	Nuri Purswani: Msc Project Report- DASBrick
	2010

ABSTRACT:

Background

Synthetic Biology is an emerging field that aims to apply engineering principles in the rational design of biological systems. Biobricks are standard biological parts composed of DNA sequences and incorporated into living cells (generally prokaryotes- E.coli). One of the biggest limitations in the field is the the lack of availability of reliable software tools for visualization and storage of synthetic biology data. The current MIT repository, where biobricks are stored, does not allow the user to import annotations from external sources. Here we propose to use the Distributed Annotation System (DAS) for improving visualization of synthetic biology data, in combination with the GoogleApp Engine (GAE) - a cloud computing platform that allows the user to deploy applications using the internet storage space, as opposed to investing on local expensive hardware.
Results and discussion

This part of the report will evaluate the usage of the GAE as a storage platform: We were successful in storing biobrick information in the schemaless big table of the GAE datastore. Many-to-many relationships between biobrick objects were modeled using Java Data Object (JDO) annotations and persisted using the GAE persistence manager. Drawbacks we encountered while using the GAE included the lack of supporting documentation and the limitation that it does not yet support some functions. Adobe Flex 3.0 was the software of choice for the user interface of both the annotation viewer and the Google App data input web-server.
Conclusion

tbd
BACKGROUND

The goal of synthetic biology is to be able to effectively engineer living organisms, and assign them novel functions that will lead to potential applications in many areas. Some of synthetic biology’s groundbreaking contributions include:

· The implementation of a cost-effective pathway in e-coli for producing the anti-malarial drug Artemisinin [1].
· The development of a synchronized population level bacterial oscillator [2], achieving control of collective cell behavior that have many applications in medicine/tissue engineering, agriculture…

· Insights into “Synthetic Life” and its essential components- The minimal genome [3].

Standardization and characterization are essential for progress of the field [4], and the development of synthetic biology software tools will aid this process by making “engineering biology” an easier task. Prior to introducing synthetic biology software tools and the Distributed Annotation System (DAS), the next section will provide a summary about biobricks and what they consist of.

Biobricks and the MIT Registry

Biobricks constitute the basic “building blocks” of synthetic biology. These include a standard biobrick base vector (described in [5]) put together “ad-hoc” from common cloning plasmids, and the DNA fragments that will assign our bacterium/yeast with the function of interest (Fig 1A- overleaf). The DNA segments contain restriction sites (EcoRI,SpeI,Xbla, Pstl) that enable multiple DNA fragments to be ligated (Fig 1B) leading to formation of composite parts [2]. The MIT parts repository [6] distributes biological parts to synthetic biology labs, and also to students participating in the annual iGEM competition [7]. Figure 1C explains biobrick parts and what they commonly consist of (promoters, ribosome binding sites, coding regions…).
The current MIT registry is the main biobrick supplier. However, users in the synthetic biology lab* at IC have identified several problems in the registry that make their design of biological parts a hard task to accomplish. Some of these include:

1. Manual annotations: At present, the MIT registry annotation viewer forces the user to manually introduce annotations, without being able to access information from external sources such as GenBank and NCBI.
2. Poor searching methods: The current registry of parts lacks a straightforward way of searching for biobrick parts (See [8]), so the user would benefit from a simple method for filter querying.
3. Inconsistent data format and lack of standardization of data input: In addition to research groups, the MIT registry is populated with more and more data from various groups, including students participating in the iGEM competition [7]. As a consequence, data format is highly inconsistent, and many parts contain misleading or inaccurate information. * Working under supervision of Prof Paul Freemont and Prof Dick Kitney

Later on, we will see how the DASBrick project has helped overcome some of these limitations.
[image: image20.png]Web
Browser

JAVA- TOMCAT :JSP-
Servlet container
JDBC

Database Server

Figure 1: BioBricks explained. A. A biolocal part contains a BioBrick backbone (standard) and the sequence of interest- inserted as a plasmid into the bacteria [5]. B The restriction sites EcoRI,SpeI,Xbla, Pstl (E, S, X, P) enable multiple biobricks to be assembled by ligation [5] . C Examples of biobricks currently found in the parts registry, including Composites, which consist of two or more biobricks [icons from 6].
Existing Synthetic Biology Software

Several groups and iGEM teams have developed a plethora of synthetic biology software tools (Website summarizing available tools- [9-10]). These commonly consist of design and modeling platforms. Other groups have also attempted synthetic biology data management and web server visualisation as well as tools that allow for easier ways of sharing information and exporting from data from external sources. Summarising all these tools is beyond the scope of this report. Here, the discussion will focus on selected software: BioJADE [11], BrickIT [12].

BioJADE is a synthetic biology design and simulation tool that allows the user to design and simulate behaviour of biological parts. It is supported by a mySQL database back-end, and written in Java [11]. JDBC ORACLE [13] is the client used in this instance to connect to the mySQL relational database and the PERL DBI database interface [14], which provides an interface to make the appropriate SQL queries to the right database drivers [14]. These technologies allow for portable database applications to be constructed. Another desirable feature of BioJADE is that it allows for storing entries in XML format, portable for data exchange.

