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Lecture Content 
In this lecture we’ll learn about: 

 
1. What is morphogenesis 
2. The reaction diffusion equation 
3. Theoretical systems that generate patterns – Turing Patterns 

 
4. An iGEM project to generate bacteria that swim into patterns 
5. A synthetic biology pattern using communicating cells 
6. A synthetic version of the Drosophila patterning system 

 
7. Potential applications of synthetic pattern formation 

 

20/01/2012 Dr Tom Ellis 5 



Pattern formation is biologically important 
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Why aren’t you a big fat blob? 
 
 

• Pattern formation is MORPHOGENESIS 
• It is the mechanism behind cell differentiation 
• Multicellularity  (you, me, the mushrooms) requires 

pattern formation 
• Gives rise to specialisation and division of labour 



Pattern formation is mathematically important 
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How is order formed from chaos? 
 
 

• MORPHOGENESIS first explored by Alan Turing 
• He initiated the nonlinear theory of biological growth 
 
• First attempts to mathematically explain biology 
• Effectively led to the topic of Chaos Theory 



Pattern formation is order from chaos 
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Minor fluctuations give rise to sustained patterns 



Pattern formation by morphogenesis 
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Essential read: 
Science 2010 (v.329) 
 
please also read the 
supplementary 
online material 



The Reaction-Diffusion Equation 
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Two interacting molecules diffusing can generate stable patterns – Turing 1952 

u and v are the local concentration of 
ligands U and V at each position. 
 
F and G are the functions governing 
the production rates. du and dv are 
the degradation rates. 
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Two interacting molecules diffusing can generate stable patterns – Turing 1952 

u and v are the local concentration of 
ligands U and V at each position. 
 
F and G are the functions governing 
the production rates. du and dv are 
the degradation rates. 

Replacing F and G by following linear 
function, we get the partial differential 
equation identical to that of Turing’s 
original paper. 



The Reaction-Diffusion Equation 
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Turing found that if you solved these 
differential equations the system can take 
on six stable states depending on the 
parameters you use.   
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Minimal Mathematical Patterning 
 
• One component systems are the simplest 
 (effectively just diffusion equations)       Morphogen Gradient 
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Fisher’s Equation for simulation of propagation 
of a gene in a population 
 
Generates a curved  
wave-front 
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Requires: 
 
Initial stochasticity 
Short-range positive feedback 
Long-range negative feedback 

Two component system 
with feedback gives the 
most interesting case: 
Turing Pattern 

Minimal Mathematical Patterning 



Minimal Mathematical Patterning 
• Two-component systems give rise to complex patterns 
 
Example: activator-inhibitor systems 
One component stimulates the production of both 
components while the other one inhibits their growth.  
(action potential travelling through nerve) 
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FitzHugh–Nagumo equation 

with ƒ(u) = λu − u3 − κ 



Synthetic Biology Patterning 
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Simulated Turing Pattern 
 

Engineered E. coli growth pattern 
 
iHKU iGEM team 2008 
Chenli Liu et al. Science 2011 
 



iHKU iGEM 2008 
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“Formation of New Patterns by Programmed Cell Motility” 
 
Diffusion = Cell motility (swimming bacteria) 
Reaction = Stop swimming when in high-density 
 
Engineering requirements: 
1. Control over cell motility 
2. Ability to sense cell density 
3. Methods for tuning key parameters 

 
Practical requirements: 
1. Low-density agar plates for swimming 
2. Time-lapse imaging  



iHKU iGEM 2008 
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Motility of E. coli 



iHKU iGEM 2008 
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Mechanism of motility in E. coli 



iHKU iGEM 2008 
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Synthetic control of CheZ = control of motility in E. coli 



iHKU iGEM 2008 
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Density-dependent control of CheZ 

Acyl-homoserine lactone (AHL) 
Vibrio fischeri quorum sensing 



iHKU iGEM 2008 
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Creation of a low-density mover 



iHKU iGEM 2008 
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Traffic is a low-density mover 






iHKU iGEM 2008 
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Design, Model and Some Results – but only a Bronze 
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ChenLi Liu et al. Science 2011 

3 years later..... 
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ChenLi Liu et al. Science 2011 
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Model of the system          (shown here is the updated 2011 model) 
 
3 partial differential equations 1. Stochastic swim-and-tumble motion of 

cells described as a diffusion equation   
at population level for the cell density 
ρ(x, t)           (version of Fisher’s equation) 
 

2. Synthesis, diffusion and turnover of AHL 
h(x, t) 
 

3. Consumption and diffusion of nutrient 
n(x, t) 
 

α = AHL synthesis rate   β = AHL degradation rate 
  γ = cell growth rate  
 
μ(h) = AHL-dependent motility 

ChenLi Liu et al. Science 2011 
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Model of the system 
 
