
Yufeng Shen
 Zhengzheng Wan Cristian Coarfa Fuli Yu

May 2009

For any further correspondence, please contact:

Yufeng Shen: yshen@c2b2.columbia.edu
Zhengzheng Wan: zwan@bcm.edu,

Cristian Coarfa: coarfa@bcm.edu,
Fuli Yu: fyu@bcm.edu

Table of Contents
31 Introduction

31.1 Atlas-SNP overall workflow design

32 Getting started

32.1 Get the source code

32.2 Computational requirement of Atlas-SNP

33 Input and output of Atlas-SNP

33.1 Atlas-SNP output file format

3Table 1

34 Use Atlas-SNP and command manual

34.1 Atlas-SNP-mapper

34.1.1 Mapping environment setup

34.1.2 Mapping

34.2 Atlas-SNP-splitter

34.3 Atlas-SNP-core

3Table 2

3Table 3

3Reference

Table of Figures

3Figure 1.1 Atlas-SNP overall workflow

3Figure 1.2 The workflow of Atlas-SNP-mapper

3Figure 1.3 The workflow of Atlas-SNP-splitter

3Figure 1.4 The workflow of Atlas-SNP-core

1 Introduction

Atlas-SNP is a tool used to detect SNPs from genomic scale resequencing data sets produced by generation sequencing technologies (NGS). The method estimates the probability of a substitution locus being a true SNP [Shen 2009]. Overall Atlas-SNP takes a genomic reference sequence and the NGS reads as the input, and output all candidate SNPs sites and their posterior SNP probability.

1.1 Atlas-SNP overall workflow design

As shown in Figure 1.1, Atlas-SNP has three modules: “Atlas-SNP-mapper”, “Atlas-SNP-splitter”, and “Atlas-SNP-core”.

Figure 1.1 Atlas-SNP overall workflow

Step 1: Atlas-SNP-mapper (Figure 1.2)

A pre-processing step is implemented in “Atlas-SNP-mapper” to split reference genomic sequences to smaller regions with the size ranging from 10Kb to 10Mb per region, and to divide NGS reads files and reads quality files into smaller pieces, ranging from 5Mb to 10Mb in size for the computation management purpose. It takes the divided pieces from both the genomic reference sequence and NGS reads as inputs to attempt to anchor and align all the NGS sequences onto the reference sequence. A few further steps such as “duplicates removal” can be used to remove experimental artifacts from sequencing.

Figure 1.2 The workflow of Atlas-SNP-mapper

Step 2: Atlas-SNP-splitter (Figure 1.3)

Atlas-SNP-splitter splits mapping results and respective quality files of the successfully mapped reads into smaller batches. The program first splits the mapping result by chromosomes into batches, and further splits the batches within each chromosome into smaller batches that roughly have the same size. Next, two more steps are taken to categorize the successfully mapped reads into batches by looking up the read name from the original mapping batches.

[image: image1.emf]

Figure 1.3 The workflow of Atlas-SNP-splitter
Step 3: Atlas-SNP-core (Figure 1.4)

Atlas-SNP-core first detects any single nucleotide mismatches between aligned reads and the reference sequences and parses the related information, such as total coverage, variant reads coverage and reads having the same variation from the mapping result. Next it assesses the posterior SNP probability for each candidate variant.

Figure 1.4 The workflow of Atlas-SNP-core
2 Getting started
2.1 Get the source code and set up the environment
Atlas-SNP is written in Ruby and runs without compilation on most UNIX-like operating systems. The source code can be downloaded from http://www.hgsc.bcm.tmc.edu . Latest developments and unstable versions are hosted at “google code” (http://code.google.com/p/atlas-snp/). To run Atlas-SNP, Ruby 1.8.0 or Ruby 1.9.0 (preferred) should be installed in the operating system. They can be found in http://www.ruby-lang.org/en/downloads/. The mapping tools used as defaults in the current version of Atlas-SNP—BLAT and cross_match—can be obtained from http://users.soe.ucsc.edu/~kent/src/ and http://www.phrap.org respectively.
2.2 Computational requirements of Atlas-SNP
Among the three modules of Atlas-SNP, “Atlas-SNP-core” plays the key role of detecting high confidence SNPs. This module performs several tasks, such as calculating the total reads coverage and variant reads coverage for each substitution site. These steps require the program to scan across the whole reference sequence, which consumes a large amount of computational time and system memory. Moreover, the “NQS pass determination” step requires scanning the fasta files of the entire NGS reads that incurs extremely frequent data comparing and fetching. So the requirement of computational resources could be challenging for this step, especially for large input datasets.

