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Desirable characteristics of a chassis/system interface:

from BBa_E0430, [ | = geometric mean, arbitrary units. Host cell from BBa_E0430, [ ] = geometric mean, arbitrary units, Host call

e Perturbations in the environment or the chassis should not be trans-
mitted to the system. Similarly, changes in the function of the system 4

MC4100, device carried on pSB3K3, 100ml baich flask, MC4100, device carried on pSB3K3, 200ul 96-well plate, VictorV
supplemented M8 media, FACScan cytometer [see MIT SBWG plate reader [see MIT SBWG plate reader proiocol].
FACS protocol].
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