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In this paper, it is shown that a static state feedback control law rejects the disturbance and simultaneously performs
input± output decoupling, while ensuring internal stability of the closed loop system, if and only if an integer equality
holds for the global undisturbed system and the row subsystems of the combined plant (where the disturbance is handled
as a control input), namely in terms of their respective total contents (sums of the orders of the multiplicities of its in® nite
and ® nite unstable invariant zeros).

1. Introduction

The aim of this paper is to provide new condensed
structural conditions for the existence of a static state
feedback control law performing input± output decoup-
ling of a disturbed linear time-invariant system, while
ensuring disturbance rejection and closed-loop internal
stability.

The combined problem of disturbance rejection and
input± output decoupling was ® rst discussed in Chang
and Rhodes (1975) and Fabian and Wonham (1975),
more than twenty years ago. More recently, this prob-
lem has been revisited in Paraskevopoulos et al. (1991)
using matrix tools, while the structural approach,
through input± output tools, has been used in Dion et
al. (1994) to obtain easy-to-verify solvability conditions
(corresponding to our Lemma 7). Note also that contri-
butions from Koussiouris and Tzierakis (1984, 1995)
give a complementary algebraic and structural treatment
for this combined problem.

As the main result of the research referenced above,
a nice property has been found. Indeed, when no stabi-
lity constraint is imposed, it has been established that
the combined problem is solvable if and only if each
problem, separately, has a solution. Recently, it has
been established in Martõ Â nez Garcõ Â a and Malabre
(1995 ), using a geometric approach, that this separation
property still holds when the internal stability of the
closed-loop system is required. Thanks to this separa-
tion solvability, necessary and su� cient conditions for
the existence of a solution to the combined problem

were obtained in Malabre and Martõ Â nez Garcõ Â a (1994)
after some fusion of the existing structural results for the
disturbance rejection problem with stability (Malabre
and Martõ Â nez Garcõ Â a 1993) and the row by row de-
coupling problem with stability (Martõ Â nez Garcõ Â a and
Malabre 1994). The structural solution given in
Malabre and Martõ Â nez Garcõ Â a (1994) is expressed in
terms of a couple of integer equalities completely char-
acterized by the parameters of the global undisturbed
system and the row subsystems of the combined plant
(where the disturbance is handled as a control input),
namely in terms of their respective in® nite and unstable
contents (sums of the orders of the multiplicities of these
singularities). In the present paper we go further: we
reduce the two integer equalities to only one, namely in
terms of the total content (sum of the in® nite and
unstable contents) of the undisturbed system and the
total content of the row subsystems of the combined
plant. To do this, we ® rst obtain a new solution for
the disturbance rejection problem with stability and
for the row by row decoupling with stability (these
new solutions are expressed in terms of total contents
and not in terms of both in® nite and unstable contents,
as in Malabre and Martõ Â nez Garcõ Â a (1993) and Martõ Â nez
Garcõ Â a and Malabre (1994). The separation property
mentioned above is then used to solve the problem.

For the sake of brevity, we shall only consider here
the case when the disturbance is available in the control
law. If the disturbance is not available for the control
law, various tricks exist to turn back to the previous case
(see, for instance, Malabre and Martõ Â nez Garcõ Â a 1995).

Even though most of the results given here could be
naturally extended to systems which are just stabilizable,
we have decided to restrict our exposition to systems
which are controllable and right invertible.

First of all, we shall present some basic concepts
(mainly the in® nite, the unstable invariant and the
total contents of a linear time-invariant system) and
the new structural solvability conditions for both the
disturbance rejection problem with stability and the
(regular) row by row decoupling problem with stability.

International Journal of Control ISSN 0020± 7179 print/ISSN 1366± 5820 online # 1999 Taylor & Francis Ltd
http://www.tandf.co.uk/JNLS/con.htm

http://www.taylorandfrancis.com/JNLS/con.htm

INT. J. CONTROL, 1999, VOL. 72, NO. 15, 1392± 1401

Received in ® nal form 13 April 1999. Communicated by
Professor V. Kucera.

