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1. Project Specification 

We aim to develop a system which allows users to stimulate neurons with light. This is done through 

in-vitro optical stimulation of Channelrhodopsin-2 (ChR2) transfected neural cells [1, 2] cultured on a 

Multi-Electrode Array (MEA). Optical stimulation is carried out by a micro-LED array which is capable 

of targeting single neurons in a neural network [3, 4]. Our system will provide us with a new and novel 

way to communicate to neurons with light.  

One of our objectives is to develop a spike sorting algorithm which achieves real time response 

recognition of stimulated neurons to known stimuli of our system. The spike sorting algorithm must 

be able to detect action potentials and accurately classify detected spikes across all electrodes of the 

MEA. The algorithm must also be able to provide the user with spatiotemporal information of excited 

neurons. By applying spike sorting to our system, we hope to develop a method for researchers to 

gain greater insight into neural interactions of a neural network.  

2. Introduction: What is Spike Sorting? 

Analysis of spike data recorded by a microelectrode is a 

technically challenging process. Besides picking up background 

noise, electrodes also record spikes from more than one neuron 

simultaneously. This poses a challenge of assigning spikes to 

neurons. Spike sorting addresses this problem by implementing a 

three step algorithm to classify spikes recorded on a multi-

electrode array (MEA). This process is illustrated in Fig 1. 

The first step of spike detection involves filtering recorded spike 

data to remove high frequency noise and preserve low frequency 

action potentials. Spikes are then detected using a voltage 

threshold or a slope threshold on the signal recording. 

The next step involves the extraction of spike features from the 

set of detected spikes. This can be done using various methods 

which include feature analysis, Principle Components Analysis 

(PCA) and Independent Components Analysis (ICA).   

The final step clusters spikes features and groups detected spikes into various classes. This can be 

done using various clustering algorithms, such as k-means clustering or Bayesian clustering. The final 

result of this basic three step algorithm is the classification of spikes according to their waveform 

features. We can then assign spikes and identify spike patterns of specific neurons. Recording neuron 

activity using multiple electrodes will also allow us to estimate the location of spiking neurons in the 

neural network. The spatiotemporal information obtained can be used for many applications which 

Fig 1: Spike Sorting Algorithm 
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include transferring an image from the micro-LED array to a neural cell culture, and the identification 

of neural interactions within a neural network. 

3 Spike Detection 

The aim of spike detection is to extract data points which form an action potential, based on a set of 

user defined criteria. Spike detection methods include the voltage threshold method which uses a 

minimum amplitude threshold to detect action potentials, and the slope threshold method which 

detects spikes according to its slope, in addition to its amplitude. Before spikes can be detected, each 

recording is filtered to remove high frequency background noise and preserve low frequency spikes. 

3.1 Filtering Multi-neuronal Spike Data 

In addition to action potentials detected on an MEA, electrodes also pick up high frequency noise. In 

order to remove unwanted noise for spike detection, we first pass signal recordings through a band-

pass filter. There are two types of digital filters which can be used for this purpose: the Finite Impulse 

Response (FIR) and the Infinite Impulse Response (IIR) filter. For our spike sorting algorithm, we have 

implemented an IIR, 2
nd

 order band-pass elliptical filter in MATLAB.  

Although IIR filters are not as stable as FIR filters and they introduce a non-linear phase delay, IIR 

filters require a small number of taps and have a lower computational load, ensuring that the spike 

sorting algorithm remains computationally efficient. This facilitates future work in moving from offline 

to online spike sorting. We have also chosen the elliptic filter as it has a fast transition in gain 

between the pass-band and stop-band, effectively filtering out unwanted frequencies.  

As with all filters, signal distortion may occur especially if signal frequencies lie near the cut-off 

frequencies. This may result in shifted spike times and spike waveform deformation. By setting fixed 

high and low pass cut-off frequencies across all channels, we ensure constant amplitude and phase 

errors, hence preserving essential information such as relative spike shapes. At the same time, the 

user has to carefully choose cut-off frequencies so as not to cause excessive signal distortion. A 

bandwidth of 300 Hz to 3 kHz is recommended if a broadband amplifier is used [5]. 

