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1. Project Specification

We aim to develop a system which allows users to stimulate neurons with light. This is done through
in-vitro optical stimulation of Channelrhodopsin-2 (ChR2) transfected neural cells [1, 2] cultured on a
Multi-Electrode Array (MEA). Optical stimulation is carried out by a micro-LED array which is capable
of targeting single neurons in a neural network [3, 4]. Our system will provide us with a new and novel
way to communicate to neurons with light.

One of our objectives is to develop a spike sorting algorithm which achieves real time response
recognition of stimulated neurons to known stimuli of our system. The spike sorting algorithm must
be able to detect action potentials and accurately classify detected spikes across all electrodes of the
MEA. The algorithm must also be able to provide the user with spatiotemporal information of excited
neurons. By applying spike sorting to our system, we hope to develop a method for researchers to
gain greater insight into neural interactions of a neural network.

2. Introduction: What is Spike Sorting?

Analysis of spike data recorded by a microelectrode is a
technically challenging process. Besides picking up background
noise, electrodes also record spikes from more than one neuron

Multi-neuronal Spike Data

simultaneously. This poses a challenge of assigning spikes to 3 Spike Detection
neurons. Spike sorting addresses this problem by implementing a
three step algorithm to classify spikes recorded on a multi- Detected Spikes

electrode array (MEA). This process is illustrated in Fig 1.

B Spike Feature Extraction
The first step of spike detection involves filtering recorded spike

data to remove high frequency noise and preserve low frequency Extracted Spike Features

action potentials. Spikes are then detected using a voltage
threshold or a slope threshold on the signal recording. 3 Spike Feature Clustering

The next step involves the extraction of spike features from the Classified Spikes

set of detected spikes. This can be done using various methods
which include feature analysis, Principle Components Analysis  Fig 1: Spike Sorting Algorithm
(PCA) and Independent Components Analysis (ICA).

The final step clusters spikes features and groups detected spikes into various classes. This can be
done using various clustering algorithms, such as k-means clustering or Bayesian clustering. The final
result of this basic three step algorithm is the classification of spikes according to their waveform
features. We can then assign spikes and identify spike patterns of specific neurons. Recording neuron
activity using multiple electrodes will also allow us to estimate the location of spiking neurons in the
neural network. The spatiotemporal information obtained can be used for many applications which



include transferring an image from the micro-LED array to a neural cell culture, and the identification
of neural interactions within a neural network.

3 Spike Detection

The aim of spike detection is to extract data points which form an action potential, based on a set of
user defined criteria. Spike detection methods include the voltage threshold method which uses a
minimum amplitude threshold to detect action potentials, and the slope threshold method which
detects spikes according to its slope, in addition to its amplitude. Before spikes can be detected, each
recording is filtered to remove high frequency background noise and preserve low frequency spikes.

3.1 Filtering Multi-neuronal Spike Data

In addition to action potentials detected on an MEA, electrodes also pick up high frequency noise. In
order to remove unwanted noise for spike detection, we first pass signal recordings through a band-
pass filter. There are two types of digital filters which can be used for this purpose: the Finite Impulse
Response (FIR) and the Infinite Impulse Response (lIR) filter. For our spike sorting algorithm, we have
implemented an IIR, 2" order band-pass elliptical filter in MATLAB.

Although IIR filters are not as stable as FIR filters and they introduce a non-linear phase delay, IIR
filters require a small number of taps and have a lower computational load, ensuring that the spike
sorting algorithm remains computationally efficient. This facilitates future work in moving from offline
to online spike sorting. We have also chosen the elliptic filter as it has a fast transition in gain
between the pass-band and stop-band, effectively filtering out unwanted frequencies.

As with all filters, signal distortion may occur especially if signal frequencies lie near the cut-off
frequencies. This may result in shifted spike times and spike waveform deformation. By setting fixed
high and low pass cut-off frequencies across all channels, we ensure constant amplitude and phase
errors, hence preserving essential information such as relative spike shapes. At the same time, the
user has to carefully choose cut-off frequencies so as not to cause excessive signal distortion. A
bandwidth of 300 Hz to 3 kHz is recommended if a broadband amplifier is used [5].