The module “Atlas-SNP-splitter” can be used to partition a large cross_match output into smaller bins. Although there is no limitation on the size of the input files, users must pre-analyze on the size of the input files to decide whether to run “Atlas-SNP-splitter” to split reads, or how many batches the input reads should be partitioned into meet the required computational time and memory. For example, for smaller input datasets that have 30,000 NGS reads and the reference sequence in size of 4,000Kb per batch, “Atlas-SNP-core” only needs 5-10 minutes to run on a machine with 60 Mb of memory without applying “Atlas-SNP-splitter” to pre-process the inputs. However, for large input reference sequences, such as human reference sequence, users are suggested to run “Atlas-SNP-splitter” to first divide the reference sequence and cross_match results into small batches to reduce the size of the mapping file to 300,000-500,000 mapped reads. Usually, an ideal computation resource usage for running “Atlas-SNP-core” can be described as the following case. It takes “Atlas-SNP-core” ~10 minutes and less than ~3Gb of memory to call SNPs from the cross_match results, which reports ~70,000 substitutions and ~300,000 reads aligned onto a ~250Mb reference sequence.

3 Input and output of Atlas-SNP
“Atlas-SNP-mapper” is a wrapper that takes the reference genomic sequence, the NGS reads (including sequence fasta and the quality files) as the inputs, and generates the cross_match results as the mapping outputs.

“Atlas-SNP-splitter” next takes the cross_match and NGS reads quality fasta files (that need to be partitioned) as its inputs. After splitting, its outputs are a series of smaller batches.

Finally, “Atlas-SNP-core” takes the cross_match results, a reads quality file and a reference sequence as the input and outputs a list of substitutions with the assessed posterior probability.

An example of the overall process of Atlas-SNP is illustrated below:
Input: a_454_run.fasta (a_454_run.fna), a_454_run.qual and reference.fasta

Procedure:

Input (Atlas-SNP-mapper (Atlas-SNP-splitter (Atlas-SNP-core

Output:
SNP.list

More details are explained in section 4 “Use Atlas-SNP and command manual” (page 9).

3.1 Atlas-SNP output file format
The final output file of Atlas-SNP is a list of putative SNPs, each has detailed information described in 18 tab delimited fields. Headers are shown below:
refName<tab>coordinate<tab>refBase<tab>homopolymer<tab>refEnv<tab>totalCoverage<tab>variantBase<tab>oriQual<tab>variantReadCov<tab>numAlternativeReads<tab>readsInfo<tab>Pr(error)j<tab>Pr(SNP)j<tab>Pr(Sj|error,c)<tab>Pr(Sj|SNP,c)<tab>Prior(error|c)<tab>Prior(SNP|c)<tab>Pr(SNP|Sj,c)j
Table 1 describes the explanation of each field.

Table 1
	Field Name
	Explanation

	refName
	The name of the reference sequence, for example, chr12

	coordinate
	The physical position of the SNP site on the reference sequence

	refBase
	The reference base in that SNP position

	homopolymer
	The size of the longest homopolymer within a 13-bp window centered on the SNP base on the reference sequence (legacy column, only useful for manual inspection)

	refEnv
	The reference sequence of a 13-bp window centered on the SNP site.

	totalCoverage
	The total number of reads covering the SNP site

	variantBase
	The variant base (if there are several variants, it takes the one with largest occurrence)

	oriQual
	The summation of the phred quality scores of all reads showing the variant base

	variantReadCov
	The number of reads that harbor the same variant base (shown in the variantBase column)

	numAlternativeReads
	The total number of reads that differ from the reference sequence on the SNP site

	readsInfo
	Information about the reads that harbor the same variant base

	Pr(error)j
	The prior error probability of the locus j when conditioning on variant read coverage

	Pr(SNP)j
	The prior SNP probability of the locus j when conditioning on variant read coverage. This entire item is represented by a symbol Sj, which is standard for signal at locus j.