BrickIT [11] and the Registry of Biological parts [6] are both database web-servers. BrickIT uses Django [15], an object oriented web-framework that allows for encapsulation of both the data model and the web interface, helping to improve on the visualization tools of the current parts-repository by allowing to produce biobrick filter queries. This latter function ties in with one of the goals of DASBrick.
BrickIT and BioJADE both share one common feature: Both software rely on using local servers for storage of their parts. The DASBricK software moves away from this paradigm by employing cloud computing [16] as a storage technology instead of the classical client-server architecture. Cloud computing is currently employed in internet shopping services such as AMAZON, and offers a promising future for the sharing of data through the world wide web. It is also an attractive option for management of biological information. Prior to discussing this further in the methods section, we will introduce the DAS and its role in the project.
The Distributed Annotation System (DAS)

The distributed annotation system (DAS) allows a user to gather information from multiple websites using http requests [17-18]. Given the sudden rise in data input into biological databases, keeping track of all the information has become a very challenging task. Groups have tried several approaches to overcome this problem, including:

· Usage of annotation systems via 3rd parties, that are then coordinated using a centralized system [19-22]

· Also, the Human Genome Project Consortium's Analysis Group (HGPCAG) where annotations are managed by a group of “experts” and curated. However, this too lies on a centralized server and can be hard to update all the time [19-22].

DAS overcomes this limitation by not requiring coordination from a central server. The annotators (users) can have control over their work, and each time they make changes these are updated via DAS. The DAS system has a data exchange standard (XML format) that can be integrated real time in a client viewer. This way, data from multiple sources can be collected in a single monitor without worrying about the data being corrupted. Many biological databases have DAS servers, and these allow their information to be visualized in an integrated fashion in a more “decentralized control way” through clients such as Ensembl [23], Karyodas [24] (Annotation viewer for chromosome information) and CARGO[25] (Integrates information on human genes to identify those potentially related to cancer) among many other examples. Further details on how to implement DAS are found in [17-18].

METHODS

This section will provide an overview of our software and the utilised technologies (Figure 2). A key aspect to highlight from our design is its modularity and “component-based” design, allowing team members to work on different parts and merging them at a later stage.

[image: image2.png]WEB ANOTHER DATABASE w/DAS SERVER

A
Another
Another DAS Biological
DESKTOP server database

Annotation Viewer
MIT REGISTRY

DAS CLIENT

MIT DAS MIT Parts
server Registry

IMPERIALCOLLEGE “REGISTRY”

FLEX

WEB GUI
Dazzle: DAS Datastore
SERVER '

Google-App Engine

Figure 2- DASBrick Overview. A. External DAS servers: These communicate with the annotation viewer (info sent as XML). The MIT parts registry is the principal server we used in addition to ours, as it contains the vast majority of existing biobricks. B. Our own DAS server *: This is hosted on the GoogleApp Engine (GAE) “on the cloud”. Entries are input into the datastore (sitting on the GAE) via the flex GUI. Dazzle (our DAS server) outputs information from the datastore in XML format to the annotation viewer. C. Annotation viewer: This is our DAS Client, which compiles information from all the DAS sources it communicates with, displaying it in a meaningful way to the user. Note- The annotation viewer is a downloadable desktop application while the registries are web services. * The green box indicates the parts of the project that this report focuses on.
The bulk of this project is contained in the annotation viewer and the Imperial College “Registry”. The programming languages utilised included Java for the Dazzle DAS server and the creation of our object oriented database, found in the GAE Datastore. Adobe Flex 3.0 [26] was the program of choice for the user interfaces, which combined a mixture of mxml [26] and action script [26] – an object oriented programming language similar to Java, and used for creating event listeners for the user interfaces.

The originality of our software lies in the choice of technologies. Conventional web databases employ the use of local servers, whereas we have opted for a “Cloud Computing” solution to store our data. Furthermore, DAS has been successful in other biological contexts, so our aim was to implement it in synthetic biology.

The details of DAS and the annotation viewer are covered in the group report. Here, more focus is given to: The choice of cloud computing versus a local server, The GAE Datastore and the FLEX GUI for the Imperial College “Registry”.

Types of Server

Local Server
Figure 3 is an example of common database-web server architecture. Here, the database is stored in local hardware (eg. Codon bioinformatics server) and accessed using a JAVA interface that enables the user to query it and input entries.

