ISSN 1539-2791 Volume 3 ¢ Number 2 ¢ 2005

Neuroinformatics

IN THIS ISSUE Editors

The Impact of the NIH . . .
Public Access Policy GIOI'gIO A. Ascoli

on Literature Informatics Erik De Schutter

Statistical Criteria .
in fMRI Studies , . DEVIE\E Kennedy

of Multisensory Integration

Comparison of Vector Space i ' ' S : -
Model Methodologies to : ™ -

Reconcile Cross-Species L

Neuroanatomical Concepts

Development of a Model for

Microphysiological Simulations | )

B g ¥

- - ;

e P n.- @

. N .p

- T .. ) - { - B l)
A, - - ¥
e ‘\ O IP2O

Indexed and Abstracted in: ’

Medline/Pubmed/Index Medicus
Science Citation Index®

K HUMANA PRESS




Neuroinformatics

© Copyright 2005 by Humana Press Inc.

All rights of any nature whatsoever are reserved.
ISSN 1539-2791/05/93-114/$30.00

DOI: 10.1385/N1:03:02:93

Original Article

Statistical Criteria in fMRI Studies
of Multisensory Integration

Michael S. Beauchamp

Laboratory of Brain and Cognition, National Institute of Mental Health Intramural Research Program,
National Institutes of Health, Department of Health and Human Services, Bethesda, MD.

E-mail: Michael.S.Beauchamp@uth.tmc.edu

Abstract

Inferences drawn from functional magnetic
resonance imaging (fMRI) studies are depen-
dent on the statistical criteria used to define
differentbrainregionsas “active” or “inactive”
under the experimental manipulation. In fMRI
studies of multisensory integration, additional
criteria are used to classify a subsetof theactive
brainregions as “multisensory.” Because there
isno general agreement in the literature on the
optimal criteria for performing this classifica-
tion, we investigated the effects of seven dif-
ferent multisensory stat-istical criteria on a
single test dataset collected as human subjects
performed auditory, visual, and auditory-
visual object recognition. Activation maps
created using the different criteria differed
dramatically. The classification of the superior
temporal sulcus (STS) was used as a perform-
ance measure, because a large body of con-
verging evidence demonstrates that the STS
is important for auditory—visual integration.

93

Acommonly proposed criterion, “supra-addi-
tivity” or “super-additivity”, which requires
the multisensory response to be larger than
the summed unisensory responses, did not
classify STS as multisensory. Alternative cri-
teria, such as requiring the multisensory
response to be larger than the maximum or
the mean of the unisensory responses, suc-
cessfully classified STS as multisensory. This
practical demonstration strengthens theoret-
ical arguments that the super-additivity isnot
anappropriate criterion for all studies of mul-
tisensory integration. Moreover, the impor-
tance of examining evoked fMRI responses,
wholebrain activation maps, maps from mul-
tiple individual subjects, and mixed-effect
group maps are discussed in the context of
selecting statistical criteria.
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Introduction

Functional magnetic resonance imaging
(fMRI) studies acquire data from thousands of
brain locations, leading to the analysis prob-
lem of deciding which brain locations are
involved in the experimental task. To solve this
problem, statistical analyses are performed on
the MR time series. In the most common analy-
sismethod, the so-called general linear model”,
regressors are created that correspond to the
temporal sequence of different events experi-
enced by the subject during scanning (Worsley
and Friston, 1995). Brain regions in which the
MR time series is time-locked to these events
are classified as “active.”

A second problem in fMRI data analysis
involves assigning the active brain regions to
different functional roles. This problem is par-
ticularly acute in studies of multisensory inte-
gration. In a typical multisensory study in
which subjects are presented with stimuli,
make cognitive decisions about them, and then
produce a motor response, activations would
be expected in unisensory regions responding
to the sensory stimulus, multisensory regions
that integrate across modalities, cognitive
regions thatare important for decision making,
and response selection and motor regions that
produce the behavioral output. Even without
an explicit behavioral task, subjects may per-
form language and memory operations when
presented with a multisensory stimulus (and
without a task there is no measure of subjects’
alertness or attention, or the amount of pro-
cessing performed on each stimulus). With or
withouta task, multisensory fMRI experiments
typically find activity in many brain regions.
Multiple statistical criteria are applied to the
fMRI data in order to classify a subset of these

active regions as being specifically involved in
multisensory integration. Anumber of criteria
have been proposed for this purpose, includ-
ing the super-additivity requirement (requir-
ing that the multisensory response be larger
than the sum of the unisensory responses), the
mean requirement (requiring that the multi-
sensory response be larger than the mean of
the unisensory responses), and the maxrequire-
ment (requiring that the multisensory response
be larger than the maximum of the unisensory
responses) (Calvert, 2001; Calvert et al., 2001).

Because the criteria used to classify active
regions as “multisensory” can have a significant
impact on the neuroscience inferences that are
drawn, it is important to understand the effects
of different criteria. It might seem possible toiso-
late these effects by examining published stud-
ies. However, differences in multisensory criteria
across studies are confounded by other differ-
ences in experimental methods, including stim-
uli, tasks, subject populations (including
anatomical variability across subjects),and imag-
ing hardware. Furthermore, published studies
understandably focus on reporting the neuro-
science result of interest, with relatively little
informationabout thestatistical criteriaand pro-
cessing steps used to obtain the result.