3.2 Voltage Threshold Method 

The voltage threshold method detects data points in a signal recording which lie between a minimum 

and a maximum threshold value. Many spike sorting algorithms use this method for detecting spikes 

as it is easy to implement and discards background noise effectively [5, 6, 7, 8]. The minimum 

amplitude threshold discards low amplitude background noise, while the maximum amplitude 

threshold discards large amplitude artefacts.  

Since the MEA records extracellular potentials, a recording of an action potential will show a 

prominent negative peak. Hence, a negative minimum voltage threshold (Fig 2) is implemented to 

detect neuronal spikes. 
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3.3 Slope Threshold Method  

The slope threshold method (Fig 3) detects action potentials based on the slope of the spike in 

addition to a minimum amplitude [5]. This method requires the user to define the minimum 

amplitude, and minimum and maximum slope for which a set of data points must have in order to be 

detected as a spike. In order to avoid analysing all points in the data set, the minimum amplitude 

criteria is first applied, followed by the minimum and maximum slope threshold.  

 

Fig 3: Spike detection using the slope threshold method. (a) Detected spike using the threshold 

method. (b) Spike amplitude is too small. (c) Spike slope is too high. (d) Spike slope is too low. 

(a) 

Max slope 

Min slope 

Min Amplitude 

(c) 

Max slope 

Min slope 

Min Amplitude 

(d) 

Max slope 

Min slope 
Min Amplitude 

(b) 

Max slope 

Min slope 

Min Amplitude 

Fig 2: Spike detection using the voltage threshold method. (a) Detected spike with amplitude 

exceeding minimum voltage threshold. (b) Spike amplitude is too small for detection 

(b) 

Minimum voltage threshold 

(a) 

Minimum voltage threshold 
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Fig 4: Plot of aligned and detected spikes 

stored for spike feature extraction 

3.4 Comparison of Spike Detection Methods 

In order to detect action potentials only, the minimum amplitude set using the voltage threshold 

method must be large enough so as to discard any background noise. This method assumes that the 

amplitude of recorded action potentials is much greater than that of the background noise level. This 

is true if the spiking neuron is located near the electrode. However, the amplitude of action potentials 

decreases exponentially as a function of the distance from the recording electrode to the spiking 

neuron [8]. If the stimulated neuron is located further away from the electrode, then low amplitude 

spikes may not be detected by the voltage threshold method. One way to solve this problem is 

through the use of multiple electrodes. Each time a spike is detected on a single electrode, we can 

visualise recorded waveforms across all channels of the MEA. This ensures that information is not lost 

even though spikes are not detected on other electrodes. Another solution is provided by the slope 

threshold method which adds an extra dimension to the detection criteria of spikes. 

The slope threshold method allows greater flexibility in setting the minimum amplitude threshold as it 

uses the added criteria of minimum and maximum slope. The minimum amplitude can now be set to 

a lower value, resulting in more data points being detected. At the same time, slope threshold values 

allow the user to discard background noise and detect spikes of a certain shape only. However, the 

user has to have prior knowledge of spike shapes in order to specify appropriate minimum and 

maximum slope threshold values. In the case where such prior knowledge is unavailable, 

inappropriate threshold values may result in the loss of important spike information.  

3.5 Algorithm Implementation and Preliminary Results 

We have chosen to adopt the voltage threshold method for our spike detection process. Although low 

amplitude spikes may not be detected on some electrodes, the use of an MEA ensures that electrodes 

which are close to the spiking neuron will record large amplitude spikes. The voltage threshold 

algorithm is also easy to implement and 

computationally less costly than the slope threshold 

method. On the other hand, we have insufficient 

information on the spike shapes of ChR2 transfected 

SH-SY5Y cells currently used in our system. This 

means that we are unable to determine appropriate 

slope thresholds for the detection of spikes. 

