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Abstract

People traveling to seek healthcare has been investigated as part of health geographic and
social-justice studies in past. These studies have either focused on specific segments of the
population or tried to characterize spatial accessibility of healthcare in certain regions. But
there has been no study that investigates how people travel within a given entity across
county or regional borders to seek healthcare. In this paper we characterize mobility pattern
of patients across counties in the state of Texas by encoding the patient movement in a
network model and studying its topological properties. We observe that these topological
properties capture the geography of the region and are better indicators than the pure
geographic distance measures. In doing so we uncover a specific class of networks that differ
from the observed workforce-based mobility networks as well as other well know real-world
networks. We develop a simple model that can generate directed graphs that mimic the

observed patient mobility networks with the specific properties of degrees and clustering.
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Questions

* Are there any global patterns in patient
traveling to seek healthcare across a given

region?



Raj Balasubramanian, University of Texas at Austin

Questions

* Are there any global patterns in patient
traveling to seek healthcare across a given

region?

* How much does geography and demography
play in deciding where patients travel to seek
healthcare?



Raj Balasubramanian, University of Texas at Austin

Questions

* Are there any global patterns in patient
traveling to seek healthcare across a given

region?

* How much does geography and demography
play in deciding where patients travel to seek
healthcare?

* How does the mobility pattern differ from work

force mobility”
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About

* Analysis of patient mobility based on hospital discharge
data from 2004-2008 in TX

* Geographical distance based characterization across the

state

* Network analysis at three levels -
* Zip to Zip
* County to County

* Metropolitan area to Metro/Micropolitan area

* A simple model
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Overview — Entity Model
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Overview — Entity Model Example
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Overview - Geography
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Observations



Raj Balasubramanian, University of Texas at Austin

Geographic Distance Travelled
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Geographic Distance Travelled
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Network Based Study

* 7ip based: Started with a directed weighted network
of nodes as zips, based on the patient's zipcode and

the Hospital's zipcode
* County based: Derived a directed weighted network of

nodes as counties, based on patient's county and the

Hospital's county

* Metropolitan based: Derived a directed weighted
network of nodes as metro or micropolitan areas based

on county (above)
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Fitting Degree Distribution

Based ¢

http://arxiv.org/

Power-law Distributions in Empirical Data

This page is a companion for the review article 1
on power-law distributions in empirical data,
written by Aaron Clauset (me), Cosma K. Shalizi = 5
and MLE.J. Newman. The intention is that this
page will host implementations of the methods E“ﬁ

we describe in the article. For now, these are

tions in empirical data -

simply the versions we wrote (in Matlab and R}, 1w
but our hope is to eventually host versions in a
1 fl I : | :
variety of languages. In peneral, we want to ™
s 3 £ h i 'h 'h L5 L5 lm' pre |[|' ‘u’ “]“

make the methods as accessible to the

Fitted Zeta, Yule, Discrete Exponential,

Poisson, Negative Binomial, Geometric,
Discrete Weibull

Compared AICs and picked the lowest one to

report as best fit
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Degree Distribution

Unweighted In Degree Distribution
Unweighted Out Degree Distribution
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Network-based DB/WN

County 2 County (binary) Yule; 1.22 Neg Binom; 4.58, 49.35

Zip 2 Zip (weighted) Yule; 1.101 Neg Binom; 0.544,7072

Metro 2 Metro (weighted) Yule; 1.103 Neg Binom; 0.32,42572
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County-based DBN

* Jurisdiction, manageable dataset and stable

* We were interested in characterizing mobility

patterns, hence we looked at-

* Weighted and unweighted degree distribution,
* Clustering Coefficients
* Instead of properties like centrality measures,

ocraph spectrum etc. which are more applicable in

understanding cascading behavior
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County - Network Based Study

Unweighted Degree Distribution
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* In Degree best fitted with Yule Distribution - exponent=1.319441
with AIC 1806.458; Out Degree best fitted with Negative Binomial
with S=4.577, mu=49.3504 with AIC 2302.647
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Degree Distribution County

* This was markedly different from other well

studied mobility network:

* Work mobility network (of county-county) in TX

were both Negative Binomial:

— InDegree — NegBinom: 2.378, 31.449
— OutDegree — NegBinom: 3.664, 31.44
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Degree Distribution County

Unweighted In Degree Distribution
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Transitivity County-based DWN
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Following [1] computed Clustering Coefficients of County-based DWN
and saw that the outward feed-forward loop was more predmoninant.
We then compare it to results from [2] to see how the clustering

signatures compared
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Transitivity County-based DB/WN
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Clustering Signature Comparison
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Comparing (using multi-
dimensional scaling) with
DUN from [2] yielded a
distinct signature of the
patient mobility network.
We also included the Work
based county to county
mobility network to see if
there were any commonality
with our patient mobility

network...
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Model
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Gravity Model

* Gravity Model is of the form

Population," x Population ja2

Patients,; =G

. 3
Distance;;"
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Logistic Gravity Model

* We looked at the best way to model the
directed binary (unweighted) network using a

Logistic Regression

dy

1 A=|

p(d i — 1)= T a,

1+exp(—A X) a,

modell model2 model3
, . . ) : . ,
¥ = In ( Population,) ¥ = In( Population,) ¥ = In( Population,)
In (Population) In (Population ) In(Population )
In(1+GeoDist ;) TopoDist In(1+ TopoDist);
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Model Performance

Modell (geo) Model2 (topo) Model3 (topo)
AIC 31048 31172 30018
R2 39.8 39.2 40.34
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Model Performance

Ran the model with parameters from fitted
models (3) 1000 times — starting with a fixed
network (with 254 nodes) and

geography /topology based on county adjacency
and weighting the nodes based on the real TX

County populations, randomly.

Plotted the degree distributions and clustering

signatures to observe the model performance
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Model Performance — In Degree Dist
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Model Performance — Out Degree
Dist
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Model Performance — Out Degree
Dist
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Model Performance —Degree Dist

Histogram of degree(g, mode = "out")
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Model Performance — Clust Sig
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Synthetic Model Fitting

Used the results from
Network distance based
simulation to get at the
MDS plot to view how
the simulation performed
as compared to other

Clustering Signatures-
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MDS Plot of Simulated Clustering Signature vs the ones from real-we
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Summary -1

* Network based analysis of mobility yields more

insights over pure geographic analysis

* Patient mobility network is markedly ditferent
from other observed directed networks as well

as from work force mobility network

* Identification of a simple model that generates
a characteristic patient mobility network for

future work- simulations/analysis
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Summary - 2

* Topology captures and does better than geography

in describing patient mobility

* A new model for network generation

* Start with an underlying lattice (undirected) network

* Weighting the nodes following an approximate geometric

or discrete exponential distribution

* Yields the target directed binary network with a unique
clustering signature and a power-law indegree and

homogenous outdegree



Raj Balasubramanian, University of Texas at Austin

Math
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Mathematical Derivations

e Our core model is a lattice-like graph N and 3
random variable : P — population or weight of each
node N from a power-law like distribution, D —
network distance in N and G — binary random
variable denoting mobility between two nodes on N

—Aw

pr(P=w)=(1—e")e " e p(d;,=1)=

N ~ Lattice (dimesion=1, count =n, neighbors=k , probability =p)

Gamma (k)
D =k)=
pr{Deg,=k) Gamma(k+ )

pr(Deg,=k)=NB(k,p)
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