[image: image1.png]BioBrick Base Vector

C

BioBrick Part

Mixed site

“eh4 D

e

Promoter
RBS
Codingregion
Terminator
Plasmid

Composite

Initiates transcription

Ribosome Binding Site

Code for the protein described by the sequence
RNA sequence causing transcription to stop
Replicate independent of chromosomal DNA

Composed of 2 or more biobricks

[image: image8.emf][image: image9.emf][image: image10.emf]Figure 3- Traditional web server: A.Database server: MySQL relational database containing biobrick part and feature information. B.JDBC (mySQL connector)[13]: This is downloaded as a .jar file for java usage and contains the following components- 1. JDBC API that connects to the relational mySQL database and allows the user to perform queries. 2. JDBC Drivermanager class- Defines objects that can connect java applications (eg servlets) to the driver manager. C. Apache TOMCAT: Uses Catalina- a web container for servlets and java servlet pages (JSPs) that can then be visualized using a web browser [27].
The first implementation of our database (explained in the IMPLEMENTATION section) was constructed using this framework. Soon we realized the potential of using the internet storage capacity and decided to translate our system to the GoogleApp Engine.

Cloud Computing
The GoogleApp Engine [28] is a tool that has been recently developed and enables users to deploy web applications without the need of investing on expensive server maintenance. It supports several programs, including the Java and Python runtime environments, and provides the user with up to 500MB of free storage space for web applications, where the user should only pay the difference if the quota is exceeded.

GAE is an example of a cloud computing “platform as a service” (PaaS). This means that it offers tools and services for the development of applications and web services. Other PaaS examples include force.com and Windows Azure.

Cloud computing is desirable because it is stable, quick to implement and does not require the user to have knowledge of the underlying “server structure”. However, it compromises the amount of control owners have over their data, and lacks a physical controlling entity [28]. Next, we can explain how GAE stores data and our data model (the IMPLEMENTATION section will cover how we translated a mySQL schema to the schema-less datastore).
The GAE Datastore

The GAE datastore is a “schemaless” big table that provides robust, scalable storage space for web applications. To model data, one can use the Java Data Object (JDO) or the Java Persistence API (JPA) interfaces to create object oriented databases. Annotations imported from the javax.jdo.annotations such as “@PersistenceCapable” are assigned to the Java Classes, which in this case means that the class can be “persisted”or introduced into the datastore.

[image: image11.emf]The process of creating, updating and deleting entries is called a “transaction”. These are there to ensure that when changes are made to entries, they are appropriately stored or not included in the event of error. Each time we want to initiate a transaction, we have to make a call to the persistence manager class. A simple example is shown in the code below [29]:

The PMF object is a separate class that is called from a different file. The reason for this is that it takes time to initialize so it should only be instantiated once. The implementation will return to the PMF again, explaining how the classes in this database are related to each other.

In addition, JDO include a querying system- JDOQL that enables the user to retrieve entries. It is very similar to mySQL, except that the table name is replaced by the data object (eg- "select id from " + Biobrick.class.getName()). The Implementation will show how we translated a mySQL schema to the GAE datastore. Next we can discuss the technology used for inputting and visualizing data.
Adobe Flex: Input and modification of Biobrick data
Google App Engine supports several methods for inputting data into the datastore. Initially, the Servlet-JSP architecture was implemented (Fig 4A). However, GAE is also supported by the Granite Data Service (Granite DS) , which provides a framework to connect flex3 to our POJOs (our JDOs) and allows you to use remote objects, which were employed in the FLEX WEB GUI to call functions written in Java that were accessing the datastore (fig 4B). In order to make Granite DS work on GAE, a few libraries and JAR files have to be added to the project directory. This is explained in more detail on the group report. The reason for choosing FLEX 3 over the common Servlet-JSP architecture is that Flex3 is very good for designing graphical user interfaces. Action script and Remote Objects allow an easy implementation of event listeners on buttons, while using html these methods have to be written on the JSP and the code can get messier to follow and modify. Furthermore, Flex 3 has a “Design View” option that allows the programmer to visualize the GUI at all stages, making the process relatively straightforward. [image: image3.png]FLEXGUI

JSP-Java/
html

Granite DS:
Remote Objects

Java
methods

Datastore

Datastore -

[image: image12.emf][image: image13.emf]Figure 4. A. The user can input/query modify the database by connecting to the datastore via a JSP-Servlet. B. We can replace this by a Flex application that uses GraniteDS as a remoting service to connect to the java methods that access/update/query the datastore.

 IMPLEMENTATION
This section now explains a sub-part of the DASBrick project implementation (Fig 2- green box).
Biobrick Database- From “relational” to “schemaless” and “object oriented”
A biobrick is a standard biological part. The schema for our database contained the following tables and fields:

	BioBrickID
	Status
	Part number
	Part type
	Description
	Sequence
	Size

	Input into the datastore – Primary key
	Is the part available/unavailable in the MIT registry?
	This is the Biobrick’s ID in the MIT registry
	Promoter/rbs/reporter/composite …
	Explaining the biobrick function
	Full biobrick sequence
	Number of base pairs in the sequence

	RBS James
	DNA available
	7
	Ribosome Binding Site
	This is a unnatural ribosome binding site
	tctagaGAAAGAGGTGACTCactagt
	26

Table 1: Biobricks table: Containing the essential information about the biological parts.
	Feature ID
	Feature Type
	Label