3.2 Voltage Threshold Method

The voltage threshold method detects data points in a signal recording which lie between a minimum
and a maximum threshold value. Many spike sorting algorithms use this method for detecting spikes
as it is easy to implement and discards background noise effectively [5, 6, 7, 8]. The minimum
amplitude threshold discards low amplitude background noise, while the maximum amplitude
threshold discards large amplitude artefacts.

Since the MEA records extracellular potentials, a recording of an action potential will show a
prominent negative peak. Hence, a negative minimum voltage threshold (Fig 2) is implemented to
detect neuronal spikes.
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The slope threshold method (Fig 3) detects action potentials based on the slope of the spike in
addition to a minimum amplitude [5]. This method requires the user to define the minimum
amplitude, and minimum and maximum slope for which a set of data points must have in order to be
detected as a spike. In order to avoid analysing all points in the data set, the minimum amplitude
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Fig 2: Spike detection using the voltage threshold method. (a) Detected spike with amplitude
exceeding minimum voltage threshold. (b) Spike amplitude is too small for detection
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criteria is first applied, followed by the minimum and maximum slope threshold.
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Fig 3: Spike detection using the slope threshold method. (a) Detected spike using the threshold
method. (b) Spike amplitude is too small. (c) Spike slope is too high. (d) Spike slope is too low.
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3.4 Comparison of Spike Detection Methods

In order to detect action potentials only, the minimum amplitude set using the voltage threshold
method must be large enough so as to discard any background noise. This method assumes that the
amplitude of recorded action potentials is much greater than that of the background noise level. This
is true if the spiking neuron is located near the electrode. However, the amplitude of action potentials
decreases exponentially as a function of the distance from the recording electrode to the spiking
neuron [8]. If the stimulated neuron is located further away from the electrode, then low amplitude
spikes may not be detected by the voltage threshold method. One way to solve this problem is
through the use of multiple electrodes. Each time a spike is detected on a single electrode, we can
visualise recorded waveforms across all channels of the MEA. This ensures that information is not lost
even though spikes are not detected on other electrodes. Another solution is provided by the slope
threshold method which adds an extra dimension to the detection criteria of spikes.

The slope threshold method allows greater flexibility in setting the minimum amplitude threshold as it
uses the added criteria of minimum and maximum slope. The minimum amplitude can now be set to
a lower value, resulting in more data points being detected. At the same time, slope threshold values
allow the user to discard background noise and detect spikes of a certain shape only. However, the
user has to have prior knowledge of spike shapes in order to specify appropriate minimum and
maximum slope threshold values. In the case where such prior knowledge is unavailable,
inappropriate threshold values may result in the loss of important spike information.

3.5 Algorithm Implementation and Preliminary Results

We have chosen to adopt the voltage threshold method for our spike detection process. Although low
amplitude spikes may not be detected on some electrodes, the use of an MEA ensures that electrodes
which are close to the spiking neuron will record large amplitude spikes. The voltage threshold
algorithm is also easy to implement and il e B s

computationally less costly than the slope threshold
method. On the other hand, we have insufficient
information on the spike shapes of ChR2 transfected
SH-SY5Y cells currently used in our system. This
means that we are unable to determine appropriate

Amplitude

slope thresholds for the detection of spikes.

The voltage threshold method was implemented in

MATLAB for a single electrode recording which can

be extended to each channel of the MEA. In order to 0 G ; = 3 e
test the implemented algorithm, we applied our Time

voltage threshold algorithm to Quiroga’s test data [6]. Fig 4: Plot of aligned and detected spikes
Fig 4 shows the results of aligned and stored spikes stored for spike feature extraction

obtained from spike detection.