In contrast, the present manuscript is meant
as a tutorial to illustrate the effects of individual
statistical criteria and processing steps, applied
in sequence to a single test dataset. Each step
of the analysis is illustrated in detail, while the
neuroscience results are reported elsewhere
(Beauchampetal.,2004a,b). As other variables,
including the data itself, are held constant,
any differences observed are solely because
of the analysis method. While data from the
entire brain are analyzed, special attention is
paid to the superior temporal sulcus (STS),

" In the field of statistics, the general linear model is referred to as the linear model or the multivariate
linear model. The acronym “GLM” in statistics has been used for several decades to refer to the gener-
alized linear model (e.g., McCullagh and Nelder, 1983) which is a non-linear method quite different from

the linear model.
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because subjects in the test dataset performed
an auditory—visual object recognition task,
and converging anatomical, physiological,
and neuroimaging evidence demonstrates
that STS playsa crucial role in auditory—visual
integration in humans and macaque monkeys
(reviewed in Beauchamp, 2005).

This treatment is neither meant to serve as
a comprehensive review of the multisensory
fMRI literature nor as an exhaustive mathe-
matical analysis of multisensory statistical cri-
teria. Instead, by illustrating the results of
applying several commonly used criteria to the
same dataset, qualitative understanding of
their effects can be gained. This is useful for
evaluating published studies (studies A and B
seem to have discrepant findings, but viewed
from the perspective of their different analysis
techniques, they are actually quite compatible).
This approach does not allow any definitive
conclusions to be drawn about the “correct”
statistical criteria, as different brain regions
may or may not meet given criteria in any par-
ticular experiment, depending on the exact
combination of stimulus, task, experimental
design, and measurement power.

These illustrations should make it easier for
multisensory scientists to perform fMRI experi-
ments without having to perform trial-and-
error analysis comparisons on their own data.
Intended as a primer, the general guidelines
presented for analysis and display of multi-
sensory fMRI data should provide a useful
roadmap for choosing statistical criteria and
making correct inferences regardless of the
exact experimental protocol.

Methods
Human Subjects and MR Data Collection

Eight subjects underwent a complete phys-
ical examination and provided informed con-
sent. Subjects were compensated for partici-
pation in the study and anatomical MR scans
were screened by the NIH Clinical Center,
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Department of Radiology in accordance with
the NIMHhuman subjects committee. MR data
were collected on a General Electric 3 Tesla
scanner. A high-resolution anatomical
sequence (one to three repetitions) was col-
lected at the beginning of each scanning ses-
sion. Gradient-echo echo-planar volumes that
were sensitive to blood oxygenation level-
dependent (BOLD) contrast were collected fol-
lowing the high-resolution anatomicalimages.
BOLD scanseries were acquired with echo time
(TE) of 30 ms, repetition time (TR) of 3 s, and
3.75mmin-plane resolution. Each volume con-
tained 24 axial slices (slice thickness of 4.5 or
5.0 mm as necessary to cover the entire cortex)
with 132 volumes per scan series and 8-10 scan
series per subject.

Auditory and Visual Stimuli

Subjects viewed visually presented videos of
moving manipulable objects (e.g., a hammer-
ing hammer), heard recordings of the objects
(e.g., ‘bang-bang-bang’) or simultaneously
viewed and heard the objects. Visual stimuli
were presented using Matlab (Mathworks Inc.,
Natick, MA) with the Psychophysics Toolbox
extensions (Brainard, 1997; Pelli, 1997) running
on a Macintosh G4 (Apple Computer,
Cupertino, CA). Auditory stimuli were pre-
sented at approx 80-dB SPL, using a SilentScan
system from Avotec, Inc. (Stuart, FL) which
attenuates gradient noise produced by the MR
scanner while providing high-fidelity stimulus
reproduction. Subjects reported being able to
hear the stimuli in the scanner and performed
the behavioral discrimination task with high
accuracy. For additional details, please see
Beauchamp et al. (2002, 2003, 2004b).

An event-related design was used. Each trial
began with the presentation of a single stimulus
(2.5-s duration) followed by a 2.5-s delay, fol-
lowed by a 3-s display containing three visually
presented words. Subjects pressed a button cor-
responding tothename of the stimulus presented
(e.g.,hammer/saw /telephone). Each 8-strial was

Neuroinformatics
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separated from the next trial by 0-6 s of fixation
baseline. Different trial types were ordered for
optimal experimental efficiency (Dale, 1999)
using the optseq program writtenby Doug Greve.
In this ordering, the stimuli were presented at
varying times on a 1-s time base, allowing esti-
mation of the hemodynamic response to a single
stimulus of each type with 1-s resolution.

fMRI Data Analysis

MR data were analyzed within the frame-
work of the linear model in AFNI 2.50 (Cox,
1996). The first two volumes in each scan series,
collected before equilibrium magnetization was
reached, were discarded. Then, all volumes
were registered to the third volume in the first
scan series, because it was collected nearest in
time to the high-resolution anatomy. Next, a
spatial filter with a root-mean-square width of
4 mm was applied to each echo-planar volume.
All volumes from each subject were concate-
nated to form a single extended time series.

In different brain regions, the response to
each trial contained BOLD responses to either
the sensory stimulus of (beginning at t = 0 s)
the motor response (occurring at approx t =6
s) or both (Fig. 2). Because each trial contained
two separate events, the common assumption
that the BOLD response should take the form
of a single y-variate or gaussian function was
inappropriate. Instead, a method known as
deconvolution, also called finite impulse
response (FIR), was used to analyze the
response. A separate regressor was used to
model the response in each 1-s period in a 20-
s window following trial onset. With three sti-
mulus types, this resulted in 60 regressors of
interest, each consisting of a series of d func-
tions (equivalent to boxcars with a width of 1
s [11], the resolution of the estimation proce-
dure) that were then fit to the MR time series
separately for each voxel and each subject. Each
regressor independently represented 1 s of the
time-locked evoked response, hence no shape
constraints were placed on the calculated

Neuroinformatics

response, and it was free to form a two-peaked
distribution (or any other shape). The analysis
produced a 20-s evoked response for each trial
type in each voxel for each subject. While this
evoked response is assumption-free (besides
the usual FIR requirements of linearity and time
invariance) it must be related to the underly-
ing neural activity. By assuming that the hemo-
dynamic BOLD signal peaks 4-6 s after neural
activity, the amplitude of the neural response
to the stimulus (presented from t =0 to 3 s) can
be estimated by summing the beta-weights
(also known as the fit parameters or ampli-
tudes) of the regressors representing the fifth
to the eighth second of the response. In effect,
this calculates the area under the curve
(summed total) of the largest part of the evoked
BOLD hemodynamic response and uses it as a
measure of the sum of the underlying neural
activity. The amplitude of the neural signal
related to the motor response (approx t =6s)
was estimated by summing the 11th to the 14th
second of the BOLD response.