	Input to datastore, primary key
	Keyword feature description*
	Annotation label

	James F1
	AHL binding Domain
	Binding

Table 2: Features table: These are the “annotations” that correspond to each biobrick. Eg: -35, -10, ORF1… * NOTE: Biobricks themselves can be features if the part in the database is a composite biobrick (See Figure 1)

In addition, the two tables have a many-to-many relationship between them. This is because a single biobrick can contain many features (eg. Promoter, rbs, stop codon…) but these features can also belong to more than one biobrick. Therefore, a third joining table was included with the following fields:
	RelBF ID
	Feature ID
	BioBrick ID
	Start

	Primary key
	Foreign key from Features table
	Foreign key from Biobricks table
	Position (bp) in biobrick sequence where the feature is located

	RelBF1
	James F1
	RBS James
	30

Table 3- RelBF joining table. Feature James F1 belongs to the biobrick RBS James, however, James F1 could be associated with other biobricks too and RBS James can contain more features.
This framework is straightforward to construct in mySQL. However, the task was not so straightforward on GAE. Figure 5 provides an overview of the Java classes we created to translate this data model. [image: image4.png]PartUploader.java OUTPUT FLEX
*Methods to call wrapper INPUT WEB GUI
*Methods to display on GUI

Wrapper.java PMF.java

*Methods to call the persistence
manager

—| Persistence manager

DATASTORE

BioBrick.java

K Biob D
ring sequence

String size

String description

String type

String status

String Part_no

ArrayList<Key> relationshipSet

RelBF.java

Key* RelBF ID
tKey Biobrick ID /
Key Feature ID
String Start

String End

Feature.java
|[Key* Feature ID

String type
String label
String size
ArrayList<Key> relationshipSet

Figure 5. Overview of the object-oriented database. The classes Biobrick and Feature directly correspond to Table 1 and Table 2. These classes contain “getters and setters” not included in the diagram. RelBF is equivalent to Table3, which allows us to model the “many-to-many” relationship. Each time the user inputs the string arguments to populate these fields, a call is made to the PartUploader, which is connected to the FLEX GUI via an object remoting service. The PartUploader then calls the Wrapper, which calls the PMF and initiates transactions for storage, update and retrieval of biobricks to the GAE Datastore.
Now we move on to discussing the FLEX web GUI and the PartUploader methods, concerned with input of biological information into the GAE datastore.

Flex web GUI: Input to the “Imperial College Registry”

This part of the implementation focuses on how biobrick information can be input into our database. The class PartUploader.java (figure 5) communicates with our FLEX GUI via remote objects. This GUI is hosted on the GAE webspace and serves as a simple platform that allows the user to input, view and modify the information they enter. In first place, the architecture of the PartUploader-FLEX GUI will be described; followed by a set of images explaining the main GUI components. More details of the latter will be described in the Group report.

Connecting Java methods to the Flex GUI

The FLEX GUI (Figure 6) contains three tabs that allow the user to:

· CREATE A NEW BIOBRICK: Create a new biobrick and add features to it.

· MODIFY BIOBRICK: View/Modify and delete an existing biobrick.

· MODIFY FEATURE: View/Modify and delete an existing feature.
[image: image14.emf][image: image15.png]

[image: image16.png]

[image: image5.png]FLEXGUICOMPONENTS

MODIFY BIOBRICK MODIFY FEATURE
*Fetchbiobrickbyid() *Fetchfeaturebyid()
*FetchBricksdatstore() *FetchFeatsdatastore()

CREATE A NEW BIOBRIC}
*createBioBrick()
*createFeature()
+setRelationship()
*FetchFeatsdatstore()

*updateBioBrick() *updateFeature()
*deleteBioBrick() *deleteFeature()

REMOTING [SERVICE
Method Name Return Type | Description PartUploader.java- methods
createBioBrick() Void Creates a biobrick and calls the wrapper to persist on datastore
createFeature() Void Creates a feature and calls the wrapper to persist on datastore
setrelationship() ArrayList<String> Calls RelBF to add a feature to the biobrick and displays the added feature on
Ul

Fetchbiobrickbyid() ArrayList<String> Fetches a biobrick by ID and displays it
Fetchfeaturebyid() ArrayList<String> _Fetches a feature by ID and displays it
FetchBricksdatstore() ArrayList<String> Uses JDOQL to query for stored biobricks and displays in dropdown list

FetchFeatsdatstore() ArrayList<String> Uses JDOQL to query for stored features and displays in dropdown list

updateBrioBrick() Void Updates a biobrick with modified user information
updateFeaturef) Void Updates a feature with modified user information
deleteBioBrick() Void Remove biobrick from the datastore

deleteFeature() void Remove feature from the datastore

Figure 6. Description of PartUploader.java methods and their link to the FLEX GUI. As described in Figure 5, the PartUploader contains a set of methods that allow the user to input information into the datastore and retrieve it. The table provides a description of the methods called remotely by the FLEX GUI. These will be better understood once the GUI components are described in detail. A. The “Create Part” view allows the user to create new biobricks(createBioBrick()), new features (createnewFeatures()) and retrieve existing features (FetchFeatsdatstore()) to add to the current biobrick (setRelationship()). B. The user can also view a biobrick (searching by ID –Fetchbiobrickbyid() or selecting from a dropdown menu –fetchbrickdatastore()) and update it/delete it. C. Features can also be viewed/updated and deleted.
Flex GUI Components