The voltage threshold method was implemented in 

MATLAB for a single electrode recording which can 

be extended to each channel of the MEA. In order to 

test the implemented algorithm, we applied our 

voltage threshold algorithm to Quiroga’s test data [6]. 

Fig 4 shows the results of aligned and stored spikes 

obtained from spike detection. 



 6

4. Spike Feature Extraction 

Neurons typically produce action potentials with a characteristic shape [9]. If we assume that the 

neuron’s spike shape is time invariant, we can characterise the spike shape of each neuron by 

extracting spike features. However, this assumption may not hold as neuron adaptation and evolution 

of spike shapes may occur during the stimulation period. Overlapping spikes may also be recorded 

when two or more action potentials reach an electrode at the same time. Various spike feature 

extraction algorithms deal with these problems differently, and will be discussed in this section. 

4.1 Feature Analysis 

A simple method of analysing spike shapes is through the direct measurement of certain spike 

features. These features illustrated in Fig 5, include the peak-to-peak voltage amplitude, spike width, 

and positive and negative spike gradient.  

 

Measured spike features can be used to 

discriminate between spikes from different 

neurons. This method may be used on a single 

electrode or across multiple electrodes. Fig 6 

shows a scatter plot of positive peak amplitude 

against negative peak amplitude of spikes 

detected on a single electrode. There is a clear 

clustering of three different spike shapes which 

implies the recording of spike patterns from 

three different neurons. When working with 

multiple recordings from an MEA, spike features 

across neighbouring electrodes may be compared 

to identify spikes from a single neuron being 

recorded on different electrodes.  

Fig 5: Measurement of spike 

features. Useful spike features 

which characterise a spike shape 

include positive and negative 

gradients, spike width, positive 

and negative peaks, and peak-

to-peak amplitude. 

Negative 

Gradient 

Positive 

Gradient 

Peak-to-peak 

amplitude 

Positive 

Peak 

Negative 

Peak Spike 

Width 

Fig 6: Feature analysis applied to a single 

electrode. 3 clusters are observed, each 

corresponding to a different neuron. 
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4.2 Principle Components Analysis 

Principle Components Analysis (PCA) is commonly used in spike sorting algorithms to automatically 

extract spike features for spike classification [7, 9]. The aim of PCA is to compute an ordered set of 

orthogonal basis vectors which can be linearly combined to describe each detected spike fully. This 

method is based on the assumption that the largest variation in a set of data contains the dynamics of 

interest [9, 10]. A brief mathematical description of PCA can be found in Appendix A. Spike features 

are captured in the score for each principle component, which is determined by: 

( ) ( )i i
t

s c t x t=∑  Equation 1 

where ( )x t is the detected spike, and ( )ic t is the ith
 principle component. In practice, scores of the first 

three components are used to identify clusters as they account for approximately 76% of the 

variations in the data. Subsequent components may represent variability in the data due to 

background noise [9]. The results of PCA are illustrated in Fig 7. 

 

4.3 Independent Components Analysis 

Independent Components Analysis (ICA) is a method which is commonly used to deal with spike data 

recorded by multiple electrodes [9, 11, 12, 13]. Like PCA, it is based on a set of assumptions and uses 

data transformation to identify independent sources of activity in recorded signal mixtures. ICA is 

similar to blind source separation: it recovers n independent signals that have been mixed into n 

channels by an unknown mixing process.  The ICA concept is illustrated in Fig 8 and a brief 

mathematical description of ICA can be found in Appendix B. 

The ICA algorithm may be implemented via maximum likelihood estimation, entropy maximisation or 

maximisation of non-Gaussianity [14]. An efficient and widely used ICA algorithm is the FastICA 

algorithm developed by Hyvärinen which utilises non-Gaussianity maximisation [15]. In order to 

illustrate the capabilities of ICA, a set of sinusoidal and sawtooth signal sources were generated and 

(b) 

Fig 7: Results of PCA applied on detected spikes. (a) The first three principle components. 