The regression analysis calculated an over-
all experimental effect that described how
much variance in each voxel time series was
accounted for by all regressor of interest (the
60 6functions). This experimental effect F-ratio
was thresholded at p < 10 (to correct for the
multiple comparisons produced by approx
20,000 brain voxels) in order to create individ-
ual subjectactivation maps thatshowed all vox-
els with a time-locked response to any trial
component. Following stringent thresholding
by this F-ratio, voxels were categorized by their
response to different trial components using a
more liberal threshold of p < 0.05, described
below. Functional data were interpolated to
1 mm?resolution using cubicinterpolation and
overlaid on single subject anatomical data.

To create group maps, a mixed-effects model
wasused. For each subject, theregressionmodel
provided a single estimate of the response to
each stimulus type in each voxel. After stereo-
tacticnormalization to Talairach space (Talairach
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and Tournoux, 1988), a two-way ANOVA was
performed on each voxel in standard space.

The same contrasts were used for both single
subject and group analysis. In single subjects,
the amplitude of the response to each type of
trial was calculated by summing theamplitudes
of three regressors: fifth to eighth seconds of
auditory trials formed the auditory response,
tifth to eighth seconds of visual trials formed
the visual response, and fifth to eighth seconds
of multisensory trials formed the multisensory
response. In order to compare the different trial
types, contrasts were performed between the
amplitudes of these values. If the trial types are
represented Auditory Visual Multisensory,
super-additivity was measured with the con-
trast—1-11 while sub-additivity was measured
with the contrast 11-1. The mean criterion was
instantiated with the contrast -1 —1 2. The max
criterion was generated by selecting the mini-
mum t-value from two separate contrasts of M
vsA-10land MvsVO0-11.

Surface Modeling

Three-dimensional models of the cortical
surfaces were constructed using FreeSurfer
software. One to five high-resolution anato-
mical scans for each subject were collected and
averaged. An automated segmentation rou-
tine then extracted the gray-white boundary
and constructed a surface model, which was
then inflated to allow the inspection of active
areas buried deep in cortical sulci (Fischl et
al., 1999). Surfaces were visualized using
SUMA software (Argall et al., in press).

Results

Single Subject Activation Maps

Even ata conservative statistical threshold of
p <107%,awidely distributed setof brain regions
in frontal, parietal, occipital, and temporallobes
showed asignificantmodulation of the MR time
series time-locked to trial onsets (shown for a
single representative subject in Fig. 1A). Trials
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contained separate sensory stimulation and
behavioral task epochs (Fig. 2A-C) allowing
independentestimation of thebrain activity dur-
ing auditory stimulation (A), visual stimulation
(V), auditory-visual multisensory stimulation
(M), and motor response (R) epochs. By exam-
ining the evoked MR response from different
regions of interest (Fig. 2) we can assess the sen-
sitivity of different brain regions to the differ-
ent trial types and epochs.

Initial Criterion: Remove
Global Deactivations

One subset of active regions in medial
frontal and medial parietal cortex showed a
decreased MR signal (below fixation baseline)
inall experimental conditions (Fig. 2D). These
same set of regions have been found in many
neuroimaging studies tobeactive ‘atrest’, that
is, during any task with little sensory input
or motor output, such as fixation baseline.
This has led to the suggestion that these
regions may be aresting state network, impor-
tant for internal reflections on past or future
events that are suppressed during any type
of goal-directed behavior (Raichleetal.,2001).
Because fMRI measures the BOLD signal
change between conditions, the amplitude
(and sign) of these deactivations is depend-
ent on the control and experimental condi-
tions used. For instance, a control task that is
cognitively demanding will eliminate the
deactivations, but has the disadvantage of
activating an entirely new set of regions, mud-
dying the comparison with the experimental
condition of interest. Therefore, the most com-
mon approach in multisensory imaging stud-
ies is to use a well-studied control task (such
as a passive fixation baseline). This allows the
set of deactivated regions to be predicted
accurately.

Because these regions are deactivated in
most sensory tasks, they are not thought to be
specifically involved in sensory processing.
Their inclusion can confuse further analysis.

Neuroinformatics
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A Al Active Regions

Left Hemisphere Right Hemisphere
lateral medial p 1 04, medial lateral

B initial Criterion (Remove global deactivations)

D M < (A+V) “sub-additivity”

E > mean(AV) - ‘ .
BALSS o

Fig. |.Activation maps from a single subject using different multisensory statistical criteria. Lateral and medial
views of the inflated left and right hemisphere are shown. Colors indicate functional data (all colored region
pass statistical criteria) mapped to the cortical surface. Grayscale indicates anatomical structure with dark gray
corresponding to sulcal depths, light gray to gyral crowns. (A) All regions showing a significant experimental

C M > (A+V) “Super-additivity”

P 0.05
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For instance, if a map is made of the contrast
between visual and auditory response magni-
tudes, the deactivated regions would be shown
as visually preferring because the deactivation
is smaller during visual than auditory epochs
(Fig.2D, V=-0.5% vs A=-0.75%). This might
give rise to the erroneous conclusion that the
deactivated regions are part of a visual pro-
cessing network. Therefore, deactivated
regions are oftenremoved before further analy-
sis. In equation form, a criterion to do this is
(A>0) OR (V>0) OR (M>0) OR (R >0). Applying
this criterion to each voxel independently pro-
duces an activation map with fewer active
regions, all of which show a positive signal
change during some portion of the evoked
response (Fig. 1B; blue circles illustrate regions
of the resting state network removed by this
criterion). Itis important to note that thisisnot
a blanket prescription to ignore all deactiva-
tions. For instance, different categories of stim-
ulicanmodulate the amplitude of deactivations
(Mitchell et al., 2002) meaning that it is critical
to carefully examine the responses to all mul-
tisensory conditions, even in deactivated
regions (Laurienti et al., 2002).