TAB 1- Create New BioBrick
Here we provide a description of user operations required to create a new biobrick and add features to it.
Creating BioBricks
[image: image17.png]Archivo Edter Ver Historial Mercadores Herramientas Ayuda

[RN IR e er—r—

7o0a7915 solctodinden=? 7 -] [z veree 2

Parts and Features

TEE—————
Modify Feature

1,Startsitestartco | v | | Get Available Features |

Orinput an ID below:

Festure 1D = Fetch Feature by 1D

Type

Label

see [pelete reatre |

Update Feature

Transiiendo datos desd locahost. 28] s deseorga pausada
Inicio. a Firefos (& Microsoft PowerPoint s @) ® % O 5

The “Create BioBrick” button calls the function createBioBrick() from the PartUploader, which persists the user input information into the datastore. This is the first step in the creation of a biobrick. NOTE: If no biobricks have been created or no existing biobrick ID is found in the BBID text field, no features can be added to it, although they can be created.
[image: image18.png]Archivo Edter Ver Historial Mercadores Herramientas Ayuda

@ - C b O i

focalhos...2/combodas htmi £

Parts and Features

E———r
Modify BioBrick

St Brick from tct: | 81, Avaable Race | v | et Avaiable motricke |

Anything A Invented |+
Biabrick 1D ELAvslabRoce v Fetch Biobrick by ID
B2,Ausilable Promot

status B3, Auailable RES,TC

B4,Ausilable Termin |~

Type

sequence ATGsGARARACCCECETCS

size 255

Fasturas [i]

Delete BioBrick
Update BioBrick

Partno

Transiiendo datos desd locahost. 28] s deseorga pausada
Inicio. R)o® O

[image: image19.png]Parts and Features
v IR

eer0 a1 | F2 3 GFP 13 REPORTER 1 5
status Available
Partno F2620
Type Receiver
Description | Lab: cell signalling

Sequence WARACCCCCCTCGAT

size 259 Create BioBrick

ADD FEATURES:

[F2,GFP,REPOF | v | | show Available Features
festin | FLORFORF,3

TIPS Fa,START,START

Label 425,253

[P ——

Label Type Size
aFp REPORTER s

Figure 7. Create Biobrick: Input biobrick ID (BBID), Status, Part number, Type, description, sequence and size into the text fields and click “Create BioBrick” to persist it in the datastore.

Creating Features
Figure 8 describes two ways of entering features: From dropdown list (8A) or manually (8B). The button “show available features” calls the method FetchFeatsdatastore(). Create Feature calls createFeature() and “Add Current Feature to BioBrick” sets the relationship (setrelationship()) between the current feature and the biobrick.
[image: image6.png]achvo Edter Yer It

Marcadores Herramientas Ayuda

G- -)) [hemiiebiobrickz. sppspot. comfFrontpagezicombodas himi#

Or

P Comenzar con Frsfox) ELpAIS es: Bl daro ... [E] profie.php

Google

1P 110

v G pusear -

D B+ M+ 93 Marcacorese P - % Corector atogrieo {3 Traduer +|] Suscbice - »

Q contiqracer

) Bancejace eirada - Ouiok Web Access L

2/combodas.htmis

Parts and Features

T T
Create New BioBrick

Be10
Status
Partne
Type
Desaription

sequence

size

ADD FEATURES:

FLj; Binding 1 AHL Binding 1; 100

Create BioBrick

(

) [show Avaiablerestures

festip FL

Type | AHLBinding

Label [einding

size 100

Create Feature

Coordinstes

Add Curvent Feature to Biobrick

[

Label Type size

1

Binding AHLBinding | 100

Transfiienda detas desde icbiobrick2. appspot.com

Inicio.

Pt

Figure 8. A. Add a Feature from dropdown list. 1. Click on show available features and select item from dropdown list. 2. When selected, enter coordinates (start- red circle) and click “Add current Feature to biobrick” and it will display in the table. B. Create a new feature by manual input. 1. Input feature information into text fields and click “create Feature”. 2. Add the current feature to the biobrick.
TAB 2- Modify BioBricks
After creating a BioBrick, the user may want to view/modify the information entered or delete the biobrick from the database. The Modify BioBricks tab allows the user to select a biobrick from the datastore and modify it, or Fetch by ID. The Get Available BioBricks button calls the java method FetchBricksdatastore() in the PartUploader, which implements the query: "select from " + Biobrick.class . This returns a list of biobricks present in the datastore that the user can select and update. NOTE: Feature information cannot be updated in this tab. If the user wishes to modify Feature information, this must be done in the “Modify Feature” tab.
[image: image7.png]achvo Edter Yer It

