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Freely Jointed Chain (FJC)

degrees of freedom:
{x.}, i=0..N

under constraints:
X, X |=|b,|=b
~EXs b 1s called the Kuhn length

© N .
Xy no energy penalty otherwise

In particular, the Kuhn segments can penetrate
right through each other.



When 1t 1s not pulled...

Probability distribution of b, :
d <)

dP = p(bi)d3bi — 5(bi — b)dbi T
472

<bl> 0, var[b.|= <\b \>
b.and b, , are uncorrelated.

Detine end-to-end distance:
D=b,+b,+... + b,



We can now apply central limit theorem:

<D> =0, var[D]= <\ D \2> = Nb’

Furthermore, we know distribution of D
must approach Gaussian
3
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dP —>( > jzexp( 3D jaﬂD

271 Nb* 2 Nb*

The radius of gyration R ,cc<D-D>!" characterizes the
spatial extent of the molecule «cN'2h, which is much
smaller than the contour length L=Nb.



Suppose X, 1s fixed, and x,, 1s pulled with
external force f:

Gibbs free energy of the system:
G=F—-1f-D=E-TS—{-D=-715S—-1-D

F=-k,TInZ =const—

N
kyTIn [d’b,d’b,---d’b, exp(-BY h(b,))
i=1

where i(b.) =o(|b, | -b)
express the constraint condition.



G =—k,TInZe"'” = —k,T In Ze"" "0 +bv)
= const —k,T'In [ d’b,d’b, ---d’b,, exp(- ,BZh’(bl.))
i=1
where 4'(b,)=6(|b, |-b)—f b,

The above 1s equivalent to N biased segments,
still independent of each other.

Each biased segment 1s controlled by

z, = deieﬁﬂ’COS@ — j27zeﬁﬂ’cose"d cos O, = —;;Zb sinh( 5 fb)

(030 =2 5~ h(ﬂﬂ’)_ﬁ |



X = <D-f"> = N(bcos@i} = Nb(coth(,b’fb)—Lj

£ 1
=i,
L k,T

Langevin function A(x) = coth(x) — x~
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Worm-Like Chain (WLC)

=L

[=0
d/

also called
Kratky-Porod
model

continuously bendable
but unstretchable

| L kC*
Bending energy penalty: E[x(])]= _[0 dl ( 5 ]

d’x Yrr
, K=
4

curvature C = — = for solid cylinder

R |dI*




dt L icdt - dt
—I{,  E[t(]))]=
dl ()] -[0 2dl

d
tE—X,

t|=1, C=

_over solid angle 4m

~ [dt{AL)dt(2AL).. a’t(L)exp( ﬂzmt'“j

2AL

The above path integral can be
shown to be equivalent
to diffusion of a free particle
constrained on a spherical
shell (quantum propagator in
Imaginary time), with
diffusivity identified as 1/23«
(““ttme” 1s /).

orientation space
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<\t(z) t(O)\> ﬂ— when / is small.
K

[
(t(])-t(0)) =~ I—E & eXP(—E)

The exponential decay form turns out to be valid
in both short- and long-/ limiat.

K

Let us define persistence length p = Sk = T
B

(t()-£(0)) = exp(—%)

The above orientation correlation tunction 1s similar

to velocity auto-correlation function in Brownian motion.
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Two segments on the same polymer chain can be considered
to be strongly correlated 1n orientation 1f they are separated
by less than the persistence length p.

But this correlation dies rather quickly for segments
separated by chain length > p.

Consider a quarter-circle:
The initial tangent t; and the

final tangent t,can be
considered an example
of orientation decorrelation.
R But, this quarter-circle
could be very expensive
ltf to make 1f R 1s too small.

t.

l
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What 1s the right price?

R
S kT > S kT 5> R~ S5 R-p

2 2R’ R k,T

You can afford to make a loop of R > p.

The force-extension behavior of WLC-Kratky-Porod
model does not admit simple closed-form solution
like the Langevin function.

The problem can be mapped to a charged quantum particle
confined on a unit sphere, biased by an electric field —
a Sturm-Liouville eigenfunction problem seeking the
lowest eigenvalue. Requires diagonalization of a small

matrix, after converting to spherical harmonic basis.
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Interpolation form:

0.8_L — exact fp B )e 1
t ~—--interpolation kBT N L _Z
N .
N 0.8 — - — variational 1
L
z 2
S . %3
2z : 4/ 1-—
L 04— L
» o
@ '_
Good thing about
0= — this interpolation
form 1s that both
00 - limits are
107° 1070 10° 10’ 10 asymptoticall
force fA/kgT ymp Y
correct.
Figure 3. Comparison of three different calculations of the
WLC extension 2/L as a function of fA/ksT. The solid line o
shows the numerical exact result (Appendix); the dashed line Marko and Siggia,
shows the variational solution (13—14); the dot-dashed line Macromolecules
shows the interpolation formula (7). All three expressions are 28 (1995) 8759.

asymptotically equal for large and small fA/ksT. 14



The concept of persistence length is also applicable to Freely
Jointed Chain model, if we make the following calibration.

-0)= ([} -} )
= [ diar (t(1)- (1))
~ L j“; g(1)dl

We know g(0) =1. If we claim g(/) 1s "equivalent" to
exp(—1/p), then <D : D> =21Lp.

However, we know 1n FJC model, <D : D> = Nb* = Lb.

So the equivalent persistence length in FJC model 1s p = g
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Figure 2. Fit of numerical exact solution of WLC force—
extension curve to experimental data of Smith et al.! (97004
bp DNA, 10 mM Na*). The best parameters for a global least-
squares fit are L = 32.8 um and A = 53 nm. The FJC result
for b = 2A = 100 nm (dashed curve) approximates the data
well in the linear low-f regime but scales incorrectly at large
f and provides a qualitatively poorer fit. Inset: V2 vs z for
the highest forces; the exact WLC result (solid line) is in this
plot a straight line extrapolating to L = 32.8 um from which
the experimental points begin to diverge above z ~ 31 um;
including intrinsic elasticity (eq 19 with y = 500 kg7/nm,
dotted curve) improves the fit.

How well does it
actually work?

In the low-stretch regime:

T X
f— Skl X (WLC)
2p L
LT
b L
Marko and Siggia,
Macromolecules

28 (1995) 8759.
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Self-Avoiding Random Walk (SAW)

Experiments show that R, grows more quickly than
N2, Flory suggested this is due to excluded volume
of the polymer chain. He predicted that:

R, ~ N9 = N0¢ (in 3 dimensions)

= N7 (in 2 dimensions)

Self-avoiding random walker moves on a lattice and
never re-visits a site if it has been visited before.

The more precise result in 3D is R, ~ N0-588+0.001
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