(b) A scatter plot of the scores from the first three components. 

(a) 
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linearly mixed in MATLAB. FastICA was then applied to these mixtures and the independent 

components were obtained, accurately estimating signal sources up to the multiplicative sign (Fig 9). 

 

 

Fig 9: Recovery of original independent 

sources using ICA. (a) A plot of the original 

signals. (b) The observed signal mixtures 

derived from an unknown mixing process 

involving original source signals from Fig 9(a). 

(c) ICA obtains the estimates of the original 

source signals using only the observed signal 

mixtures from Fig 9(b). The unordered 

estimates are accurate up to the multiplicative 

(a) (b) 

(c) 

1 

2 

n 

Unknown 

Sources 

Unknown 

Mixing 

Process 

Recorded 

Mixtures 

Learned 

Unmixing 

Process 

Inferred Sources  

Fig 8: A model of Independent Components Analysis. n unknown sources or spiking neurons are mixed 

linearly by an unknown mixing process and are recorded on n electrodes of the MEA. The unmixing 

process is found through ICA which transforms the recorded mixtures into independent signals 
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Unlike other spike feature extraction algorithms, ICA automatically solves the problem of overlapping 

spikes since it assumes that observations are linear mixtures of source signals. However, this powerful 

method is not free from constraints. Two other assumptions made by ICA are that the number of 

sources must be equal to, or less than the number of observed signal mixtures, and that the mixing 

process is instantaneous. The first assumption is violated when using a single electrode, but may 

produce results which contain more information than other algorithms such as PCA when applied to 

MEA recordings.  The second assumption may be violated when a time delay is introduced in spike 

patterns from a neuron located far away from the electrode. Hence, ICA has to be treated with 

caution in order to make full use of its effects on raw data.  

4.4 Comparison of Spike Feature Extraction Methods  

Of all the above methods, ICA appears to address our problem very well: ICA allows us to recover the 

original spiking patterns of individual neurons from a mixture of signals observed on recording 

electrodes on the MEA. To obtain spatial information from the independent components (ICs), the 

normalised scalar product between the electrode signals and the ICs can be computed, and its 

magnitude used to estimate the neuron’s position with respect to the recording electrode [12].  

Although promising, ICA is flawed as the number of neurons has to be equal or less than the number 

of electrodes. Although methods which deal with overcomplete ICA problems have been developed 

[13, 14], few of them have been tested and verified to be capable of accurately recovering original 

spike patterns fully. Another assumption which ICA makes is the instantaneous mixture of source 

signals. This may not be true as spikes from neurons which are far away from the recording electrode 

may experience a time delay during signal recording. Lastly, our system does not necessarily require a 

blind source separation technique like ICA to carry out spike sorting. This is due to the fact that our 

system may be calibrated by stimulating single neurons. This provides us with prior knowledge of the 

system’s calibrated neurons, turning the problem into that of partial blind source separation. 

PCA on the other hand, is an effective tool for discriminating spike shapes recorded on a single 

electrode or from each channel in an MEA. One constraint of PCA is that it requires spikes to be 

aligned, disregarding any temporal information such as spike times and time delays. This problem is 

solved by recording spike times during spike detection, and assigning spike classes to these times. 

Besides this, PCA does not solve the problem of overlapping spikes as overlapped spike shapes will be 

incorrectly clustered or discarded as outliers during the clustering process. PCA also fails to recognise 

spike adaptation and spike shape evolution where the waveforms are not stationary. In such cases, 

PCA may produce two different clusters for the same neuron. 