Marcadores Herramientas

Ayuda

@508

LI hetpsffictiobrick?. appspot. comiFrontpage2/combodas html# spp=50567919-selectedinds

Or

P Comenzar con Firsfox B ELPAIS es: Bl diaro i

] profie.php

Google

inglorious bastards reviews | G pusear -

Parts and Features

I~
Modify BioBrick

Select Brick from List: [81, Available,Repc | v | | _Get available BioBricks

Biabrick 1D
Status
Type
sequence
size
Fasturas

Partno

Orinput an ID below:

o1

Fetch Biobrick by 1D

Available

Reporter

ACTGGCGTACCCCCTARA

2000

(FL 1

Delete BioBrick

F_2620

Transfiienda detas desde icbiobrick?. appspot.com

Inicio.

Update BioBrick

D B+ M - 73 Marcacorese P - % Comector atogrieo (3 Traduer +|] Suscice « »

Q contiracer

Figure 9. Modify Biobrick. A. Fetch Biobrick from dropdown list. Allows the user to select an available biobrick and modify information (not features) B. Fetch BioBrick by ID. Allows the user to fetch the biobrick information and update it/ delete it by inputting its ID.
TAB 3- Modify Features
The Modify Features tab has the same functions as Tab2. After creating a feature, the user can retrieve the information using: FetchFeatsdatastore (), which uses JDOQL to implement the query- "select from " + Feature.class (“Get Available Features”) and FetchFeaturebyID() (“Fetch Feature by ID”). This will then display the information in the relevant textfields, ready to be modified using updateFeature() (“Update”) and deleteFeature() (“Delete”).
Figure 10: Update/Modify existing features. Can modify features in the same way as biobricks (Figure 9).

The implementation can still benefit from obtaining more functionality and improving current options. Table 4 shows an overview of the Flex GUI options and rates them according to their functioning performance.
Results Summary
Table 4 is a summary containing all the buttons in our GUI and assessing their performance. The discussion will provide suggestions and future work to improve our current “IC Registry”.
	GUI Options
	Performance
	Comments

	Create BioBrick
	Works well (initially slow)
	Requires a waiting time of approx 10 seconds before the first biobrick is created. This corresponds to the time taken to call the persistence manager.

	Create Feature
	Works well (initially slow)
	Same as above

	Show Available Features
	Works (waiting time to initialize list).
	This was implemented as a separate button to avoid making multiple calls to the persistence manager.

	Add Current Feature to BioBrick
	Works Well
	When the feature is added to the biobrick it is displayed on the datagrid.

	Get Available BioBricks
	Works (waiting time to initialize list).
	This was implemented as a separate button to avoid making multiple calls to the persistence manager.

	Fetch BioBrick by ID
	Works Well
	Displays retrieved information on text fields, later to be modified by the user

	Fetch Feature by ID
	Works Well
	Displays retrieved information on text fields, later to be modified by the user

	Update BioBrick
	Contains Bugs
	Causes to be investigated- The GUI crashes when this button is clicked

	Update Feature
	Contains Bugs
	Same as above

	Delete BioBrick
	Works
	Makes the GUI crash. Long waiting times are another problem (>10s)

	Delete Feature
	Works
	Same as above

Table 4. Summary of operation of the FLEX WEB GUI
DISCUSSION
Having completed 12 weeks of “full time programming”, this section aims to:

· Evaluate our choice of technologies: In this report focus is placed on the GoogleApp engine and Adobe Flex for data input and manipulation.

· Review the user specifications

· Discuss future extensions to improve our software.
The GoogleApp Engine as a storage platform
The aim of this part of the project was to evaluate the feasibility of storing biological information “in the cloud”. The googleApp Engine was the application of choice, as suggested by a former member of the IC Synthetic Biology group. We validated this technology and are now ready to provide an evaluation.

1. The GAE datastore provided us the option to create our database on the schemaless BigTable. Conventional databases employ the use of mySQL to model relationships in a relatively simple manner. Translating this to the schema-free big table and creating our “object-oriented” database proved to be a challenge and also took up a significant amount of our allocated project time.
2. The GAE is not yet finished, and another problem we encountered was the lack of supporting documentation for what we wanted to do. There are not many examples of how to model many-to-many relationships available, which meant that we had to opt for a “simple database” consisting of three tables, as opposed to a larger schema that could incorporate more biobrick information. With this project we proved that we can host a biological database on the GAE. The “Future work” section will provide suggestions on expanding our schema.
3. In addition, the App Engine still contains a set of functions from JDO that are not supported [30]. Here are four specific unsupported features we would like to highlight:
a. Unowned relationships. You can implement unowned relationships using explicit Key values. JDO's syntax for unowned relationships may be supported in a future release.

b. Owned many-to-many relationships.

c. "Join" queries. You cannot use a field of a child entity in a filter when performing a query on the parent kind. Note that you can test the parent's relationship field directly in query using a key.