4. Spike Feature Extraction

Neurons typically produce action potentials with a characteristic shape [9]. If we assume that the
neuron’s spike shape is time invariant, we can characterise the spike shape of each neuron by
extracting spike features. However, this assumption may not hold as neuron adaptation and evolution
of spike shapes may occur during the stimulation period. Overlapping spikes may also be recorded
when two or more action potentials reach an electrode at the same time. Various spike feature
extraction algorithms deal with these problems differently, and will be discussed in this section.

4.1 Feature Analysis

A simple method of analysing spike shapes is through the direct measurement of certain spike
features. These features illustrated in Fig 5, include the peak-to-peak voltage amplitude, spike width,
and positive and negative spike gradient.
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4.2 Principle Components Analysis

Principle Components Analysis (PCA) is commonly used in spike sorting algorithms to automatically
extract spike features for spike classification [7, 9]. The aim of PCA is to compute an ordered set of
orthogonal basis vectors which can be linearly combined to describe each detected spike fully. This
method is based on the assumption that the largest variation in a set of data contains the dynamics of
interest [9, 10]. A brief mathematical description of PCA can be found in Appendix A. Spike features
are captured in the score for each principle component, which is determined by:

S :zq (t)x(t) Equation 1

where x(t)is the detected spike, and  (t)is the i principle component. In practice, scores of the first

three components are used to identify clusters as they account for approximately 76% of the
variations in the data. Subsequent components may represent variability in the data due to
background noise [9]. The results of PCA are illustrated in Fig 7.
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Fig 7: Results of PCA applied on detected spikes. (a) The first three principle components.
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(b) A scatter plot of the scores from the first three components.
4.3 Independent Components Analysis

Independent Components Analysis (ICA) is a method which is commonly used to deal with spike data
recorded by multiple electrodes [9, 11, 12, 13]. Like PCA, it is based on a set of assumptions and uses
data transformation to identify independent sources of activity in recorded signal mixtures. ICA is
similar to blind source separation: it recovers n independent signals that have been mixed into n
channels by an unknown mixing process. The ICA concept is illustrated in Fig 8 and a brief
mathematical description of ICA can be found in Appendix B.

The ICA algorithm may be implemented via maximum likelihood estimation, entropy maximisation or
maximisation of non-Gaussianity [14]. An efficient and widely used ICA algorithm is the FastICA
algorithm developed by Hyvéarinen which utilises non-Gaussianity maximisation [15]. In order to
illustrate the capabilities of ICA, a set of sinusoidal and sawtooth signal sources were generated and



linearly mixed in MATLAB. FastlICA was then applied to these mixtures and the independent
components were obtained, accurately estimating signal sources up to the multiplicative sign (Fig 9).
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Fig 8: A model of Independent Components Analysis. N unknown sources or spiking neurons are mixed
linearly by an unknown mixing process and are recorded on n electrodes of the MEA. The unmixing
process is found through ICA which transforms the recorded mixtures into independent signals
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Unlike other spike feature extraction algorithms, ICA automatically solves the problem of overlapping
spikes since it assumes that observations are linear mixtures of source signals. However, this powerful
method is not free from constraints. Two other assumptions made by ICA are that the number of
sources must be equal to, or less than the number of observed signal mixtures, and that the mixing
process is instantaneous. The first assumption is violated when using a single electrode, but may
produce results which contain more information than other algorithms such as PCA when applied to
MEA recordings. The second assumption may be violated when a time delay is introduced in spike
patterns from a neuron located far away from the electrode. Hence, ICA has to be treated with
caution in order to make full use of its effects on raw data.

4.4 Comparison of Spike Feature Extraction Methods

Of all the above methods, ICA appears to address our problem very well: ICA allows us to recover the
original spiking patterns of individual neurons from a mixture of signals observed on recording
electrodes on the MEA. To obtain spatial information from the independent components (ICs), the
normalised scalar product between the electrode signals and the ICs can be computed, and its
magnitude used to estimate the neuron’s position with respect to the recording electrode [12].