{ SeccioÂ n de Control AutomaÂ tico, Departamento de Inge-
nierõ Â a EleÂ ctrica, CINVESTAV-IPN, A.P. 14-740, 07000 MeÂ x-
ico D.F., MeÂ xico

{ Author for correspondence. Institut de Recherche en
CyberneÂ tique de Nantes UMR CNRS 6597, B.P. 92101, F-
44321 Nantes Cedex 03, France. e-mail: Michel.Malabre@
ircyn.ec-nantes.fr

} Laboratoire d’Automatique de Grenoble, INPG/UJF/
UMR CNRS 5528, B.P. 46, F-38402 Saint Martin d’Heres,
France.



In the second part of the paper we shall present the
new structural solution for the combined problem, using
for this the separation property mentioned above and
the new structural solutions of both disturbance rejec-
tion and decoupling. The structural solution amounts
simply to comparing a couple of positive integers,
namely the total content (the sum of the in® nite and
® nite unstable invariant contents) of the undisturbed
system and the total sum of the total contents of the
row subsystems of the combined plant. A detailed ex-
ample is then included to illustrate our result.

2. Basic concepts

First of all we shall introduce some standard nota-
tion.

The ith row of a matrix C is denoted by ci. The
identity map on an n-dimensional space is denoted by
In. the ® eld of complex numbers is denoted by C . The
open left-half complex plane is denoted by C ¡ and the
Laplace variable is denoted by s.

The normal rank of a matrix M, i.e. the rank of M as
a matrix with entries in the ring of polynomials (or in the
® eld of rational functions), in s with constant coe� -
cients, is denoted normal rank ‰ MŠ . We shall only
write rank‰ MŠ if all the entries of M are taken in the
® eld of complex numbers.

Given the linear time-invariant system … A; B; C†

described by

_x… t† ˆ Ax… t† ‡ Bu… t† ; t 0

y… t† ˆ Cx… t† ; t 0

9

=

;

… 1†

where x… t† is the n-dimensional state, u… t† is the m-
dimensional control input and y… t† is the p-dimensional
output … A : X ! X ; B : U ! X , and C : X ! Y are lin-
ear maps represented in particular bases by real constant
matrices), we have the following de® nitions.

2.1. Structure at in® nity
From an algebraic point of view, the structure at

in® nity of any linear system … A; B; C† described by (1)
or equivalently by its proper … p m† transfer function
matrix

T … s† :ˆ C… sIn ¡ A†
¡ 1B

is described by the multiplicity orders of its zeros at in® -
nity, since such systems have no poles at in® nity (see, for
instance, Vardulakis 1991). This structure can be derived
from the so-called Smith± McMillan form at in® nity of
T … s† , say 1 … s† , which is a canonical form under the
following biproper transformation group

T … s† ! B1… s† T … s† B2… s†

where the Bi… s† ’s are proper rational matrices, which are
invertible and with proper inverse. Indeed

1 … s† ˆ

s¡ n1

s¡ n2

. .
.

s¡ nr

2

6

6

6

6

4

3

7

7

7

7

5

0r … m¡ r†

0… p¡ r† r 0… p¡ r† … m¡ r†

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

where the non-increasing list of positive integers
f n1; n2; . . . ; nrg is the list of the multiplicity orders of
the zeros at in® nity of the system … A; B; C† , with
r :ˆ normal rank ‰ T … s† Š . From a geometric point of
view, various equivalent de® nitions have been given
for this structure, see for instance Commault and Dion
(1981) for the original one and Malabre (1982) for other
geometric characterizations.

2.2. Finite invariant zeros
The system matrix of … A; B; C† (see Rosenbrock

1972, Vardulakis 1991) is the polynomial matrix
SM… A;B;C† … s† de® ned as

SM… A;B;C† … s† :ˆ
sIn ¡ A B

¡ C 0p m

" #

The invariant factors not equal to one of SM… A;B;C† … s† are
called the non-trivial invariant polynomials of … A; B; C†

and their roots are called the ® nite invariant zeros of
… A; B; C† . Clearly, z 2 C is a ® nite invariant zero of
… A; B; C† if and only if

rank ‰ SM… A;B;C† … z† < normal rank ‰ SM… A;B;C† … s† Š

For a geometric characterization of the ® nite invariant
zeros see for instance Wonham (1985) and Basile and
Marro (1992).

Note that if … A; B; C† is a minimal state description,
i.e. … A; B† controllable and … C; A† observable, the ® nite
invariant zeros of system … A; B; C† coincide with the so-
called transmission zeros of its transfer function matrix
T … s† . Recall that z 2 C is a transmission zero of T … s† if
and only if z is a root of a numerator of the Smith±
McMillan form of T … s† (see for instance Vardulakis
1991).