	Pr(Sj|error,c)
	This is derived from the probability density distribution of Sj of errors at a specific variant read coverage, c

	Pr(Sj|SNP,c)
	This is derived from the probability density distribution of Sj of true SNPs at a specific variant read coverage, c

	Prior(error|c)
	Prior estimation of the substitution error rate when conditioning on variant read coverage

	Prior(SNP|c)
	Prior estimation of the substitution SNP rate when conditioning on variant read coverage

	Pr(SNP|Sj,c)j
	The Posterior SNP probability of the locus j when signal is Sj at a specific variant read coverage, c

4 Use Atlas-SNP and command manual

The following contents will give the detailed usage descriptions of Atlas-SNP.
4.1 Atlas-SNP-mapper

“Atlas-SNP-mapper” organizes a more convenient read mapping pathway that can efficiently anchor the read to a location using “BLAT”, and then pass the mapped pairs to “cross_match” for stringent and detailed base-paired alignment.

4.1.1 Mapping environment setup

ruby atlas-mapper-format-ref.rb [-r reference] [-l length of each piece] [-f frequencyCutoffOf11mer] [--help]

“atlas-mapper-format-ref.rb” aims to divide the reference genome into pieces to meet the computational requirements when running “BLAT” and “cross_match” respectively. The output will be a newly created directory named “referenceName.Environment”, under which reference fragments, the fragment index and the relative information about the splitting are placed. Under this directory, there are two sub directories: “ref-pieces” and “ref-divisions”. The longer divided reference pieces (900Mb in size) are placed under the sub directory “ref-pieces”, which will actually be used for “BLAT” to anchor reads back to respective local regions; the shorter reference pieces (100Kb in size) are stored under the sub directory named as “ref-divisions”, which are used to precisely compare the bases of read sequences with those on the reference sequence using “cross_match”. This program takes two required parameters, “--reference ” (“-r”), which introduces the reference sequence, and “--length” (“-l”) which is associated with the size of bases each reference piece may contain.

Option
-r
FILE
reference genome (required)

-l
INT
bases a splitted reference piece may contain. With default value 1000000 (required)

-f
FLT
the cutoff of 11-mer frequency deemed as over-represented in the reference so BLAT will ignore it during seeding step, with default value 1024. 1024 is optimized for mammalian genomes. 100~200 is best for smaller or less complex genomes.

-h

usage information
4.1.2 Mapping

ruby atlas-mapper.rb [-r reference] [-q reads fasta file] [-m minScore] [-c cutoff] [-b blat] [-c crossMatch] [-n oneOff] [-i minIdentity] [-t minMatchRatio] [-l mastLevel] [-z xmOnly] [-a blatOnly] [-e noParse] [-s short]

“atlas-mapper.rb” is a wrapper tool for running “BLAT” and “cross_match”. It takes the reference sequences and the NGS reads file as the inputs, and creates the cross_match output as the mapping results. This program takes two required parameters. The first is “--reference” (“-r”), which must be followed by the reference sequence name. The second is “--query” (“-q”) which is associated with the NGS reads name. By running this wrapping program, users don’t have to take efforts in any intermediate steps, such as parsing “BLAT” results, picking the best hits and format conversion between the two tools. Also, the program provides flexibility that allows users to control the pathway. For example, once the option “-z” is appended, the program will only run cross_match, the same will happen for the option “-a” for running “BLAT” only.

Option

-r
FILE
reference genome (required)

-q
FILE
reads fasta file (required)

-m
INT
parameter of “crossmatch”, minimum score with default value 30

-c
FLT
% for the best hit cutoff with default value 0.99

-b

inferring blat executive file

-c

inferring crossmatch executive file

-n

oneOff set to run “BLAT” with default value 0

-i
INT
minimum identities set when running “BLAT” with default value 90

-t
FLT
minimum match ratio when grouping the best hit reads generated by “BLAT” with default value 0.85. Definition: matched bases / reads length

-l
INT
mask level set when running “crossmatch” with default value 20

-z

causing program to run “crossmatch” only

-a

causing program to run “BLAT” only

-e

causing program to stop right after “BLAT” without parse out the best hit reads.