Next, we examine the remaining active
regions that are classified as multisensory by
additional criteria (Fig. 1C-E). The first addi-
tional criterion, super-additivity (Fig. 1C)
requires that the multisensory response be

greater than the sum of the individual unisen-
sory responses. We can represent this in equa-
tion form as M > (A + V). Note that this is
applied in serial with the initial criterion, so
the complete criterionis ((A>0) OR (V> 0) OR
(M >0)OR (R>0)) AND (M>(A+V)). Because
we wish to attach the statistical significance to
the contrastof M>A+V, wevisualize only brain
regions that show a significant (f > 2,
p < 0.05) value for this contrast. As illustrated
in Fig. 1C, this criterion produces a broadly
scattered pattern of relatively small activations.
Notably, no activation is observed in the STS.
If we examine the MR time series from regions
in auditory and visual association vortex that
do show a super-additivity effect, we find that
this effectlargely arises from deactivations dur-
ing the auditory and visual conditions. For
instance, auditory cortex (Fig. 2E) shows an
auditory response of A=0.5%, a visual response
of V =-0.2%, for a predicted multisensory
response of (0.5%) + (-0.2%) = 0.3%. Because
the true multisensory responseis M =0.5%, the
criterion of M > (A + V) is satisfied. In visual
association cortex (Fig. 2F), a similar effect is
observed (A =-0.2%, V =0.6%, M = 0.5%).
Because most active regions did not fulfill
the super-additivity criterion of M > (A + V),
many regions show a significant effect of the
reverse contrast, M < (A + V), or sub-additivity
(Fig. 1D). Examining the time series from one

effect. Color bar illustrates significance of experimental effect for (A) and (B). (B) All regions showing a sig-
nificant experimental effect and a positive change from fixation baseline during any experimental condition.
Blue circles indicate regions removed by this criterion (evoked MR response from these regions shown in Fig.
2D). (C) Regions from (B) with the additional criterion that the multisensory auditory—visual response (M)
must be greater than the sum of the auditory (A) and visual (V) responses. Circles illustrate activity in audi-
tory and visual association cortex (evoked MR responses from these regions shown in Fig. 2E,F). Color bar
shows significance of M vs A +V contrast. (D) Regions from (B) with the criterion that the multisensory
response is less than the summed auditory and visual responses. Circle illustrates activity in dorsolateral pre-
frontal cortex (evoked MR response shown in Fig. 2G). Colors show significance of A +V vs M contrast.
(E) Regions from (B) with the criterion that the multisensory response is larger than the mean of the audi-
tory and visual response. Circle illustrates activity in superior temporal sulcus (STS) (evoked MR response
shown in Fig. 2H). Colors show significance of M vs mean(A,V) contrast.

Volume 3, 2005 Neuroinformatics
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of these regions, in dorsolateral prefrontal cor-
tex (Fig. 2G), we find a large activation in the
auditory condition with smaller activations in
the visual and auditory-visual condition, so
that M <A+ V.

For the third additional criterion (Fig. 1E),
we examine the difference between multi-
sensory and unisensory responses with the
contrast M > mean(A + V). This contrast
detects multisensory activation in STS and
adjacent unisensory auditory and visual cor-
tex. The STS response takes the form of posi-
tive auditory and visual responses, with a
larger response during multisensory stimu-
lation (Fig. 2H).

Initial Criterion: Remove Global
Deactivations and Unisensory
Deactivations

As shown in the time series from auditory
and visual association cortex (Fig. 2E,F), the
MR signal in early sensory areas decreased
below fixation baseline during stimulation in
the nonpreferred modality. Because increased
neural activity is usually taken as the hallmark
of information processing, multisensory fMRI
studies often eliminate areas showing deacti-
vation from consideration by requiring that
regions show a positive BOLD response dur-
ing both unisensory auditory and visual stim-

ulation. We may represent this initial criterion
as (A>0) AND (V > 0). This criterion removes
a number of active brain regions
(Fig.3A). Like the global deactivation criterion,
iteliminates the resting state network (because
for these areas, A < 0 and V < 0). Unlike the
global deactivation criterion, this criterion also
eliminates motor cortex and other brainregions
involved only in the behavioral response,
because for these regions R > 0 but approx A =
0 and V = 0. Note that this effect is unique to
the event-related design of the test dataset in
which sensory stimulus (A or V) is separated
in time from behavioral response (R). In most
studies, stimulus and response occur in the
same experimental epoch (so that A is actually
A+ Rand "V’ is actually V + R) meaning that
motor cortex and related regions would pass
the criterion of A>0and V > 0.

The largest region of activation that passed
the unisensory deactivationinitial criterion was
located in left posterior STS (arrows in Fig. 3A)
along with other smaller regions of activation
in frontal and parietal cortex. As before, we
apply additional criteria in series with this ini-
tial criterion. Nobrainregions passed the super-
additivity criterion (Fig. 3B). In contrast, the
mean criterion classified the large STS region
asmultisensory (Fig.3C). Asubset of thisregion
passed the max criterion.