2.3. The contents
The content at in® nity of … A; B; C† , noted as

C1 … A; B; C† , is the total sum of the orders of its zeros
at in® nity (see for instance, Verghese (1978) for the orig-
inal de® nition and Malabre and Martõ Â nez Garcõ Â a (1993)
and Martõ Â nez Garcõ Â a and Malabre (1994) for some geo-
metric complements).

The unstable (invariant ) content, noted as
C‡

… A; B; C† , is the total sum of the multiplicity orders
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of its unstable invariant zeros (see for instance Malabre
and Martõ Â nez Garcõ Â a (1993) and Martõ Â nez Garcõ Â a and
Malabre (1994) for some geometric complements).

The total content, noted as C‡
1 … A; B; C† , is the sum

of C1 … A; B; C† and C‡
… A; B; C† .

Note that C1 … A; B; C† , C‡
… A; B; C† and

C‡
1 … A; B; C† are positive integers.

3. Problems statement

3.1. Disturbance rejection
Let us consider the disturbed time-invariant system

… A; B; C; E† described by

_x… t† ˆ Ax… t† ‡ Bu… t† ‡ Ed … t† t 0

y… t† ˆ Cx… t† ; t 0

)

… 2†

where d… t† is a q-dimensional disturbance, and the map
E is such that E : D ! X . When d… t† is considered as a
®̀ ctitious’ control input, and not as a disturbance, we
shall denote … A; ‰ B EŠ ; C† the resulting combined system.

The disturbance rejection problem (DRP) is then
de® ned as follows:

`Does there exist a control law u… t† ˆ Fx… t† ‡

Hd… t† , t 0, where F : X ! U and G : D ! U ,
such that the output y… s† be independent on d… s†

in (2)?’ Or equivalently

`Do there exist maps F : X ! U and H : D ! U

such that

C… sIn ¡ … A ‡ BF† †
¡ 1

… BH ‡ E† 0?’ … 3†

When we add the constraint ¼… A ‡ BF† 2 C ¡ to
DRP, where ¼… A ‡ BF† denotes the spectrum of
A ‡ BF, we have the so called disturbance rejection prob-
lem with stability (DRPS).

Remark 1: An obvious necessary condition for
¼… A ‡ BF† 2 C ¡ to hold is that … A; B† must be a
stabilizable pair.

3.2. Regular decoupling
Let the controllable system … A; B; C† be given.

Assuming that the number of inputs is greater than or
equal to the number of outputs (i.e. m p), the row by
row decoupling problem via regular static state feedback
(DP) is then de® ned as

`Do there exist maps F : X ! U and G : U ! U ,
with G regular (invertible), such that

C… sIn ¡ … A ‡ BF† †
¡ 1BG ‰ diag f ±1… s† ; . . . ; ±p… s† g j 0Š

where diag stands for diagonal matrix and each
±i… s† is a strictly proper (non-zero) rational transfer

function matrix, with vi … s† as its input and yi… s† as
its output?’

If such F and G, regular, exist, then we shall say that
… A; B; C† is a regularly row by row decouplable system.

When we add the constraint ¼ … A ‡ BF† 2 C ¡ to DP
we have the so-called (regular) row by row decoupling
problem with stability (DPS).

Remark 2: An obvious necessary condition for
¼… A ‡ BF† 2 C ¡ to hold is that … A; B† must be a
stabilizable pair. In fact, a usual assumption within the
DP is that … A; B† is controllable. Some geometric re-
sults (as in Martõ Â nez Garcõ Â a and Malabre 1994, 1995
for instance) explicitly use this assumption. Note that
the results presented there obviously remain true when
… A; B† is just stabilizable. However, for sake of consis-
tency, we shall assume from now that … A; B† is con-
trollable. Right invertibility of … A; B; C† is also a well
known necessary solvability condition for DP.

3.3. Simultaneous disturbance rejection and regular
decoupling

The simultaneous disturbance rejection and (regular)
row by row decoupling problem (DRDP) is de® ned as

`Given the system … A; B; C; E† , ® nd conditions for
the existence of a static state feedback control law
u… t† ˆ Fx… t† ‡ Gv… t† ‡ Hd… t† , t 0, with the con-
straint G regular, such that

C… sIn ¡ … A ‡ BF† †
¡ 1

‰ BGj BH ‡ EŠ

ˆ ‰ diag f "1… s† ; "2… s† ; . . . ; "p… s† g j 0j 0Š

where " i… s† , for all i 2 f 1; 2; . . . ; pg , are proper (non-
zero) rational transfer functions.’