-s

option for aligning short reads using “crossmatch”

Note: for more details on the parameter usage and output format, please refer to the “cross_match” and “BLAT” documentation.

4.2 Atlas-SNP-splitter

ruby splitXMFile.rb [-x crossmatch file] [-C split by chromosome] [-n number of parts of the input with mapping on genomic regions of the same size] [-o output file root] [-h help]

“splitXMFile.rb” is a flexible data splitting tool, designed especially for splitting the cross_match file to meet the computational requirements for running “Atlas-SNP-core”. Besides the regular input cross_match file introduced by the parameter “--xmFile” (“-x”), the tool provides other two important parameters—“--splitByChrom” (“-C”) and “--numberOfParts” (“-n”). If “-C” is appended, the cross_match file will be divided by chromosomes. “-C” is a MUST for large dataset with multiple reference regions like the human genome. Another option “--numberOfParts” (“-n”), is associated with a number defined by users. This option permits the program to further divide the cross_match file into the size determined by users. We have used “-n 20” for processing the human genome, for example. Please note that the option “-C” must be used whenever “-n” is used.

Option
-x
FILE
crossmatch file (required)
-C

causing the program to split crossmatch file by chromosome

-n
INT
number of parts that the crossmatch file will be divided within one chromosome
-o
STR
output file root (required)
-h

usage information

ruby extractReadNamesFromXM.rb [crossmatch file] [output file]

“extractReadNamesFromXM.rb” extracts all the read names from the cross_match files and places a list of these names into an output file. This name list is used as a small trace id database to be queried by the program to pick the corresponding reads. The program takes two arguments, the cross_match file name and an output file name.

 ruby filterFastaByListOfReads.rb [-f fasta file of reads] [-l file containing the list of reads to be selected] [-o outputPrefix] [-c fasta file chunk size, in number of sequences]

“filterFastaByListOfReads.rb” is used to filter those NGS reads by choosing only the reads in the trace ids database created by “extractReadNamesFromXM.rb”. By only considering the aligned reads, the time and memory usage for running “atlasNQSPASS.rb” can be largely reduced. The program takes three required parameters: “--fastaFiles” (“-f”) for the reads fasta file; “--readListFile” (“-l”) that is followed by the “trace id database” file created by “extractReadNamesFromXM.rb”; and “--outFile” (“-o”) that specifies the output file name. The program will generate a .gz fasta file containing only the sequences of the aligned reads.

Option
-f
FILE
reads fasta file (required)

-l
STR
the output file of “extractReadNamesFromXM.rb” (required)

-o
STR
the output file prefix (required)

-c
INT
fasta file chunk size (optional)
-h

usage information

4.3 Atlas-SNP-core

ruby atlasNQSPass.rb [-x crossmatch] [-q qual file] [-o outputPrefix] [-h help]
“atlasNQSPass.rb” is used to determine whether a variant base passes the Neighborhood Quality Standard (NQS). This program takes three parameters. The first is the fasta file containing quality scores of bases in NGS reads sequences introduced by “--qual” option (“-q”). The second parameter is the cross_match file introduced by a “--xm” option (“-x”). The argument “—outputPrefix” (“-o”) is used to specify a user defined prefix name for the output file. When running this program, a tab-delimited output file named “outputPrefix.NQS” containing the “NQS pass” information for each variant base will be created (output format).

