
Biol 398/Math 388 Week 4 Assignment: 

A simple chemostat model of nutrients and population growth 
Background. The chemostat is an idealization of a reactor for growing populations of cells like yeast.  

Nutrients are fd continuously at a fixed flow rate and concentration, and effluent is extracted at a fixed 

flow rate.  A slight subtlety in the extraction part is that what is extracted is at a fixed flow rate, to keep 

the volume constant, but the effluent has a concentration that depends on the reaction.  An illustration 

of the chemostat is given below. 

 

Figure 1.  Chemostat cartoon from Wikipedia. 

The basic assumption of the chemostat is that the contents are sufficiently well mixed that the 

concentration of the mixture is uniform throughout the container.  Under this assumption, we do not 

need to consider spatial effects or non-uniformity of nutrients and cells: all cells have equal access to 

nutrient. 

If the volumetric inflow rate is Q (vol/time), then the dilution rate is q= Q/V  in units of (1/time), where 

the volume of the mixture in the tank is V (and that’s constant: the effluent outflow rate is assumed the 

same as the inflow dilution rate).  The feed concentration is u (in concentration units, mass or molar). 

Then the concentration of the nutrient c(t) can be determined as follows: 

Rate of change of nutrient = inflow rate – outflow rate – rate consumed in the tank. 

Now, the inflow rate is q*u (and this is assumed to be a constant, independent of time).  The outflow 

rate is q*c(t), because the effluent is extracted from the uniform, well-mixed tank contents.  Thus, we 

have 
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For the moment, if we assume no consumption, one can apply Math 245 or Math 123 methods to find a 

formula for n(t), assuming 0)0( ntn  is the initial concentration of nutrient in the tank at the start. 

qtecuutc

qtcucu

q
dt

dc

cu

qcqu
dt

dc










)()(

)ln()ln(

0

0

1
 

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time, min

c
o
n
c
e
n
tr

a
ti
o
n
, 

m
g
/c

c

chemostat w/out cells

 

Figure 2. Chemostat equilibrating with only nutrient influx. 

To introduce cells, we can take a number of modeling approaches.  First, we can assume that the cell 

population is in stationary phase, meaning the size of the cell colony is constant in time.  The model of 

consumption we consider is called Monod, Michaelis-Menten, or Briggs-Haldane, depending on the 

context, and it adds a third term to the mass balance equation due to cell population consumption of 

the nutrient. 
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to capture inflow, outflow, and metabolism of the nutrient.  The “new” parameter is y, the 

concentration of yeast cells in the mixture. 

Population dynamics. As discussed in class, the rate of change of the population is a sort of 

outflow/inflow balance:  rate of change  = birth rate – death rate.  In the Malthus model, each of these 

rates is a linear function of the population size y(t).  The birth rate is b*y(t) and the death rate is d*y(t).  

The idea is that some fraction of the population reproduce in a time period, and some fraction of the 

population die in a time period.  Thus 
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where r is the net growth rate.  The solution of this differential equation is rteyty 0)(  which either 

remains constant if r=0, grows exponentially (without bound) if r>0, or decays toward 0 if r<0.   

To tweak this model to include nutrients, one could simply modify the growth rate to capture the 

consumption of nutrients: 
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so that the net growth rate depends on the nutrient level.  This model leads to a coupled pair of 

differential equations, because the consumption model depends on the size of the population: 
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The assignment.   

(1) Consider the nutrient/cell population model 
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a. First, make sure you understand which variables are the state variables (dependent 

variables that determine the concentrations) and which variables are parameters (e.g., rate 

constants). 

b. Find values of c and y that hold the system in equilibrium:  that is, find values of c and y for 

which constant functions at those values are actually solutions of the differential equation 

system. 

c. Simulate this system with different values for the constants and the initial concentrations of 

nutrients and cells. The initial nutrient level can be =0, but the constants and the initial cell 

population size need to be positive.  Can you make any observations about how the system 

behaves?   

(2) What changes if we return a mortality term to the population equation? Repeat b and c for a 

linear mortality term. 

(3) Create a model with two nutrients, both of which are required for the population to grow. 