Although promising, ICA is flawed as the number of neurons has to be equal or less than the number
of electrodes. Although methods which deal with overcomplete ICA problems have been developed
[13, 14], few of them have been tested and verified to be capable of accurately recovering original
spike patterns fully. Another assumption which ICA makes is the instantaneous mixture of source
signals. This may not be true as spikes from neurons which are far away from the recording electrode
may experience a time delay during signal recording. Lastly, our system does not necessarily require a
blind source separation technique like ICA to carry out spike sorting. This is due to the fact that our
system may be calibrated by stimulating single neurons. This provides us with prior knowledge of the
system’s calibrated neurons, turning the problem into that of partial blind source separation.

PCA on the other hand, is an effective tool for discriminating spike shapes recorded on a single
electrode or from each channel in an MEA. One constraint of PCA is that it requires spikes to be
aligned, disregarding any temporal information such as spike times and time delays. This problem is
solved by recording spike times during spike detection, and assigning spike classes to these times.
Besides this, PCA does not solve the problem of overlapping spikes as overlapped spike shapes will be
incorrectly clustered or discarded as outliers during the clustering process. PCA also fails to recognise
spike adaptation and spike shape evolution where the waveforms are not stationary. In such cases,
PCA may produce two different clusters for the same neuron.

PCA also fails when extracting spike features across multiple electrodes. Since spike amplitudes are
dependent on the distance between the neuron and electrode [8], spikes from the same neuron
which are recorded by two or more electrodes may exhibit different spike shapes. Applying PCA to
such data may result in the formation of two or more clusters (Fig 10) and the generation of false
positives in our system. Hence, PCA alone remains only useful for spike sorting on a single channel.

9



Plot of Aligned Sorted Spikes Scores of 1st Two Principle Components (Clustered)
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Fig 10: Generation of false positives due to changing spike shape. (a) A plot of three spike waveforms, two
of which (blue and red) come from the same neuron. The blue and green spikes are recorded by an
electrode nearer to the neuron while the red spikes are recorded by one further away. (b) A plot of the first
two principle components obtained from the aligned spikes shows three distinct clusters. This implies that
the blue and red spikes come from two different neurons, resulting in the generation of false positives.

PCA however, can be combined with feature analysis to provide an added dimension of clustering
across neighbouring electrodes. Although spike amplitude is dependent on the distance between the
spiking neuron and recording electrode [8], there are certain features which remain independent of
the neuron’s spatial location within the MEA. These features include the peak-to-peak amplitude ratio
and spike width, which we may use to re-classify clustered spikes detected across multiple electrodes.

The above method is not free from the limitations 1 2 3

of PCA. It is unable to properly classify overlapping

spikes and may give false positives when presented A T s S .
with time varying spike shapes. Despite these

shortcomings, this method gives us greater insight

into the neuron’s position as we can now visualise B Eant' et W’{\f“ sy
spikes from the same neuron which appear on

multiple channels. Based on the spike amplitudes

recorded by neighbouring electrodes, we can ¢ e il
identify the neuron’s spatial location with respect

Fig 11: Spike waveforms on a 3x3 electrode

to recording electrodes on the MEA. An example array. The spiking neuron is located nearest to

describing the variation of spike shapes on electrode B2 which shows the greatest spike

neighbouring electrodes is shown in Fig 11. amplitude compared to the remaining channels.

4.5 Algorithm Implementation and Preliminary Results

We have adopted the method which combines PCA and feature analysis for spike feature extraction
across multiple channels as described above. Although PCA suffers from several drawbacks, it is easy
to implement and remains one of the most commonly used methods in spike sorting. When

10



combined with feature analysis, we will be able to extract relative peak amplitudes across all channels.
By modelling spike amplitude and phase difference as a function of neuron to electrode distance, we
can estimate the neuron’s position within the neural network. This method clearly achieves our aim
of extracting spatiotemporal information from neural activity recorded on a MEA.