From a. b. we can observe that GAE did not support unowned relationships or owned many-many relationships so in order to model the relationship between a biobrick and a feature (unowned many to many) we had to generate explicit key values, as opposed to auto-generating them. Also, as mentioned in point c, joint queries cannot be performed in GAE’s version of JDOQL. This means that if we want to search for the label of a particular feature, we can’t do it by writing= “select from” biobrick.class where feature.label=”ORF”. Instead, we can only retrieve information from the child class (feature) using its ID.

These limitations mean that the GAE may not have been the best platform of choice for hosting a database at present, but this does not mean it will not be in the future. Major companies are investing a great proportion of their resources towards developing cloud computing services, and eventually this will allow us to create applications on the web at a reduced costs, with increased storage capacities (as there are no longer limits posed hardware storage capacity), fully automated (no need for staff to maintain local servers), and mobile- allowing users to access their information from anywhere in the world [31]. In the near future, this technology will most certainly take over database management systems although more work has to be put into doing so before it properly kicks off.
Now we can move on to discussing our user specifications and answering if these were met.
Adobe Flex for Visualization

Adobe Flex was the software of choice for modification of biological information. The GoogleApp Engine offers the option of viewing and manipulating data entries using their web tools. We chose to create our own interface in FLEX to perform this task, as FLEX provides very good GUI design tools. Our Web GUI still requires further improvements as at present it only offers basic functionality (with bugs) and waiting times for creation of biobricks are long (Table 4). The reason for keeping this as a separate component from the Annotation Viewer was that the following: Originally, the annotation viewer would be hosted as a web interface, sitting on the GoogleApp engine. However, certain security issues- described by Luke Tweedy- did not allow us to do this effectively. This meant that we had to create the Flex Web GUI as a separate data input component, and host the annotation viewer as a desktop application in adobe air. Overall, we believe that Adobe Flex was a good choice of software for visualization.
User specifications
 Our software fulfilled most of the user specifications. Some of these solutions relate to the Annotation Viewer, discussed further in our Group Report. In summary, the specifications were:
1. Manual annotations: At present, the MIT registry annotation viewer forces the user to manually introduce annotations, without being able to access information from external sources such as GenBank and NCBI. We have enabled the retrieval of necessary information from biological databases in the Annotation Viewer’s BLAST component.
2. Poor searching methods: The current registry of parts lacks a straightforward way of searching for biobrick parts (See [8]), so the user would benefit from a simple method for filter querying.Thanks to DAS, the Annotation Viewer allows the user to query by ID, name and Feature type. This is great progress with respect to the current registry of biological parts [6], which still requires the user to exhaustively search the catalogue pages to find the desired part.
3. Inconsistent data format and lack of standardization of data input: In addition to research groups, the MIT registry is populated with more and more data from various groups, including students participating in the iGEM competition [7]. As a consequence, data format is highly inconsistent, and many parts contain misleading or inaccurate information. We created the FLEX GUI to overcome this problem, which does restrict the information input by the user and the format. However, the main drawback of our interface is that biobrick information is incomplete with respect to the current parts registry [6]. Future work is required to expand this component.
Future Work
Having discussed the relative achievements and limitations of our software, this section would like to provide a set of future directions for development of DASBrick.
The IC BioBrick Registry

In comparison to our Annotation Viewer (see Group report) the database component of our project offers room for improvement. There are a set of features that the program does not yet support, described below:

· Creation of Composite Biobricks (containing more than one biobrick part- See Figure 1)

· Bulk upload of parts from file- In addition to the unsupported features mentioned earlier, the GAE does not allow for file uploads using conventional input-output streams.
· Missing essential biobrick information. Having modeled three tables in the GAE datastore we are still missing a lot of information that the current parts-registry provides. This means that although our Annotation Viewer has improved on the registry’s visualization tools, there is still a lot of work to do on the database side. Additional biobrick information that the user will require includes: lab information (data on the part’s function from the lab), ratings- does this part generally work? BioJade[11] and BrickIt[12] implemented a schema containing more biobrick information. Working on a complex schema was not so much the focus of this project. Instead, we wanted to validate GAE as a technology. Now that the groundwork has been performed, this component could lead to a computing project altogether.
DAS Clients
This point relates to the annotation viewer so it will not be discussed in too much detail. At present, the Annotation viewer only receives DAS information from the MIT registry and the Imperial College database. Future work could involve expanding the repertoire of information from other DAS servers. Other DAS clients such as CARGO [25] integrate information from various sources including: Ensembl , CPATH, dbSNP , PDB, OMIM or iHOP via DAS or Web services [25]. Similar information will be included in our Annotation viewer in the future.
CONCLUSION

TBD
REFERENCES

[1] "Engineering a mevalonate pathway in Escherichia coli for production of terpenoids," by Vincent J. J. Martin, Douglas J. Pitera, Sydnor T. Withers, Jack D. Newman, and Jay D. Keasling, appeared in Nature Biotechnology, 1 July 2003.