PCA also fails when extracting spike features across multiple electrodes. Since spike amplitudes are 

dependent on the distance between the neuron and electrode [8], spikes from the same neuron 

which are recorded by two or more electrodes may exhibit different spike shapes. Applying PCA to 

such data may result in the formation of two or more clusters (Fig 10) and the generation of false 

positives in our system. Hence, PCA alone remains only useful for spike sorting on a single channel.  
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PCA however, can be combined with feature analysis to provide an added dimension of clustering 

across neighbouring electrodes. Although spike amplitude is dependent on the distance between the 

spiking neuron and recording electrode [8], there are certain features which remain independent of 

the neuron’s spatial location within the MEA. These features include the peak-to-peak amplitude ratio 

and spike width, which we may use to re-classify clustered spikes detected across multiple electrodes.  

The above method is not free from the limitations 

of PCA. It is unable to properly classify overlapping 

spikes and may give false positives when presented 

with time varying spike shapes. Despite these 

shortcomings, this method gives us greater insight 

into the neuron’s position as we can now visualise 

spikes from the same neuron which appear on 

multiple channels. Based on the spike amplitudes 

recorded by neighbouring electrodes, we can 

identify the neuron’s spatial location with respect 

to recording electrodes on the MEA. An example 

describing the variation of spike shapes on 

neighbouring electrodes is shown in Fig 11. 

4.5 Algorithm Implementation and Preliminary Results 

We have adopted the method which combines PCA and feature analysis for spike feature extraction 

across multiple channels as described above. Although PCA suffers from several drawbacks, it is easy 

to implement and remains one of the most commonly used methods in spike sorting. When 

Fig 10: Generation of false positives due to changing spike shape. (a) A plot of three spike waveforms, two 

of which (blue and red) come from the same neuron. The blue and green spikes are recorded by an 

electrode nearer to the neuron while the red spikes are recorded by one further away. (b) A plot of the first 

two principle components obtained from the aligned spikes shows three distinct clusters. This implies that 

the blue and red spikes come from two different neurons, resulting in the generation of false positives.  

(a) (b) 

1 2 3 

A 

B 

C 

Fig 11: Spike waveforms on a 3x3 electrode 

array. The spiking neuron is located nearest to 

electrode B2 which shows the greatest spike 

amplitude compared to the remaining channels. 
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combined with feature analysis, we will be able to extract relative peak amplitudes across all channels. 

By modelling spike amplitude and phase difference as a function of neuron to electrode distance, we 

can estimate the neuron’s position within the neural network. This method clearly achieves our aim 

of extracting spatiotemporal information from neural activity recorded on a MEA. 

Our spike feature extraction algorithm was implemented in MATLAB, and works by first applying PCA 

to each MEA channel. This allows us to run clustering algorithms on the principle component scores, 

and to discriminate spike shapes being recorded on each channel. The results of single channel PCA 

with the use of k-means clustering applied to Quiroga’s test data [6] are illustrated in Fig 12.  

 

As part of future work, we plan to implement the remaining parts of the algorithm as described in the 

following paragraphs. The next part of the algorithm involves the extraction of spikes from each 

cluster on a selected electrode, and comparing the spike features to those of another cluster on a 

neighbouring electrode. If this comparison produces a single cluster, then we can conclude that the 

spikes originate from the same neuron. After re-classification of spikes with neighbouring electrodes, 

we can proceed to extract spatial information of the neuron for a given spike class. 

(c) 

(a) (b) 

Fig 12: Results of implemented PCA algorithm. 

(a) A plot of the scores of the first three 

principle components of detected spikes. K-

means clustering was applied to obtain three 

separate clusters. (b) A plot of the clustered 

and aligned spikes obtained from spike 

detection. (c) An overlay of the original data 

(blue) with classified spikes. Spike times were 

recorded during spike detection, preventing 

the loss of temporal information by PCA. 
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Extracting spatial information is done by visualising and comparing relative spike amplitudes across all 

channels in the MEA. First, we locate the primary electrode which records the largest peak-to-peak 

amplitude for a given spike class. This allows us to identify the electrode which is nearest to the 

neuron of interest. If we assume that spike recordings contain a phase delay which is a function of the 

distance between the spiking neuron and recording electrode, then we can find the timing differences 

between spikes recorded on all other channels with respect to the primary electrode.  