Our spike feature extraction algorithm was implemented in MATLAB, and works by first applying PCA
to each MEA channel. This allows us to run clustering algorithms on the principle component scores,
and to discriminate spike shapes being recorded on each channel. The results of single channel PCA
with the use of k-means clustering applied to Quiroga’s test data [6] are illustrated in Fig 12.
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As part of future work, we plan to implement the remaining parts of the algorithm as described in the
following paragraphs. The next part of the algorithm involves the extraction of spikes from each
cluster on a selected electrode, and comparing the spike features to those of another cluster on a
neighbouring electrode. If this comparison produces a single cluster, then we can conclude that the
spikes originate from the same neuron. After re-classification of spikes with neighbouring electrodes,
we can proceed to extract spatial information of the neuron for a given spike class.
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Extracting spatial information is done by visualising and comparing relative spike amplitudes across all
channels in the MEA. First, we locate the primary electrode which records the largest peak-to-peak
amplitude for a given spike class. This allows us to identify the electrode which is nearest to the
neuron of interest. If we assume that spike recordings contain a phase delay which is a function of the
distance between the spiking neuron and recording electrode, then we can find the timing differences
between spikes recorded on all other channels with respect to the primary electrode.

The next step involves identifying all spike times for the particular spike class on the primary
electrode. We then cut out a user defined time window of signal recordings across all channels for
each of these spike times. The average waveforms across all channels are calculated and waveforms
which differ from the average by more than two times the standard deviation are discarded [8]. We
can then use the residual average waveforms, fit them to an exponential model based on the
electrode positions, and estimate the neuron’s position within the MEA.

5. Spike Feature Clustering

By plotting spike features, we are able to visually identify clusters which correspond to spikes from a
particular neuron. However, to manually assign each spike to its cluster is a very time consuming
process. There are several algorithms which perform this task automatically with varying amounts of
supervision by the user. We will be discussing some of these algorithms in this section.

5.1 K-means Clustering

K-means clustering is an algorithm which classifies data into k number of clusters, based on a set of
features common to each data element. In this case, we may use principle component scores, or spike
features such as peak-to-peak amplitude ratio and spike width for our clustering process.

After the user has specified the number of clusters, the algorithm uses an iterative process which
groups spike features based on the minimum Euclidean distance from each data element to the
cluster centroids. The aim is to minimise the total variance within each cluster. The results of k-means
clustering can be seen in Fig 12(a) where spikes have been grouped into three clusters based on the
scores of the first three principle components.

5.2 Bayesian Clustering

The powerful statistical method of Bayesian analysis can be extended to the clustering problem. In
this case, each cluster is modelled with a multivariate Gaussian, centred on the cluster [9]. Clustering
is done by calculating the probability that a data point belongs to each of the clusters and this is
achieved by using Bayes’ Theorem:

_ p(xle.8,) p(e)
Zk: p(X|Ck’ek) p(ck)

Equation 2

p(cklxlel'K)
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where X is the data and G, is a particular class described by its parameters 0, ={p,,Z,}; p, and X,

are the mean and covariance matrix for the class respectively. The posterior p(c,| X0, ) is the

conditional probability of each of the clusters, given the data and the set of parameters for all clusters.
The likelihood p(x| C, ,Ok) is the conditional probability of the data given a particular class, while the

prior p(ck) is the probability of the K" class, which corresponds to the relative firing frequencies of

spikes between classes [9]. The evidence Z p(x| C, ,Ok) p(ck) is the probability of the data, found by
k

marginalising the likelihood over all classes. Class parameters are determined by maximising the
likelihood of the data:

N
L(0)= I] P(X |G .Ork ) Equation 3

This clustering method uses probability to define cluster boundaries, hence allowing us to quantify
the certainty of the classification. The AutoClass package [16] implements the above algorithm for
unsupervised clustering tasks and is capable of choosing the number of classes automatically, which is
not possible with the k-means clustering algorithm.