Option
-x
FILE

crossmatch file (required)

-q
FILE

fa.qual file (required)

-o
STRING
the prefix of the output (required)
-h

usage information
The output format
read_name<tab>read_length<tab>distance_to_3'<tab>quality<tab>NQS_pass

ruby atlasSubstitution.rb [-x cross_match] [-r reference] [-o outputPrefix] [-n .NQS file] [-s maxSubsitutions] [-g maxIndels] [-a slope] [-c coverageDepth]
This program is used to identify any single base substitutions between reference genome and the aligned reads and generate a list of substitutions with related information in 12 tab delimited fields including the substitution’s physical coordination on reference genome, chromosome, coverage, number of variation, the context on reference genome, the information of variant reads harboring the same variation, etc (see output format for details). The substitution list later will undergo a rigorous evaluation step to assess the probability being either true SNPs or sequencing errors. The program takes four required parameters. The first parameter is the cross_match file introduced by “--crossmatch” option (“-x”). The second option “--reference” (“-r”) is for a fasta file of reference genome. The third one is an option “--nqs” (“-n”), followed by a “_.NQS” file. The last option “--output” (“-o”) requires users to define the path of the output file including a prefix of the output file. After running this program, the result will appear in the file named “[prefix].SNP.list”. The program also provides several other optional parameters for fine tuning the evaluation performance.
Options
-x
FILE
crossmatch file (required)

-r
FILE
reference genome (required)

-n
FILE
.NQS file (required)

-o
STR
the prefix of the output (required)

-a
FLT
linear adjustment slope for quality score, with Default value 0.13, 0 means no adjustment

-s
INT
maximum number of substitutions one variant read could accept with default value 5
-g
INT
maximum number of indels one variant read can contain with default value 5
-c

causing the program to calculate coverage depth

-h

usage information
Output format

refName<tab>coordinate<tab>refBase<tab>homopolymer<tab>refEnv<tab>coverage<tab>SNPBase<tab>adjustedQual<tab>oriQual<tab>numVariantReads<tab>numAlternativeReads<tab>reads_info

ruby Atlas-SNPEvaluate.rb [-i substitution list] [-x XLR] [-e Prior(error|c)] [-o output name]

“Atlas-SNPEvaluate.rb” estimates the posterior probability for each substitution locus being a true SNP through a Bayesian framework that integrates the results from logistical regression model and the prior knowledge of the overall error and SNP probability of a given substitution conditioning on variant read coverage (Prior(error|c) and Prior(SNP|c)). The program takes the substitution list, “.SNP.list” introduced by “--input” option (“-i”) and the user defined output file introduced by “--output” option (“-o”) as the required arguments. Once the optional parameter “--XLR” (“-x”) is appended, the program will automatically call the series of logistic regression model results specifically for Roche 454 Titanium (also known as XLR) data. The option “--priorerror” (“-e”) is used to specify the Prior(error|c), which is a useful parameter that could be tuned according to users expectation. The program will generate a SNP list as the final output, that constitutes the default fields from “.SNP.list”, followed by several important statistical parameters and the posterior probability (Pr(SNP|Sj,c)j) of a substitution site (see output format).

Option
-i
FILE
substitution list (required)

-o
STR
output file name with path (required)

-x

causing the program to deal with XLR data, with the FLX data by default
-e
FLT
prior error probability conditioning on variant coverage > 2, with default value 0.1
-h

usage information
Output format
refName<tab>coordinate<tab>refBase<tab>homopolymer<tab>refEnv<tab>totalCoverage<tab>variantBase<tab>oriQual<tab>variantReadCov<tab>numAlternativeReads<tab>readsInfo<tab>Pr(error)j<tab>Pr(SNP)j<tab>Pr(Sj|error,c) <tab>Pr(Sj|SNP,c) <tab>Prior(error|c)<tab>Prior(SNP|c)<tab>Pr(SNP|Sj,c)j
Table 2 explains each field of the output created by “Atlas-SNPEvaluate.rb”.
Table 2
	Field Name
	Explanation

	refName
	The name of the reference sequence, for example, chr12

	coordinate
	The physical position of the SNP site on the reference sequence

	refBase
	The reference base in that SNP position

	homopolymer
	The size of the longest homopolymer within a 13-bp window centered on the SNP base on the reference sequence

	refEnv
	The reference sequence of a 13-bp window centered on the SNP site.

	totalCoverage
	The total number of reads covering the SNP site

	variantBase
	The variant base

	oriQual
	The summation of the phred quality scores of all reads showing the variant base

	variantReadCov
	The number of reads that harbor the same variant base

	numAlternativeReads
	The total number of reads that differ from the reference sequence on the SNP site

	readsInfo
	Information about the reads that harbor the same variant base

	Pr(error)j
	The prior error probability of the locus j when conditioning on variant read coverage

	Pr(SNP)j
	The prior SNP probability of the locus j when conditioning on variant read coverage. This entire item is represented by a symbol Sj, which is standard for signal at locus j.