Fig. 2. Details of trial structure and evoked MR responses. (A) Each auditory trial consisted of a 2.5-s audi-
tory stimulus (A, blue bar) followed by a 2.5-s delay followed by a 3-s response period (R, purple bar). (B)
Visual trial consisted of a visual stimulus (yellow bar,V) followed by delay and response periods.(C) Multisensory
trials consisted of a simultaneous auditory and visual stimulus (green bar, M) followed by delay and response
periods. (D) Mean evoked MR response from medial frontal and parietal voxels exhibiting signal decreases
below fixation baseline in every condition. Location of voxels are shown with blue circles in Fig. | B. Responses
to each trial type are shown sequentially, although they were presented in pseudorandom order separated by
varying intertrial intervals of fixation baseline (not shown). (E) Evoked response from voxels in auditory asso-
ciation cortex exhibiting super-additivity (left circle in Fig. | C). (F) Evoked response from voxels in visual asso-
ciation cortex exhibiting super-additivity (right circle in Fig. | C).(G) Evoked response from voxels in dorsolateral
prefrontal cortex (DLPFC) exhibiting sub-additivity (Fig. I D). (H) Evoked responses from STS voxels exceed-
ing the mean criterion M (Fig. |E).

Volume 3, 2005 Neuroinformatics
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A initial Criterion (Remove global and unimodal deactivations)

Left Hemisphere Right Hemisphere

B M > (A+V) “Super-additivity”

C M>mean(AV)

2

D M > max(AVv)

Fig. 3.Activation maps from a single subject using different multisensory statistical criteria. Display conventions
as in Fig. I. (A) All regions showing a significant experimental effect (Fig. | A) and a positive change from fixa-
tion baseline during auditory or visual stimulation epochs (A > 0 ORYV > 0). Black arrow indicates large focus
of activity in STS. Color bar indicates significance of experimental effect. (B) Regions from (A) with the addi-
tional criterion of super-additivity. No voxels pass the criterion. (C) Voxels from (A) that also exceed the mean
criterion. Color bar show significance of M vs mean(A,V) contrast. (D) Voxels from (A) exceeding the max
criterion. Colors show significance of M vs max (A,V) contrast.

Group Activation Maps duced very differentactivation maps. Because

intersubject variability in fMRI is high, the

On an individual subject basis, applying  effects of different statistical criteria on group
different criteria toamultisensory datasetpro-  average activation maps were examined.

Neuroinformatics Volume 3, 2005
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Initial Criterion: Remove Global
Deactivations

Many brain regions were active in the aver-
age activation map (Fig. 4A). The initial crite-
rion removed resting state regions in medial
frontal and parietal cortex (Fig. 4B). Examining
the results of the additional criteria, only a few
scattered voxels were super-additive (Fig. 4C)
while many brain regions passed the inverse
criterion of sub-additivity (Fig. 4D). The mean
criterion identified regions in STS and nearby
unisensory auditory and visual cortex (Fig. 4E).

Initial Criterion: Remove Global
Deactivations and Unisensory
Deactivations

As in the single subject case, the initial cri-
terion was modified to remove unisensory
deactivations (Fig. 5A). When combined with
this criterion, super-additivity failed to iden-
tify any active voxels (Fig. 5B). In contrast, a
large region of STS was classified as multisen-
sory by the mean criterion. Only a few scat-
tered voxels were identified as multisensory
by the max criterion.

Intersubject Variability
and the Effect of Threshold

Figure 6A illustrates activation maps from
four normal subjects performing the same audi-
tory—visual object identification task with sim-
ilarbehavioral performance. Brainregions that
passed the unisensory deactivation and mean
criteria wereidentified in each subject. The gen-
eral outline of activity was similar across sub-
jects, with multisensory activity focused in the
posterior STS. However, there was also signif-
icant intersubject variability.

Even for a given subject and statistical cri-
terion, the exact threshold chosen also has an
impact on the resulting activation map (Fig.
6B,C). By increasing the statistical threshold of
the initial criterion (Fig. 6B), we can produce
successively smaller regions of activation (com-
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pare with Fig. 3A). By increasing the statistical
threshold of the secondary criterion (in this
example the max criterion), the number of
regions meeting criterion is successively
reduced (Fig. 6C).

Importance of Multiple
Thresholding Steps

Both theindividual subjectand group analy-
ses that were discussed earlier contain two dis-
crete thresholding steps (following the removal
of deactivated regions). In the first step, all
active brain regions are selected by threshold-
ing the overall significance of the regression
model (omnibus F-test) at a stringent signifi-
cance level (p < 10°%). In the second step, the
multisensory statistical criterion (e.g., AV vs A
+ V) is applied at a much lower significance
(p<0.05). The first step amounts to a Bonferroni
correction for multiple comparisons (because
the brain volume contains 10,000-100,000 vox-
els, each of which is tested separately, many
false positives will results if a high threshold
is not used). Because the second criterion is
applied only to the small pool of voxels that
passed the first threshold, a correction for mul-
tiple comparisons is not applied.

This two-step process is widely used in fMRI
studies. For instance, in a study examining face
and house selective regions in ventral tempo-
ral visual cortex (Haxby et al., 1999), the first
thresholding step was used to detect all voxels
that were visually responsive at a high thresh-
old (z > 4, p < 6 ( 10°) while the second step
detected voxels that preferred faces or houses
at a much lower threshold (z > 1.96, p < 0.05).

The fundamental rationale for the two-step
method can be understood if we consider that
the difference in percentage signal change
between conditions (e.g., AV vs A+ V; faces vs
houses) is relatively small compared to the dif-
ference between all conditions and fixation
baseline. In the two-step method, the large dif-
ference between experimental conditions and
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baseline is used for the stringent contrast that
corrects for multiple comparisons while the
more liberal threshold is used to detect the sub-
tle difference between experimental conditions.