Getting the parameters 
 
• Q-RTPCR to measure 
mRNA expression 
 

• Track diffusion of cells 
using microscopy 
 

• Dilute cells to different cell 
densities 

ChenLi Liu et al. Science 2011 
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Model of the system 
 
Getting the parameters 

ChenLi Liu et al. Science 2011 
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Model of the system 
 
3 partial differential equations 

ChenLi Liu et al. Science 2011 
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Simulation Experiment 



ChenLi Liu et al. Science 2011 
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Only the complete 
system works 

Patterns are robust 



ChenLi Liu et al. Science 2011 
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Model predicts that 
occurrence of stripes is 
dependent on  
two factors: 
 
1. AHL half-life 
2. Maximum motility 
 
 
Synthetic biology allows  
these to be tested! 



ChenLi Liu et al. Science 2011 
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As with Turing 
Patterns, the 
patterns emerge 
when there is 
more noise in the 
system 
 
Low cell numbers 
means higher 
stochasticity 



ChenLi Liu et al. Science 2011 
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One final experiment...   pattern forms due to ‘effective aggregation’ 

Prove this using split 
system of: 
a) Sender cells 
b) Receiver cells 

Cleft zone results from an aggregation phenomenon driven by density-dependent motility. 
Cells can diffuse freely in semisolid agar when the cell density is low. As cells proliferate and 
the local AHL level exceeds the threshold, cell motility slows down as programmed. These 
cells cannot move away, but neighbouring cells may continue to move into this high-density 
region and become non-motile leading to a net cell flow toward the high-density region. 



Sender and Receiver Cells 
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• Simple route to complex multi-cellularity 
• Division of labour between cells 
• Diffusion of a message 
• Reaction of acting upon message 
 
 
 
What examples can you think of from nature? 



Sender and Receiver Cells 
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Example 1         Pancreatic Beta Cells Send out Insulin 
   



Basu et al. Nature 2005 
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Basu et al. Nature 2005 
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Sender cell produces AHL 
 
Receiver cell contains a feed-
forward loop responsive to AHL 
(band-pass filter) 
 
Receiver cell produces GFP only at 
medium AHL levels 

Band-detect multicellular system 



Basu et al. Nature 2005 
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Feed-forward loops 

Structure and function of the 
feed-forward loop 
network motif 
 
S. Mangan and U. Alon 
PNAS 2003 

Band-pass filter is generated 
by the difference between 
the CI and LacIM1 repression 
efficiencies and an incoherent 
feed-forward loop (type II) 



Basu et al. Nature 2005 
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Modular System allows for different versions to be made and mixed 

Sender High-detect Low-detect 

• HD1 – mutation in LuxR that makes it hyper-sensitive 
• HD2 – normal plasmid 
• HD3 – mutation in ColE1 means cells have lower-copy number 
 

• GFP can be swapped with RFP to change the colour of the cells 



Basu et al. Nature 2005 
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5 species model 
 
Ordinary Differential 
Equations with Hill 
functions that capture the 
activation and repression 
of protein synthesis 

G = GFP   L = LacI     C = CI    R = LuxR/AHL      A = AHL 
LuxR alone is at a fixed concentration 
 
 
Equation 5 captures the diffusion and degradation of AHL 



Basu et al. Nature 2005 
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5 species model 
 
Ordinary Differential 
Equations with Hill 
functions that capture the 
activation and repression 
of protein synthesis 
 
Parameters chosen to fit 
the data and based on 
previous research 



Basu et al. Nature 2005 
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Immobilized plug of sender cells placed in centre of petri dish 
 
Rest of agar inoculated with a mix of receiver cells: 
 b. BD2-RFP mixed with BD3-GFP 
 c. BD1-GFP mixed with BD2-RFP 
 
Sender cells express CFP (cyan colour) 



Basu et al. Nature 2005 
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a = Simulation 

The model can predict complex 
patterns from two or more spots 
 
Parameter analysis of the model 
also determines the critical parts 
of the network 
 
• LacI stability (half-life) 



Natural Example - Drosophila Patterning 
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Natural Example - Drosophila Patterning 
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Initially a Morphogen Gradient 
(simple diffusion model) 
 
 



Understanding Drosophila Patterning 
• Drosophila patterning is one of the most studied differentiation 

systems 
• Gap genes, pair-rule genes have been investigated and 

mathematically modelled 
• System works using diffusion of transcription factors through a giant 

multi-nuclei cell  –  MORPHOGEN GRADIENT 
• Genes responding to these transcription factors have modular 

promoters 
 

• See: 
Essential Cell Biology 
Chapter 8 p282 
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Synthetic Drosophila Patterning 
• Synthetic biology - can we 

rebuild it and what can we 
learn from rebuilding? 
 