	Pr(Sj|error,c)
	This is derived from the probability density distribution of Sj of errors at a specific variant read coverage, c

	Pr(Sj|SNP,c)
	This is derived from the probability density distribution of Sj of true SNPs at a specific variant read coverage, c

	Prior(error|c)
	Prior estimation of the substitution error rate when conditioning on variant read coverage

	Prior(SNP|c)
	Prior estimation of the substitution SNP rate when conditioning on variant read coverage

	Pr(SNP|Sj,c)j
	The Posterior SNP probability of the locus j when signal is Sj at a specific variant read coverage, c

Specifically, the field “readsInfo” contains numbers of semicolon-separated strings as shown in the following example. Each of the strings contains the related information of the respective variant read. The following example shows the format of one of the strings in field “readsInfo”. Table 3 gives the detailed explanation about each element within the string.

T(15)EIXH2IB02H9BM7(16)(235.0/272)+taacccTaaccta(0.38/1.92/12)(0/272)snp(0.861971819331059);
 Table 3
	String name
	Explanation

	T
	The variant base

	15
	Raw phred-like quality score

	EIXH2IB02H9BM7
	The read name

	16
	The distance of the variant base to right end of the read

	235.0/272
	Smith-waterman score of match / The queried size on the reads

	+
	The read direction of strand

	taacccTaaccta
	The variant read sequence of a 13-bp window centered on the SNP site.

	0.38/1.92/12
	%subsitutions in matching region /%indels in matching region /number of bases in the read past the ending position of matched region on the reference sequence.

	0/272
	The status of “NQS pass” / the length of the reads

	snp
	This variant base is a substitution from the reference sequence to the read sequence

	0.861971819331059
	The prior estimated error probability of this variant base i, Pr(error)i

Reference
Green, P. 1993. cross_match (http://www.phrap.org).

Kent, W.J. 2002. BLAT—the BLAST –like alignment tool. Genome Res 12: 656-664

Atlas-SNP paper (submitted)
Assess SNP probability for all substitutions

Atlas-SNP-core

Calling mismatches and assessing the SNP probability

Preliminary substitution detection

Atlas-SNP-splitter

Dividing both the mapping results and the reads qualities into smaller pieces

Duplicates removal

 Documentation for Atlas-SNP

 Version 3.1

Read anchoring/alignment

(BLAT / cross_match)

Atlas-SNP-mapper

Setting up mapping environment,

formatting reference and NGS reads, Aligning NGS reads onto reference sequence, detecting and removing duplicates

Input NGS reads

Reference genomic

sequence

crossmatch output

(.xm)

atlas-mapper.rb

Atlas-SNP-mapper

split-fasta-into-batches.rb

atlas-mapper-format-ref.rb

input NGS reads

reference genomic

sequences

reads quality batches

filterFastaByListOfReads.rb

name list batches

ExtractReadNamesFromXM.rb

crossmatch batches splitted within chromosome

Atlas-SNP-splitter

Dividing the mapping results into smaller pieces

splitXMFile.rb

(split within chromosome)

crossmatch batches splitted by chromosome

splitXMFile.rb

(split by chromosome)

NGS Reads quality

(.fa.qual or fasta.qual)

crossmatch

(.xm)

NGS reads quality

(.fa.qual/fasta.qual)

reference genomic sequence

cross_match

(.xm)

Atlas-SNP-core

Creating substitution list and processing SNP evaluation

atlasNQSPass.rb

NQS file

(.NQS)

atlasSubstitution.rb

Substitution list

(.SNP.list)

Atlas-SNPEvaluate.rb

SNP list

(SNP.list.eva)

PAGE
4