The next step involves identifying all spike times for the particular spike class on the primary 

electrode. We then cut out a user defined time window of signal recordings across all channels for 

each of these spike times. The average waveforms across all channels are calculated and waveforms 

which differ from the average by more than two times the standard deviation are discarded [8]. We 

can then use the residual average waveforms, fit them to an exponential model based on the 

electrode positions, and estimate the neuron’s position within the MEA. 

5. Spike Feature Clustering 

By plotting spike features, we are able to visually identify clusters which correspond to spikes from a 

particular neuron. However, to manually assign each spike to its cluster is a very time consuming 

process. There are several algorithms which perform this task automatically with varying amounts of 

supervision by the user. We will be discussing some of these algorithms in this section. 

5.1 K-means Clustering 

K-means clustering is an algorithm which classifies data into k number of clusters, based on a set of 

features common to each data element. In this case, we may use principle component scores, or spike 

features such as peak-to-peak amplitude ratio and spike width for our clustering process.  

After the user has specified the number of clusters, the algorithm uses an iterative process which 

groups spike features based on the minimum Euclidean distance from each data element to the 

cluster centroids. The aim is to minimise the total variance within each cluster. The results of k-means 

clustering can be seen in Fig 12(a) where spikes have been grouped into three clusters based on the 

scores of the first three principle components. 

5.2 Bayesian Clustering 

The powerful statistical method of Bayesian analysis can be extended to the clustering problem. In 

this case, each cluster is modelled with a multivariate Gaussian, centred on the cluster [9]. Clustering 

is done by calculating the probability that a data point belongs to each of the clusters and this is 

achieved by using Bayes’ Theorem:  

( ) ( ) ( )
( ) ( )1

θ
θ

θ

k k k
k :K

k k k
k

p x | c , p c
p c | x,

p x | c , p c
=
∑

 Equation 2 
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where x  is the data and kc  is a particular class described by its parameters { }θ µ Σk k k,= ; µ k  and Σk  

are the mean and covariance matrix for the class respectively. The posterior ( )1θk :Kp c | x,  is the 

conditional probability of each of the clusters, given the data and the set of parameters for all clusters. 

The likelihood ( )θk kp x | c ,  is the conditional probability of the data given a particular class, while the 

prior  ( )kp c  is the probability of the kth
 class, which corresponds to the relative firing frequencies of 

spikes between classes [9]. The evidence ( ) ( )θk k k
k

p x | c , p c∑  is the probability of the data, found by 

marginalising the likelihood over all classes. Class parameters are determined by maximising the 

likelihood of the data: 

( ) ( )1
1

θ θ
N

i k :K
i

L p x | c ,
=

= ∏  Equation 3 

This clustering method uses probability to define cluster boundaries, hence allowing us to quantify 

the certainty of the classification. The AutoClass package [16] implements the above algorithm for 

unsupervised clustering tasks and is capable of choosing the number of classes automatically, which is 

not possible with the k-means clustering algorithm.  

5.4 Comparison of Spike Feature Clustering Methods 

The main challenge of any clustering algorithm lies in choosing the number of clusters. The k-means 

clustering algorithm requires the user to specify the number of clusters. This is a huge disadvantage 

as the spike sorting algorithm requires supervision, thus preventing us from implementing it online. 

At the same time, the number of clusters chosen by the user affects the outcome of the clustering 

process greatly. A poor choice of cluster numbers may lead to incorrect spike clusters. By using the 

minimum Euclidean distance as the basic criteria for clustering, the algorithm ignores the distribution 

of data within the cluster. This results in the failure to recognise overlapping clusters and clusters 

whose shapes differ from a spherical distribution [9]. In addition, omission of outliers has to be 

carried out manually as the k-means clustering assumes that all data points belong to a cluster. 

Despite these drawbacks, this algorithm is easy to implement and has low computational complexity. 

