structural properties (*e.g.* protein *vs.* small molecule, membrane permeability, binding and localization)

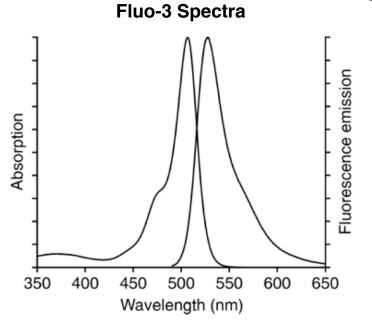
Indicators with each set of properties may be suitable for specific experiments.

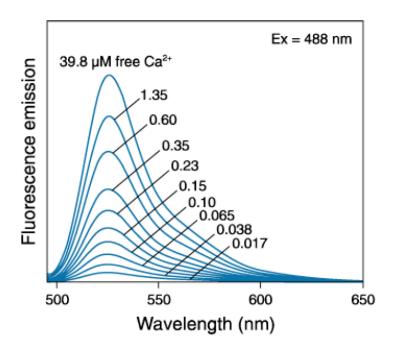

A typical calcium sensor consists of a calcium sensitive component attached to one or more fluorescent moieties:

Fluo-3

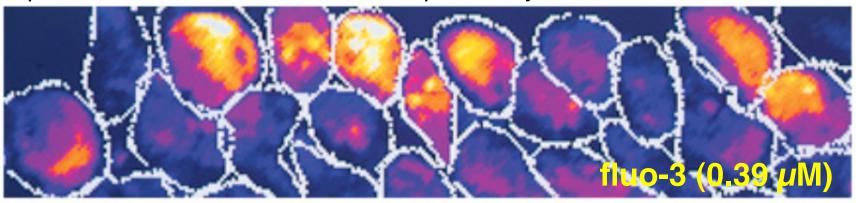

dichlorofluorescein

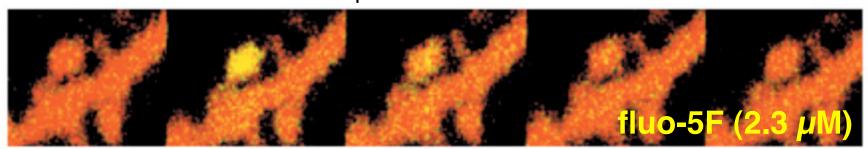
EGTA



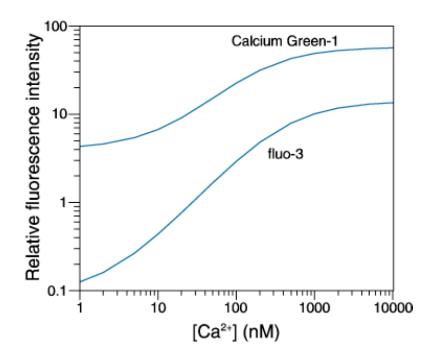

Fluo dyes:

- visible absorption/emission wavelengths
- virtually no emission in absence of Ca²⁺
- range of calcium affinities

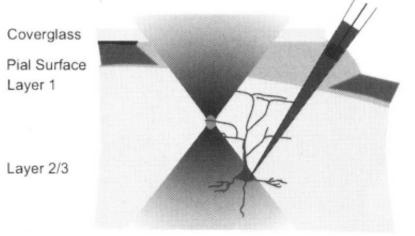

Indicator	K _d (Ca ²⁺)	R ²	R ⁷	R ⁵	R ⁶
Fluo-3	0.39 μΜ	CI	CI	CH ₃	Н
Fluo-4	0.35 μΜ	F	F	CH ₃	Н
Fluo-5F	2.3 μΜ	F	F	F	Н
Fluo-5N	90 μΜ	F	F	NO ₂	Н
Fluo-4FF	9.7 µM	F	F	F	F

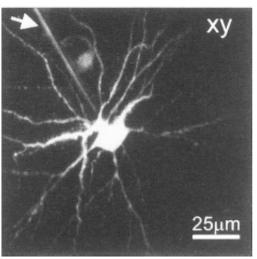


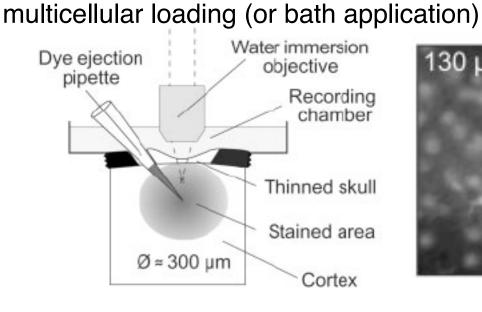
Sensors with different calcium **affinities** (K_d values) may be appropriate for different applications:

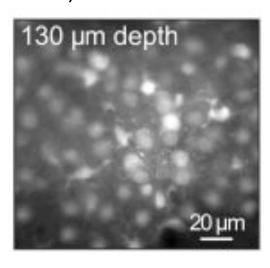

spontaneous Ca²⁺ fluctuations in *Xenopus* embryo

calcium transients in dendritic spines


Calcium Green & related dyes

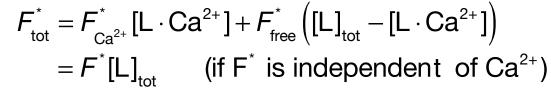



What is the significance of having a dye with high fluorescence **intensity** or **dynamic range?** SNR

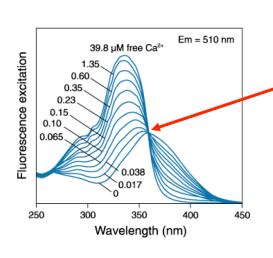

How are calcium dyes applied to cells?

single cell injection

AM-esters

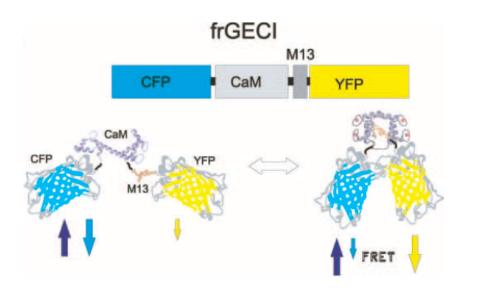

limitation	effect on experiments	solution
dye binds to intracellular proteins and does not function	loss of fluorescence responses, alteration of calcium sensitivity	alter localization/ solubility, <i>e.g.</i> using <u>dextran conjugate</u>
dye leaks from cell or is sequestered into inappropriate cellular compartments	loss of fluorescence responses, higher background fluorescence	use <u>dextran</u> <u>conjugates</u> or targeted indicators, <u>ratiometric imaging</u>
dye bleaches over the course of experiments	loss of fluorescence responses	lower imaging duty cycle, select dyes with low bleaching, ratiometric imaging

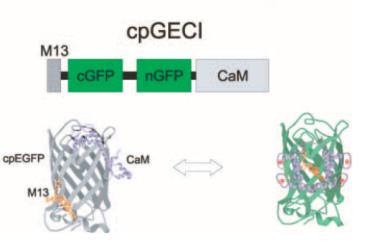
Ratiometric measurements


Suppose you measure fluorescence intensity from a cell, but you don't know either how much dye is present or what the calcium concentration is; you have one equation in two unknowns ([L]_{tot} and [Ca²⁺]):

$$F_{\text{tot}} = F_{\text{Ca}^{2+}} [\text{L} \cdot \text{Ca}^{2+}] + F_{\text{free}} ([\text{L}]_{\text{tot}} - [\text{L} \cdot \text{Ca}^{2+}])$$
where
$$[\text{L} \cdot \text{Ca}^{2+}] = \frac{[\text{L}]_{\text{tot}}}{(1 + K_d/[\text{Ca}^{2+}])}$$

The trick is to combine measurements at the first wavelength with measurements at another wavelength, to get a second equation:




"isosbestic point"

The ratio F/F^* is independent of $[L]_{tot}$ and depends only on the calcium concentration.

limitation	effect on experiments	solution
dye binds to intracellular proteins and does not function	loss of fluorescence responses, alteration of calcium sensitivity	alter localization/ solubility, <i>e.g.</i> using <u>dextran conjugate</u>
dye leaks from cell or is sequestered into inappropriate cellular compartments	loss of fluorescence responses, higher background fluorescence	use dextran use conjugates or proteins targeted indicators, ratiometric imaging
dye bleaches over the course of experiments	loss of fluorescence responses	lower imaging duty use cycle, select dyes proteins with low bleaching, ratiometric imaging

Genetically-encoded calcium sensors:

- FRET-based CaM-XFP fusions (CaMeleons)
- CaM + single XFPs (pericams, camgaroos, GCaMPs)
- troponin C based

Advantages of genetically-encoded calcium indicators:

- noninvasive delivery (expression within cells)
- constant resynthesis (limited effect of bleaching)
- targeted expression

Protein sensors genes can be introduced by making transgenics, or by *in vivo* transfection (viral, electroporation, "biolistics," *etc.*).