5.4 Comparison of Spike Feature Clustering Methods

The main challenge of any clustering algorithm lies in choosing the number of clusters. The k-means
clustering algorithm requires the user to specify the number of clusters. This is a huge disadvantage
as the spike sorting algorithm requires supervision, thus preventing us from implementing it online.
At the same time, the number of clusters chosen by the user affects the outcome of the clustering
process greatly. A poor choice of cluster numbers may lead to incorrect spike clusters. By using the
minimum Euclidean distance as the basic criteria for clustering, the algorithm ignores the distribution
of data within the cluster. This results in the failure to recognise overlapping clusters and clusters
whose shapes differ from a spherical distribution [9]. In addition, omission of outliers has to be
carried out manually as the k-means clustering assumes that all data points belong to a cluster.
Despite these drawbacks, this algorithm is easy to implement and has low computational complexity.

Bayesian clustering is superior to k-means clustering as it is able to choose the number of clusters
automatically. It is also able to recognise overlapping clusters and can omit outliers automatically by
assigning a large background class with low cluster weight [9]. However, this clustering method is
difficult to implement and can be computationally costly when dealing with large amounts of
data [13]. In order to ensure the efficiency of our spike sorting algorithm, lengthy computation
periods may be avoided by running the spike sorting algorithm on shorter segments of signal
recordings at the expense of reduced data size.

13



5.5 Algorithm Implementation and Preliminary Results

Currently, we have implemented a k-means clustering algorithm for offline spike sorting as it is easy
to implement on MATLAB. Actual recordings made on our system have yet to be carried out, thus we
are unable to assess the performance of this simple clustering algorithm. However, as we move from
offline spike sorting to online spike sorting, we must implement a clustering algorithm which can
automatically choose clusters and remove outliers without supervision. As part of future work, we
aim to implement the AutoClass algorithm in MATLAB for the purpose of spike feature clustering.
Another round of assessment will then be carried out to determine the amount of computational
time required for AutoClass to run on MATLAB as ANSI C tends to provide a more efficient
computation platform. The results of the implemented k-means clustering algorithm are illustrated in
Fig 6, 10(b) and 12(a).

6. Testing and Validation

In order to assess the validity of our spike sorting algorithm, we plan to develop a testing platform in
MATLAB which can be used to simulate spikes of a neural network. The platform should allow the
user to input N number of neurons and to specify each neuron’s location within the MEA. Once these
parameters have been specified, the testing platform will generate n number of spikes with different
spike shapes, each allocated to n neurons.

The user can then choose the desired stimulation pattern. Parameters for stimulation include
stimulus time, duration, frequency and location. The testing platform will use these input parameters
to generate spike waveforms for each stimulated neuron across all channels using the generated
spike shapes. We intend to model the spike amplitude and phase delay as a function of the distance
between the excited neuron and recording electrode. Two or more spiking neurons which are
simultaneously recorded by a single electrode will result in spike overlap.

The user may also include neural interactions between neuron pairs with the specification of
interaction strength. Based on the strength of interaction, the platform will use probabilistic methods
to determine if the depolarising wave travelling along the axon of a stimulated neuron will result in
the eliciting an action potential in another neuron.

