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Checkpoints: controls that ensure the order of cell cycle events.

Hartwell LH, Weinert TA.
Department of Genetics, University of Washington, Seattle 98195.

The events of the cell cycle of most organisms are ordered into dependent pathways in which the initiation of late
events is dependent on the completion of early events. In eukaryotes, for example, mitosis is dependent on the
completion of DNA synthesis. Some dependencies can be relieved by mutation (mitosis may then occur before
completion of DNA synthesis), suggesting that the dependency is due to a control mechanism and not an intrinsic
feature of the events themselves. Control mechanisms enforcing dependency in the cell cycle are here called
checkpoints. Elimination of checkpoints may result in cell death, infidelity in the distribution of chromosomes or other
organelles, or increased susceptibility to environmental perturbations such as DNA damaging agents. It appears that
some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose
special problems for the fidelity of embryonic cell division.
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Cell cycle checkpoints in budding yeast

Maintenance of genome stability
1 1

G, S G, M
RFC5 RAD17 SGS1
RAD17 RAD17 BUB1,3 BUB2
RAD24 ng‘;, RAD24 RAD24 MAD1,2,3 BFA1/BYR4
MEC3 MEC3 MEC3
DRC1
DNA damage Replication intra-S (replication) DNA damage Mitotic Mitotic
checkpoint (G4) checkpoint (S) checkpoint (S) checkpoint ?Gz) checkpoint (M) checkpoint (M)
G, arrestinresponse S phase arrest Slowing of replication G, arrest in response  Meta-Anaphase Block of exit
to DNA damage in response to in response to DNA t02DNA damage arrest in response from mitosis
replication blocks  damage in S phase to spindle damage
| ]
Human homologs
Yeast Human Cancer syndrome
- MEC1
TEL1 MEC1/TEL1 ATR/ATM Ataxia telangiectasia
MRE11-RAD50-XRS2 . _ o P At L
Transducer and RADS MRE11 MRE11 Ataxia telangiectasia-like disorder
o BAD XRS2 NBSH Nijmegen breakage syndrome
233155 RAD53/DUN1  hCHK2 Li-Fraumeni syndrome
SGS1 BLM/WRN/RTS Bloom, Werner & Rothmund-

Thomson syndromes

Kolodner RD et al. Science 2002; 297: 552-7



I~ 1: Nature. 1996 Oct 31;383(6603):840-3.

A meiotic recombination checkpoint controlled by mitotic checkpoint genes.

Lydall D, Nikolsky Y, Bishop DK, WeinertT.
Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.

In budding yeast, meiotic recombination occurs at about 200 sites per cell and involves DNA double-strand break
(DSB) intermediates. Here we provide evidence that a checkpoint control requiring the mitotic DNA-damage
checkpoint genes RAD17, RAD24 and MEC1 ensures that meiotic recombination is complete before the first meiotic
division (MI). First, RAD17, RAD24 and MEC1 are required for the meiotic arrest caused by blocking the repair of DSBs
with a mutation in the recA homologue DMC1. Second, mecl and rad24 single mutants (DMC1+) appear to undergo
MI before all recombination events are complete. Curiously, the mitosis-specific checkpoint gene RADS is not required
for meiotic arrest of dmcl mutants. This shows that although mitotic and meiotic control mechanisms are related,
they differ significantly. Rad17 and Rad24 proteins may contribute directly to formation of an arrest signal by
association with single-strand DNA in mitosis and meiosis.
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“Shelterin” and “anticheckpoints™ :
Protecting Telomeres From DNA
Damage Responses
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Telomeres are complex nucleoprotein structures
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Telomeres and Checkpoints

Checkpoint proteins Tell and Mecl (ATM and ATR homologs) are found
at normal telomeres at different times in the cell cycle.

Loss of Tell/ MRX and Mec1 results in unstable telomeres end fusion and
senescence.

Checkpoints are transiently and locally activated at exposed telomeres
during late S-G2; local ATM phosphorylates local Nbs1 (Verdun, 2005)

Telomeric protein TRF2 inhibits ATM in mammals (no TRF2 in yeast).
“Shelterin” complex likely protects telomeres from checkpoint activation
(de Lange, 2005).