Bayesian clustering is superior to k-means clustering as it is able to choose the number of clusters 

automatically. It is also able to recognise overlapping clusters and can omit outliers automatically by 

assigning a large background class with low cluster weight [9]. However, this clustering method is 

difficult to implement and can be computationally costly when dealing with large amounts of  

data [13]. In order to ensure the efficiency of our spike sorting algorithm, lengthy computation 

periods may be avoided by running the spike sorting algorithm on shorter segments of signal 

recordings at the expense of reduced data size.  
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5.5 Algorithm Implementation and Preliminary Results 

Currently, we have implemented a k-means clustering algorithm for offline spike sorting as it is easy 

to implement on MATLAB. Actual recordings made on our system have yet to be carried out, thus we 

are unable to assess the performance of this simple clustering algorithm. However, as we move from 

offline spike sorting to online spike sorting, we must implement a clustering algorithm which can 

automatically choose clusters and remove outliers without supervision. As part of future work, we 

aim to implement the AutoClass algorithm in MATLAB for the purpose of spike feature clustering. 

Another round of assessment will then be carried out to determine the amount of computational 

time required for AutoClass to run on MATLAB as ANSI C tends to provide a more efficient 

computation platform. The results of the implemented k-means clustering algorithm are illustrated in 

Fig 6, 10(b) and 12(a). 

6. Testing and Validation 

In order to assess the validity of our spike sorting algorithm, we plan to develop a testing platform in 

MATLAB which can be used to simulate spikes of a neural network. The platform should allow the 

user to input n number of neurons and to specify each neuron’s location within the MEA. Once these 

parameters have been specified, the testing platform will generate n number of spikes with different 

spike shapes, each allocated to n neurons.  

The user can then choose the desired stimulation pattern. Parameters for stimulation include 

stimulus time, duration, frequency and location. The testing platform will use these input parameters 

to generate spike waveforms for each stimulated neuron across all channels using the generated 

spike shapes. We intend to model the spike amplitude and phase delay as a function of the distance 

between the excited neuron and recording electrode. Two or more spiking neurons which are 

simultaneously recorded by a single electrode will result in spike overlap.  

The user may also include neural interactions between neuron pairs with the specification of 

interaction strength. Based on the strength of interaction, the platform will use probabilistic methods 

to determine if the depolarising wave travelling along the axon of a stimulated neuron will result in 

the eliciting an action potential in another neuron.  

What we will obtain from the platform is a set of simulated waveform observations across all 

channels of the MEA. We can run our spike sorting algorithm on the set of test data generated by our 

platform. The estimated locations of the detected neurons, spike times and spike classes are then 

compared to that generated by the simulator. Errors which result from this comparison of 

spatiotemporal information can then be assessed and our spike sorting algorithm can be validated.  
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7. Project Gantt Chart 

Week  1 2 3 4 5 6 7 8 9 10 11 

6/10/08 13/10/08 20/10/08 27/10/08 3/11/08 10/11/08 17/11/08 24/11/08 1/12/08 8/12/08 15/12/08 

to to to to to to to to to to to Date 

10/10/08 17/10/08 24/10/08 31/10/08 7/11/08 14/11/08 21/11/08 28/11/08 5/12/08 12/12/08 19/12/08 

 Introduction to Projects and Choosing 3
rd

 Year MEng Group Projects 

     Project Briefing, Background Reading on Project 

       Allocation of Roles, Drafting of Project Plan, Background Reading on Spike Sorting 

         Lab Induction, Spike Sorting Plan 

             Test and Understand Quiroga’s Spike Sorting GUI with Test Data and Raw Data 

                   Understand and Implement Spike Detection in MATLAB 

Understand and Implement PCA in MATLAB                  

Understand and Implement k-means Clustering in MATLAB               

Implement Single Channel Spike Sorting in MATLAB GUI          

Understand the Concepts of ICA      

P
ro

je
ct

 T
a

sk
 D

e
sc

ri
p

ti
o

n
 

(A
u

tu
m

n
 T

e
rm

) 