An obvious alternative to this approach is
to use one-step thresholding process on only
the comparison of interest, such as (AV vs A +
V) or (faces vs houses). Figure 6D illustrates
the difficulties inherent in this approach. If a
significance level appropriate to correct for
multiple comparisons (p < 107°) is selected for
the one-step threshold, very few voxels exceed
the significance threshold because of the rela-
tively small differencein percentsignal change
between experimental conditions. However,
if a more liberal threshold is selected for the
one-step analysis many false positive regions
are detected (for instance, outside the brain or
in white matter). Therefore, additional analy-
sis must be performed to attempt to separate
trueactivations from false positive activations.
One common approach is to adjust the signif-
icance level by the size of the observed acti-
vations (Xiong et al., 1995). For example, in a
random dataset, the probability of two adja-
cent voxels exceeding a significance of p <0.05
is 0.05% = 0.0025. In practice, there is consider-
ablespatial correlationinan fMRI dataset. This
means that adjacent voxels are not truly inde-
pendent, and may form activation clusters that
consist entirely of false positive voxels (e.g., a
cluster of correlated voxels in white matter).
In addition, adjusting thresholds in this man-

ner imposes a priori assumptions about the
expected size of the activation. This can be
problematic if the structure being examined,
such as the superior colliculus in multisensory
studies, is anatomically restricted and there-
fore only occupies a small number of voxels.
The two-step threshold process avoids these
difficultiesbecause it does not require assump-
tions about correlation between voxels or the
size of active regions.

Discussion

fMRIstudies of multisensory integration usu-
ally examine one (or a few) brain regions. These
regions are selected from a larger set of active
regions using criteria that classify some brain
regions as multisensory and discard others.
Dramatic differences were observed in the
brain regions classified as multisensory
depending on the statistical criteria used.

Because the different criteria have similar
degrees of face validity, particular care was
taken to examine the results of the classifica-
tion process in STS. There is overwhelming
evidence, based on a large body of anatomi-
cal and physiological evidence from both
human and nonhuman primates (reviewed in
Beauchamp, 2005), that STS is a key cortical
area for auditory-visual integration. If this
factistakenasanaprioriassumption (to avoid
circular logic) criteria that successfully clas-
sify STS as multisensory are more likely to be
useful.

Fig. 4. The mixed-effects group average map from eight subjects created using different multisensory statisti-
cal criteria.Volume renderings of lateral and medial views of left and right hemisphere are shown. Colors indi-
cate average functional data, grayscale indicates anatomical structure from a single subject. Activations with
|x| > 30 are visualized in the lateral rendering, activations with |x| < 30 are visualized in the medial rendering.
(A) All regions showing a significant experimental effect. Color bar illustrates significance of experimental
effect for (A) and (B). (B) All regions showing a significant experimental effect and a positive change from fix-
ation baseline during any experimental condition. (C) Regions from (B) with the additional criterion of super-
additivity. Color bar shows significance of M vs A +V contrast. (D) Regions from (B) with the additional criterion
of sub-additivity. Color bar shows significance of A +V vs M contrast. (E) Regions from (B) that also exceed
the mean criterion. Color bar show significance of M vs mean(A,V) contrast.
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A Initial Criterion (Remove global and unimodal deactivations)

Left Hemisphere Right Hemisphere

C M>mean(A+V)
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Fig. 5. The mixed-effects group average map created using different multisensory statistical criteria. Display
conventions as in Fig.4. (A) All regions showing a significant experimental effect (Fig. 4A) and a positive change
from fixation baseline during auditory or visual stimulation epochs (A >0 ORYV > 0). Color bar indicates sig-
nificance of experimental effect. (B) Regions from (A) with the additional criterion of super-additivity. No vox-
els pass the criterion. (C) Voxels from (A) that also exceed the mean criterion. Color bar show significance
of M vs mean(A,V) contrast. (D) Voxels from (A) exceeding the max criterion. Colors show significance of M
vs max(A,V) contrast.
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A Different individual subjects

D Two-step vs. one-step thresholding
Two-step One-step (p < 10®)  One-step (p < 0.05)

Fig. 6. Single subject activation maps from different subjects, with different statistical thresholds, and with one
or two statistical criteria. (A) Lateral views of the left hemisphere from four subjects illustrating regions show-
ing a significant experimental effect, a positive change from fixation baseline during auditory or visual stimula-
tion epochs,and meeting the mean criterion M > mean(A,V). Compare with Fig. 3C for a fifth subject. (B) Lateral
view of a single subject left hemisphere at four different thresholds for the overall experimental effect, meas-
ured as an F-ratio. (C) Lateral view of a single subject left hemisphere at four different thresholds for the t-sta-
tistic of the contrast M vs max(A,V). Overall experimental effect threshold set to F > 8. (D) Axial slice (z = 10)
through an individual subject using a two-step analysis, a one-step analysis with high threshold, or a one-step
analysis with liberal threshold.
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A Perspective on Statistical Criteria

When we speak of a brain area performing
a task, such as multisensory integration, it is
tempting to imagine a single cytoarchitec-
turally defined region with a relatively small
size.Itis certainly possible to create maps with
a single tiny focus by constructing activation
maps using extremely high thresholds (Fig.
6). However, mostevidence suggests that mul-
tiple brain areas participate nearly in all cogni-
tive events, including processing simple
sensory stimuli. While some areas show
smaller signal changes than others, with
repeated averaging even areas of weak acti-
vation can passstringent statistical tests (Saad
et al., 2003).

This can be understood if we imagine the
activation profile in each active region as a
mountain with a tall peak and a broad base. At
high statistical thresholds, or in data with low
signal-to-noise ratio (SNR), only the very tip
of the peak will reach significance, resulting in
extremely focal activation patterns. At lower
thresholds (or with repeated averaging to give
high SNR) much more of the mountain will
exceed significance, resulting in larger active
regions (Fig. 6B).