Shelterin, telomere deprotection and checkpoint activation
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Cell cycle checkpoints must not recognize normal telomeres as
DSBs, otherwise checkpoint arrest and repair would occur.

What mechanisms protect normal telomeres from activating
the checkpoint?



A telomeric repeat sequence adjacent
to a DNA double-stranded break
produces an anticheckpoint

Rhett J. Michelson, Saul Rosenstein, and Ted Weinert’

Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona 85721, USA



The HO inducible break system in budding yeast

The HO endonuclease generate DSBs at a target
sequence

galactose: HO expression induced
glucose: HO expression repressed

HO cleavage of a chromosome was previously shown to
generate a telomere de novo (Diede and Gottschling,

1999, 2001) 1n haploid yeast



Figure 1. A DSB adjacent to telomeric repeat sequences results in an abridged G2/M
arrest
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Figure 2. The anticheckpoint correlates with transient Rad53 and Rad9 phosphorylation
and RadS3 Kkinase activity

>
Suc
1hr
2hr
3 hr
4 hr
5 hr

P-Rad9 3|
Rad9

HO

P-Rad9 »»| v
Rad9 3| i

%) g — S — b

3 .E £ < < =

B (V] = - N ™ <t L 2]

P-Rad53 >
Rad53 3| ® . - TG-HO

N ™
P-Rads3 , ' & B ..' HO

Rad53 »| W

0
Suc
1 hr

12hr
3hr
4 hr
5hr

Rad53 autophosphorylation assay

Rhett J. Michelson et al. Genes Dev. 2005; 19: 2546-2559

Cold Spring Harbor Laboratory Press



Figure 3. The abridged arrest is independent of the cell cycle stage and is not the result of
early adaptation
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Figure 4. DSB resection rate is not reduced in the TG-HO strain relative to a normal HO

site, and a DSB-induced arrest requires RADS0
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Figure 5. Enhanced ssDNA production does not prevent the anticheckpoint, and two HO
cuts adjacent to C1-3A/TG1-3 repeats do not produce a permanent arrest phenotype
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Figure 6. The anticheckpoint produces regional inhibition
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Figure 7. The anticheckpoint activity does not require telomerase, RIF2, or wild-type
SIR2 activity
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Figure 8. Model of telomere maturation and anticheckpoint activity
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Conclusions

e an internal telomeric sequence can inhibit a DNA damage
checkpoint response at an adjacent DSB

* DSBs adjacent to ectopic telomere sequences activate the
G2/M checkpoint, but the duration of checkpoint activation 1s
shorter (1-2h vs. 8-12h)

* checkpoint attenuation occurs upstream of Rad9 and Rad53

* mechanism does not involve repair, adaptation, gene
silencing, or telomere elongation, nor does it work in trans

Model: telomeric repeats act as an “anticheckpoint” locus via
the recruitment of unknown factors or novel topology.



Preventing Genomic Instability

type of instability pathway preventing it
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Cycles of Instability

Unstable chromosomes are transient and undergo stochastic
alterations (translocation, duplication, loss), making them difficult
to characterize in bulk.

Single-cell approaches are being used in yeast (ChrVII assay) and
human cell culture (somatic cell genetics) model systems to study
this phenomenon.



Cycles ot chromosome instability

are associated with a tragile site and are
increased by detects in DNA replication
and checkpoint controls in yeast

Anthony Admire,"? Lisa Shanks,' Nicole Danzl,'* Mei Wang,* Ulli Weier,* William Stevens,’
Elizabeth Hunt,' and Ted Weinert'®



The ChrVII Assay for chromosome loss and rearrangement
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Sectored colonies contain genetically unstable recombinants
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Extended lineage analysis of unstable cells: persistent heterogeneity
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Figure 6. Deletions of the ChrVII 403 E2 site decrease chromosome instability
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Figure 7. Cycles of chromosome instability arising from fragile sites
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Conclusions

e Chromosome instability (sectoring) is persistent in a
subpopulation of cells selected for loss of a genetic marker.

* Cycles of chromosome instability may involve altered
replication at specific loci (E2, tRNA loci), resulting in
mitotic recombinants (dicentrics, translocations).

 Loss of such loci can reduce the frequency of instability,
loss of replication checkpoint proteins increases it.
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