What we will obtain from the platform is a set of simulated waveform observations across all
channels of the MEA. We can run our spike sorting algorithm on the set of test data generated by our
platform. The estimated locations of the detected neurons, spike times and spike classes are then
compared to that generated by the simulator. Errors which result from this comparison of
spatiotemporal information can then be assessed and our spike sorting algorithm can be validated.
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7. Project Gantt Chart
Week 1 2 3 4 5 6 7 8 9 10 11
6/10/08 | 13/10/08 | 20/10/08 | 27/10/08 | 3/11/08 | 10/11/08 | 17/11/08 | 24/11/08 | 1/12/08 8/12/08 | 15/12/08
Date to to to to to to to to to to to
10/10/08 | 17/10/08 | 24/10/08 | 31/10/08 | 7/11/08 | 14/11/08 | 21/11/08 | 28/11/08 | 5/12/08 | 12/12/08 | 19/12/08
Introduction to Projects and Choosing 3™ Year MEng Group Projects
Project Briefing, Background Reading on Project
é Allocation of Roles, Drafting of Project Plan, Background Reading on Spike Sorting
Z € Lab Induction, Spike Sorting Plan
g E Test and Understand Quiroga’s Spike Sorting GUI with Test Data and Raw Data
x g Understand and Implement Spike Detection in MATLAB
f—j g Understand and Implement PCA in MATLAB
_§ NS Understand and Implement k-means Clustering in MATLAB
E Implement Single Channel Spike Sorting in MATLAB GUI
Understand the Concepts of ICA
Review of Development of Spike Sorting Algorithm and Preparation of Interim Report
Week 1 2 3 4 5 6 7 8 9 10 11
12/1/09 19/1/09 26/1/09 2/2/09 9/2/09 16/2/09 23/2/09 2/3/09 9/3/09 16/3/09 23/3/09
Date to to to to to to to To to to to
16/1/09 23/1/09 30/1/09 6/2/09 13/2/09 20/2/09 27/2/09 6/3/09 13/3/09 20/3/09 27/3/09
Implement PCA with Feature Analysis for Multiple Channel Comparison in MATLAB
s Implement Automatic Clustering Algorithm in MATLAB
B Develop Spike Generator for Testing Platform in MATLAB
§ g Develop Signal Recording Generator for Testing Platform in MATLAB
ae Validate and Test Spike Sorting with PCA & Feature Analysis
E g Assess Errors and Update Spike Sorting Algorithm
) Apply Spike Sorting Algorithm for Offline Raw Data
'qé Upgrade Algorithm for Online Spike Sorting
o Perform Online Spike Sorting on Raw Data
Review of Implementation of Spike Sorting Algorithm, Preparation of Final Report
Legend: _ Completed To be Completed
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10.
11.

12.

13.

14.

15.

16.

17.
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Appendix A: A Mathematical Description of PCA

The aim of PCA is to compute an ordered set of orthogonal basis vectors which can be linearly
combined to describe each detected spike fully. To find the set of ordered orthogonal basis vectors or
principle components from a set of detected and aligned spikes, we have to re-represent the original
data set as follows:

PX=Y Equation Al

where P is the set of ordered principle components, X is the set of detected spikes and Y is a re-
representation of this data set. We then optimise Y by maximising its variance and minimising its
redundancy [tut] by diagonalising its covariance matrixC,, :

Equation A2

It is now evident from Equation 4 that in order to diagonalise C, , matrix P is chosen to be transpose

of the eigenvectors of XX' . Hence, the principle components are obtained as a set of eigenvectors of
the covariance matrix of X . The scale factor for each principle component can then be determined as
follows:

§= ZQ (t)x(t) Equation A3

t

where x(t)is the detected spike, and  (t) is the i principle component.
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Appendix B: A Mathematical Description of ICA

The goal of ICA is to recover the original spike trains of individual neurons from a mixture of signals
detected by electrodes on the MEA. Each recorded signal mixture can be expressed as a linear
combination of original independent signals, and the system of n recorded mixtures is described in
the following equation:

X =AS Equation B1

where each row of Xis a recorded signal mixture on each electrode on the MEA, each row of Sis an
original spike train of a neuron, and A is an unknown mixing matrix which generates X from S.
Similarly, we are able to define the unmixing process where the unmixing matrix W recovers n
independent sources from n recorded signal mixtures.

S=wWX Equation B2

In order to estimate both the unknown mixing matrix A and independent sources S from the
observed mixture X, ICA makes several assumptions. ICA first assumes that n recorded signals are a
linear mixture of statistically independent components which belong to spike patterns from n neurons.
If two random variables x,and x, are statistically independent, then the joint probability density
function of both x,and x,is the product of each of the probability density functions of the random

variables:
D(X11X2)= D(X1) D(Xz) Equation B3

A measure of statistical independence is described by the Central Limit Theorem, which states that
the sum of several independent random variables tends towards a Gaussian distribution. Hence, by
maximising the non-gaussianity of WX, we are able to obtain the independent components of the
system. There are several ways to measure non-gaussianity, such as kurtosis and negentropy which
are described in detail by Hyvarinen et al. [15].
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