Statistical criteria for multisensory integra-
tion can be considered in this light. The super-
additivity criterion can be written as M > A +
V and the mean criterion can be written as M
> (A +V)/2. Therefore, both criteria are oper-
ating on the same comparison (M vs A+ V) but
with different degrees of strictness. Because
super-additivity is more strict, it inevitably
leads to smaller regions of multisensory acti-
vation, sometimes eliminating them com-
pletely (Fig. 3B).

Advantages and Disadvantages

of Different Secondary Criteria

At a theoretical level, super-additivity is
attractive because it proposes using the same
criterion for fMRI studies (M > A + V) that has
been applied in recording studies of multisen-
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sory neurons (Calvert et al., 2001). However, as
emphasized by Laurienti and colleagues
(Laurienti et al., 2005) while some individual
multisensory neurons are super-additive, oth-
ers are sub-additive (M < A+V).In BOLD fMR],
the combined response of many neurons in a
voxelismeasured. Because super-and sub-addi-
tive neurons exist in similar numbers, and are
not spatially segregated, the single neuron data
donotmakeclear predictions about the expected
BOLD response to multisensory stimulation.
Therefore, the super-additivity criterion may be
overly strict, and introduce type II (false nega-
tive) error. Evidence for this was found in the
present analysis, in which multisensory acti
vity in STS was not detected with super-addi-
tivity. The converse criterion of sub-additivity
was also proposed on the basis of single-neu-
ron studies and is subject to the same concerns
about the correspondence between single-neu-
ron and BOLD responses. As observed in the
presentanalysis, sub-additivity suffers from the
drawback of being relatively nonspecific. For
instance, a voxel in motor cortex that shows the
same percent signal change in each condition,
e.g., (M,A,V) =(1%,1%,1%) will be classified as
sub-additive because M < (A + V).

If super-additivity is used as a criterion, it is
important that the evoked responses be closely
examined. For instance, Wright and colleagues
(Wright et al., 2003) examined responses to
audiovisual speech, and found that some
regions that were classified as over-additive
(their term for super-additivity) showed sub-
stantial deactivations during visual stimula-
tion. Different routes to super-additivity, e.g.,
(M,A,V) = (3%,1%,1%) vs (M,A,V) = (1%,1%,-
1%) likely reflect different underlying neural
processes.

The maximum criteria M >max(A,V) canalso
be written (M > A) AND (M > V) (Van Atteveldt
et al., 2004). Qualitatively, it is less strict than
super-additivity and more strict than the mean
response criterion (compare Fig. 3C-E). One
disadvantage of the max criterion is that it is
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nonlinear, so that small perturbations in the
amplitude of either unisensory response can
give large differences in the calculated crite-
rion. For example, the weaker of the two unisen-
sory responses plays no role in determining the
max criterion, so that two voxels with very dif-
ferent response patterns, such as (M,A,V) =
(50/0,40/0,40/0) and (M,A,V) = (5(70,40/0,10/0) are
assigned the same max criterion although their
responses are quite different.

Unlike the max criterion, the mean criterion
islinear and well behaved because it reflects the
contribution of both unisensory responses. The
contrast of M vs mean(A,V) provides a useful
index of the degree of multisensory integration
in an area. In some respects, it tests the null
hypothesis that the response across conditions
is similar. For instance, a voxel in motor cortex
with response (M,A,V) = (1%,1%,1%) will show
a small value for the mean criterion, whereas a
voxel with (M,A,V) = (2%,1%,1%) will show a
large value. Because it is more liberal than the
super-additivity criteria, it is able to identify
multisensory regions, including STS. A disad-
vantage of the mean criterion is that is may be
too liberal. Without an initial criterion requir-
ing unisensory activation in each modality (i.e.
A>0AND YV > 0), the mean criterion classifies
unisensory areas as multisensory,e.g.,if (M,A,V)
= (1%,0%,1%), mean(A + V) = 0.5% < 1%.

Advantages and Disadvantages
of Different Initial Criteria

The initial unisensory deactivation criterion
of (A>0AND YV >0)hastheadvantage of remov-
ing early sensory areas that are not tradition-
ally thought to be multisensory. However,
recentresearch shows that deactivationsinearly
sensory cortex may reflect early multisensory
processing (Laurienti et al., 2002). Even areas
that are unisensory by definition, such as pri-
mary visual cortex, may receive multisensory
input (Falchier et al., 2002; Foxe et al., 2002;
Schroeder et al., 2003). In most studies, it is rea-
sonable to weed outregions thatare deactivated

Volume 3, 2005

to one or all sensory stimuli. However, given
the uncertainties surrounding these issues, it is
important to perform at least a cursory exami-
nation of all areas without any initial criteria.

Reasons for Careful Examination
of fMRI Data

Regardless of the criteria used, one must care-
fully examine activation maps and MR time
series at each processing stage. This is vital
because fMRIanalysis softwareis complex, and
its operations and algorithms are incompletely
understood by most users. This is true even for
well-documented, widely used software, such
as SPM (Worsley and Friston, 1995). Consider
the example of conjunction analysis (Friston et
al., 1999). Conjunction analysis is commonly
used in multisensory studies to find brain
regions thatareactive under every experimental
condition, that is, respond to stimuli in every
sensory modality (e.g., Bremmer et al., 2001).
However, as emphasized by Nichols et al.
(2005), conjunction analysisin SPM99 and SPM2
actually tests the hypothesis thata brain region
is active in no experimental condition. Hence,
a positive result for a region in a conjunction
analysis of auditory, visual, and tactile tasks
does not indicate that the region was respon-
sivetoall threemodalities. Agood way to detect
errors of this type is to examine the evoked MR
response in each region in each condition.