• Engineered morphogen 
gradient system with phage 
polymerases and zinc finger 
repressors 
 

• Engineering Gene Networks 
to Emulate Drosophila 
Embryonic Pattern 
Formation – PLoS Biology 
Isalan M, Lemerle C, 
Serrano L (2005)  
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Synthetic Drosophila Patterning - DNA 
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Different regulation – different patterns 



Synthetic Drosophila Patterning - Model 
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For each species E, the dynamics of its concentration at time t and position s are 
governed by the following classical difference equation: 
  ΔE=E(s,t+1)-E(s,t)= Δt *(diffusion+production-degdration) 
 
* Modified equation is needed to describe T7 and to describe diffusion at the ends 
 
Simulations were run using a Perl script. Parameters were measured or looked-up. 



Synthetic Drosophila Patterning - Findings 
• Adding more transcription repression interactions increases the 

“sharpness” of the pattern while reducing overall expression levels.  
 

• A computer model of the system allows searching for parameter sets 
compatible with patterning.  

• Model suggests that simple diffusion may be too rapid for Drosophila-
scale patterning, i.e. sublocalisation, or “trapping,” is required.  

• Model shows that in this system, the activator molecules must 
propagate faster than the inhibitors for patterning to occur. 

• Model shows that adding controlled protease degradation to the 
system stabilizes pattern formation over time. 

 
• Patterning may be achieved with only localisation, diffusion, and some 

kind of functional network connection   
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 Minimal system 



Applications of pattern formation 
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1. Investigation of natural phenomena 
 
 

• Drosophila Patterning 
 
• Embryonic Differentiation 

 
• Plant growth 

 
• Species habitation  
 (e.g. predator/prey models) 
 
 
• Turing patterns 

 
• Traffic jams 



Applications of pattern formation 
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2. Artificial versions of natural systems  
 
 

• Synthetic Insulin Production 
 
 

Program implanted stem cells to sense 
blood glucose and release insulin to 
replace pancreatic cells 

 
How to stop stem cells over-proliferating? 
- Need to sense their own size 

 
- Quorum sensing – e.g. AHL 

Glucose 

Insulin 

Liver 



Applications of pattern formation 
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O2 
O2 

O2 

O2 
O2 

O2 

Product 

3. Generation of specialist environments 
 
DIVISION OF LABOUR  

 
 

Cell engineered to have two versions: 
 - Surface lovers 
 - Centre lovers 
 
Activation of different processes can be 

tied to the version of cell 
- Surface lovers use oxygen to make a 

metabolite 
- Centre lovers perform anaerobic 

reaction on this metabolite to make 
product 



Applications of pattern formation 
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4. Other applications we’ve not thought of...                   
 

Art / Fashion / Architecture / Technology 
 
 
 
 

ANY IDEAS?                    



Applications of pattern formation 
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4. Other applications we’ve not thought of...  
 

Art / Fashion / Architecture / Technology                    

Nicola Morgan 
RCA 2011 



What you should now know and read up on! 
You could get exam questions on... 

 
1. What is morphogenesis and how does nature do it? 
2. The reaction-diffusion equation for minimal pattern formation 
3. Turing Patterns 
4. Bacterial density-dependent patterns generated by HKU iGEM 2008 

and ChenLi Liu et al. 2011  
5. Sender and receiver cell systems as used by Basu et al. 2005 
6. A synthetic mimic of Drosophila pattern formation. 
7. Applications of synthetic pattern formation 

 
   How would you use multicellularity? 
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Reading – useful sources and papers 
Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation - Science 
Kondo S and Miura T (2010) – Also read the supplementary online material 
 
iHKU 2008 iGEM Team Wiki:  http://2008.igem.org/Team:iHKU 
 
iHKU 2008 iGEM Team Presentation:  http://2008.igem.org/files/presentation/iHKU.pdf 
 
Sequential Establishment of Stripe Patterns in an Expanding Cell Population – Science 
Chenli Liu, Fu X, Liu L, Ren X, Chau CKL, Li S, Xiang L, Zeng H, Chen G, Tang L-H, Lenz P, Cui X, Huang 

W, Hwa T, Jian-Dong Huang (2011) 
 
A synthetic multicellular system for programmed pattern formation - Nature 
Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) 
 
Engineering Gene Networks to Emulate Drosophila Embryonic Pattern Formation – PLoS Biology 
Isalan M, Lemerle C, Serrano L (2005)  
 
Essential Cell Biology  (Alberts et al.) Chapter 8 page 282 
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