Review of Development of Spike Sorting Algorithm and Preparation of Interim Report  

Week  1 2 3 4 5 6 7 8 9 10 11 

12/1/09 19/1/09 26/1/09 2/2/09 9/2/09 16/2/09 23/2/09 2/3/09 9/3/09 16/3/09 23/3/09 

to to to to to to to To to to to Date 

16/1/09 23/1/09 30/1/09 6/2/09 13/2/09 20/2/09 27/2/09 6/3/09 13/3/09 20/3/09 27/3/09 

 Implement PCA with Feature Analysis for Multiple Channel Comparison in MATLAB 

       Implement Automatic Clustering Algorithm in MATLAB 

             Develop Spike Generator for Testing Platform in MATLAB 

                 Develop Signal Recording Generator for Testing Platform in MATLAB  

Validate and Test Spike Sorting with PCA & Feature Analysis                       

Assess Errors and Update Spike Sorting Algorithm                  

Apply Spike Sorting Algorithm for Offline Raw Data                

Upgrade Algorithm for Online Spike Sorting          

Perform Online Spike Sorting on Raw Data        P
ro

je
ct

 T
a

sk
 D

e
sc

ri
p

ti
o

n
 

(S
p
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Review of Implementation of Spike Sorting Algorithm, Preparation of Final Report   

   

Legend:  Completed  To be Completed  
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Appendix A: A Mathematical Description of PCA 

The aim of PCA is to compute an ordered set of orthogonal basis vectors which can be linearly 

combined to describe each detected spike fully. To find the set of ordered orthogonal basis vectors or 

principle components from a set of detected and aligned spikes, we have to re-represent the original 

data set as follows: 

PX = Y  Equation A1 

where P  is the set of ordered principle components, X is the set of detected spikes and Y  is a re-

representation of this data set. We then optimise Y  by maximising its variance and minimising its 

redundancy [tut] by diagonalising its covariance matrix YC : 

( )

1

1
1

1

T

T T

n -

n -

YC = YY

= P XX P
 Equation A2 

It is now evident from Equation 4 that in order to diagonalise YC , matrix P  is chosen to be transpose 

of the eigenvectors of TXX . Hence, the principle components are obtained as a set of eigenvectors of 

the covariance matrix of X . The scale factor for each principle component can then be determined as 

follows: 

( ) ( )i i
t

s c t x t=∑  Equation A3 

where ( )x t is the detected spike, and ( )ic t is the i
th

 principle component. 
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Appendix B: A Mathematical Description of ICA 

The goal of ICA is to recover the original spike trains of individual neurons from a mixture of signals 

detected by electrodes on the MEA. Each recorded signal mixture can be expressed as a linear 

combination of original independent signals, and the system of n recorded mixtures is described in 

the following equation:  

X = AS  Equation B1 

where each row of X is a recorded signal mixture on each electrode on the MEA, each row of S is an 

original spike train of a neuron, and A  is an unknown mixing matrix which generates X  from S . 

Similarly, we are able to define the unmixing process where the unmixing matrix W recovers n 

independent sources from n recorded signal mixtures. 

S = WX  Equation B2 

In order to estimate both the unknown mixing matrix A and independent sources S  from the 

observed mixture X , ICA makes several assumptions. ICA first assumes that n recorded signals are a 

linear mixture of statistically independent components which belong to spike patterns from n neurons. 

If two random variables 1x and 2x are statistically independent, then the joint probability density 

function of both 1x and 2x is the product of each of the probability density functions of the random 

variables: 

( ) ( ) ( )1 2 1 2p x ,x p x p x=  Equation B3 

A measure of statistical independence is described by the Central Limit Theorem, which states that 

the sum of several independent random variables tends towards a Gaussian distribution. Hence, by 

maximising the non-gaussianity of WX , we are able to obtain the independent components of the 

system. There are several ways to measure non-gaussianity, such as kurtosis and negentropy which 

are described in detail by Hyvärinen et al. [15].  

 