Summary and General Guidelines for
Analysis and Display of Multisensory
fMRI Data

In the test dataset used for the present com-
parison, the super-additivity criterion failed to
detect multisensory activity in STS, despite the
use of a high-field scanner and a sophisticated
event-related design. Multisensory integra-
tion is enhanced when the unisensory stim-
uliare ambiguous (e.g., Alais and Burr, 2004).
In the test dataset, subjects were relatively
accurate in both the unisensory auditory
(79%, chance 33%) and unisensory visual
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(92%) conditions. While subjects were more
accurate in the multisensory condition (94%),
thisrepresents a smallimprovement, perhaps
corresponding to the small degree of multi-
sensory enhancement observed in the fMRI
signal. Other well-powered studies that
examined multisensory integration using
unambiguous unisensory stimuli have also
failed to detect super-additivity in STS
(Amedietal., 2001, 2002; Van Atteveldtetal.,
2004). These results strengthen the theoreti-
cal arguments discussed earlier (Laurienti et
al., 2005), suggesting that super-additivity is
not always an appropriate criterion in multi-
sensory fMRIstudies. Super-additivity could
be effective when used in an experimental
design in which the demands of the stimulus
and task result in a high degree of multisen-
sory enhancement. In general, the proper cri-
teria may depend on the exact details of the
experiment being analyzed and the neuro-
science hypothesis being tested. Regardless
of the exact analysis method used, several
useful guidelines can help to ensure that cor-
rect inferences are drawn from multisensory
fMRI data.

Average MR Time Series

Examining the evoked MR response from
regions of interest (plotted as % signal change
vs time, Fig. 2) across different trial types allows
verification that the statistical criteria applied
have performed as expected. At a more basic
level, it allows verification that the evoked
responses have the shape typical of BOLD hemo-
dynamicresponses (relatively slow changes that
peak 4-6 s after the expected neural activity).
Theadditionalinformation available in the time
dimension of the evoked response permits an
estimation of the SNR ratio of the experiment,
which is not possible with simple bar charts or
scatter plots of activation intensities. Variance
in the evoked response can be illustrated with
error bars at each time-point demonstrating the
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standard error or standard deviation across sub-
jects (e.g., Beauchamp et al., 2003).

Whole Brain Activation Maps

Early fMRI papers often illustrated activity
with a single slice through the brain volume.
This was sometimes owing to hardware limi-
tations (the ability to collect data from only a
single slice) or the desire to only show activity
in a single region, obviating the need to discuss
activity in other brain regions. With techno-
logical advances, modern fMRI studies almost
always collect data from a large fraction of the
brain. Because these data are collected and ana-
lyzed, it is appropriate to illustrate all active
regions that meet the analysis criteria, regard-
less of their location in the volume. This can be
accomplished with a variety of techniques: cor-
tical surface modeling (Fig. 1) volume render-
ing (Fig. 4) or simply multiple slices through
the volume (e.g., Petit and Beauchamp, 2003).

Mixed-Effects Group Maps

In a mixed-effects model, stimulus is the
fixed factor (all subjects view the same stim-
uli) while individual subject is the random fac-
tor (meaning that the degrees of freedom is
equal to the number of subjects). The mixed-
effects method is sometimes called random-
effects, to distinguish it from the less-favored
fixed-effectsapproach in which subjectsarenot
treated as a factor (meaning that the degrees of
freedom is artificially high, equal to the total
number of brain volumes collected).

Activation Maps from Multiple
Individual Subjects

As shown in Fig. 6, active areas can differ
significantly in number and location from
subject to subject. The mixed-effects group
average activation map captures commonal-
ities in the activation pattern across subject,
but does not completely describe the activa-
tion. For instance, a relatively focal patch of
activation in the group average activation
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map may reflect a consistent focal region of
activation in individual subjects. Or, it may
reflect the result of averaging a number of
subjects with quite different activation pat-
terns (in terms of number of active foci and
size of activations) that overlap maximally at
the location of the peak focus in the average
map. For a full understanding of the brain
architecture underlying a cognitive task, it is
necessary to examine several individual sub-
ject activation maps in addition to the group
average map.

Behavioral Data

Some form of behavioral task is an impor-
tant element of multisensory fMRI studies.
Attention has dramatic effects on the BOLD
response (e.g., Beauchamp et al., 1997) and
BOLD responses are weaker during passive
presentation of stimuli than during active per-
formance of a behavioral task with the same
stimuli (e.g., Beauchamp et al., 1999). More
subtly, differences in task difficulty can cause
changes in brain activation that can be falsely
attributed to other task differences. For
instance, auditory object recognition tasks are
often more difficult than visual object recog-
nition tasks. Since greater task difficulty is
associated with greater activation in frontal
regions, these regions would be more active
during auditory object recognition and could
be wrongly classified as auditory-preferring
cortex. However, with behavioral data show-
ing longer reaction time or lower percent cor-
rectduring auditory trials, this confound could
be noted and corrected for (perhaps by mak-
ing the auditory task easier or the visual task
more difficult).

Comprehensive Description
of Analysis Methods

Even within prepackaged analysis software,
thereisa combinatorially vastnumber of ways
to process fMRI data. A clear and complete
description of the methods is vital. The recent
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widespread adoption of supplementary online
materials makes an even more comprehensive
description possible, including depiction of
the results of various alternative analysis
strategies.

Information Sharing Statement

The software described in thismanuscriptare
available as follows: stimulus presentation soft-
ware from http://lbc.nimh.nih.gov/peo-
ple/mikeb/matlab.html; AFNIand SUMA from
http://afni.nimh.nih.gov/afni/download;
FreeSurfer from http://surfer.nmr.mgh har-
vard.edu/download.html; the optseq program
fromhttp:/ /surfernmr.mgh.harvard.edu/opt-
seq/. The data and stimuli can be obtained via
personal communication with the author.
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