[2] A synchronized quorum of genetic clocks. Tal Danino, Octavio Mondragón-Palomino, Lev Tsimring, Jeff Hasty. Nature, 426:326-330 (2010)

[3] Essential genes of a minimal bacterium. John I Glass, Hamilton O. Smith, J. Craig Venter. January 10, 2006 vol. 103 no. 2 425-430
[4] Endy D. Foundations for engineering biology. Nature 2005 Nov 24; 438(7067) 449-53. doi:10.1038/nature04342 pmid:16306983

[5] Engineering BioBrick vectors from BioBrick parts. Reshma P Shetty*1, Drew Endy2 and Thomas F Knight Jr3. Journal of Biological Engineering 2008, 2:5 doi:10.1186/1754-1611-2-5

[6] Parts registry: http://partsregistry.org/Main_Page

[7] iGEM – Goodman, C. Engineering ingenuity at iGEM. Nature Chemical Biology 4, 13 (2008) doi:10.1038/nchembio0108-13
[8] Catalog of parts and devices: http://partsregistry.org/Catalog

[9] SynthBio Software: http://syntheticbiology.org/Semantic_web_ontology/Software.html
[10] SynthBio software: http://openwetware.org/wiki/Computational_Tools

[11] BioJADE: http://web.mit.edu/jagoler/www/biojade/
[12] BrickIT: http://sourceforge.net/apps/mediawiki/brickit/index.php?title=Main_Page
[13] Database Programming with JDBC and Java. By George Reese 1st Edition June 1997 1-56592-270-0, Order Number: 2700 240
[14] Chapter 4: Database programming with Perl By Alligator Descartes & Tim Bunce
1st Edition February 2000 1-56592-699-4, Order Number: 6994

[15] The Definitive Guide to Django . Author:Adrian Holovaty and Jacob Kaplan-Moss Published by APRESS in 2009; ISBN: 978-1-4302-1936-1

[16] Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online By: Michael Miller Publisher: Que Pub. Date: August 11, 2008 Print ISBN-10: 0-7897-3803-1

[17] DAS Registry: http://www.dasregistry.org/
[18] The Distributed Annotation System Robin D Dowell1 Rodney M Jokerst1 Sean R Eddy1 et Al. BMC Bioinformatics 2001, 2:7

[19] Shoman LM, Grossman E, Powell K, Jamison C, Schatz BR: The Worm Community System, release 2.0 (WCSr2).Methods Cell Biol 1995, 4:607-625.

[20] Skupski MP, Booker M, Farmer A, Harpold M, Huang W, Inman J, Kiphart D, Root S, Schilkey F, Schwertfeger J, et al.: The Genome Sequence DataBase: towards an integrated functional genomics resource.Nucleic Acids Res 1999, 27:35-38.

[21] Letovsky SI, Cottingham RW, Porter CJ, Li PW: GDB: the human genome database.Nucleic Acids Res 1998, 26:94-99.

[22] Cuticchia AJ: Future vision of the GDB human genome database.Hum Mutat 2000, 15:62-67.
[23] An Overview of Ensembl. Birney E., Andrews T.D. et al. Genome Research 14(5): 925-928.

[24]Karyodas notes: http://code.google.com/p/karyodas/

[25] Cases, I. et al. CARGO: a web portal to integrate customized biological information. Nucleic Acids Research, 2007, Vol. 35 CARGO notes: http://cargo.bioinfo.cnio.es/

[26] Adobe® Flex™ 3: Training from the Source By: Jeff Tapper; Michael Labriola; Matthew Boles; James Talbot Publisher: Adobe Press Pub. Date: March 27, 2008 Print ISBN-10: 0-321-52918-9

[27] Apache Tomcat Bible, by Jon Eaves, Warner Godfrey, and Rupert Jones, Wiley, ISBN: 0764526065 (2003)

[28] Programming Google App Engine By Dan Sanderson Publisher: O'Reilly Media Released: November 2009
[29] GAE code: http://code.google.com/intl/en/appengine/docs/java/datastore/usingjdo.html
[30] Unsupported GAE JDO Features: http://code.google.com/intl/en/appengine/docs/java/datastore/usingjdo.html#Unsupported_Features_of_JDO
[31] Advantages of Cloud Computing: http://web2.sys-con.com/node/640237

C

B

A

PersistenceManager pm = PMF.get().getPersistenceManager();�� BioBrick b = new Biobrick(user inputs arguments);�� try {� pm.makePersistent(b);� } finally {� pm.close();� }

B

A

C

B

A

� EMBED PBrush ���

B

A

1.

2.

� EMBED PBrush ���

� EMBED PBrush ���

1.

2.

� EMBED PBrush ���

� EMBED PBrush ���

B

A

� EMBED PBrush ���

� EMBED PBrush ���

5

_1331902461

_1331902463

_1331902465

_1331902466

_1331902464

_1331902462

_1331902460