When we add the constraint ¼ … A ‡ BF† 2 C ¡ to
DRDP we have the so-called simultaneous disturbance
rejection and (regular) row by row decoupling problem
with stability (DRDPS).

4. Main results

Let us now denote T ‰ B E Š … s† and T ‰BŠ … s† the trans-
fer function matrices of the combined plant
… A; ‰ B EŠ ; C† and the undisturbed system … A; B; C† , re-
spectively, i.e. T ‰ B E Š … s† :ˆ ‰ T ‰BŠ … s† j C… sIn ¡ A†

¡ 1EŠ and
T ‰BŠ … s† :ˆ C… sIn ¡ A†

¡ 1B.

4.1. Structural solution of DRP and DRPS

4.1.1. Structural solution of DRP

Lemma 1 (Theorem 4, Malabre and Martõ Â nez Garcõ Â a
1993) : Given the disturbed system … A; B; C; E† , the dis-
turbance rejection problem is solvable if and only if
normal rank ‰ T ‰BŠ … s† Š ˆ normal rank ‰ T ‰ B E Š … s† Š and
C1 … A; B; C† ˆ C1 … A; ‰ B EŠ ; C† .

1394 J. C. Martõ Ânez-Garcõ Â a et al.



We can now recall the structural solution of DRPS,
which has been obtained in Malabre and Martõ Â nez
Garcõ Â a (1993) through the extension of the results of
Lemma 1 to the present stable case.

Lemma 2 (Corollary 1, Malabre and Martõ Â nez Garcõ Â a
1993) : Given a disturbed system … A; B; C; E† , under the
assumption … A; B† controllable, the disturbance rejection
problem with stability is solvable if and only if the undis-
turbed system … A; B; C† and the combined plant
… A; ‰ B EŠ ; C† have the same normal rank, the same in® -
nite content and the same unstable (invariant) content,
i.e.:

(a) normal rank ‰ T ‰ BŠ … s† Š ˆ normal rank ‰ TB E Š … s†

(b) C1 … A; B; C† ˆ C1 … A; ‰ B EŠ ; C†

(c) C‡
… A; B; C† ˆ C‡

… A; ‰ B EŠ ; C† .

In fact, if (a) in Lemma 2 holds, we can further reduce
the integer equalities (b) and (c) to only one, namely in
terms of the total contents of both the undisturbed
system … A; B; E† and the combined plant … A; ‰ B EŠ C† .
In order to do this we shall need the following proper-
ties.

Property 1: For a disturbed system … A; B; C; E† under
the assumption normal rank ‰ T ‰ BŠ … s† Š ˆ normal rank
‰ T ‰ B E Š … s† Š it is always true that

C1 … A; B; C† C1 … A; ‰ B EŠ ; C†

Proof: Since normal rank ‰ T ‰ BŠ … s† Š ˆ normal rank
‰ T ‰ B E Š … s† Š both the undisturbed … A; B; C† and the com-
bined plant … A; ‰ B EŠ ; C† have the same number of
zeros at in® nity. On the other hand, the presence of E
cannot increase the multiplicity orders of the zeros at
in® nity. Thus, the result follows immediately. &

As far as the unstable content is concerned, we have
similarly, the following property.

Property 2: For a disturbed system … A; B; C; E† , under
the assumption normal rank ‰ T ‰ BŠ … s† Š ˆ normal
rank ‰ T ‰B EŠ … s† Š , it is always true that

C‡
… A; B; C† C‡

… A; ‰ B EŠ ; C†

Proof: Let us ® rst give a sketchy proof. In what fol-
lows we shall consider, without loss of generality, that
the disturbed system is stable (if not, because of con-
trollability of … A; B† , we can always ® nd a static state
feedback which stabilizes the system).

Since normal rank ‰ T ‰ B E Š … s† ˆ normal rank ‰ T ‰ BŠ … s† Š ,
a complex frequency z such that rank ‰ T ‰ B E Š … z† Š is smal-
ler than normal rank ‰ T ‰ B E Š … s† Š is also such that
rank ‰ TB… z† Š is smaller than normal rank ‰ TB… s† Š (if
not, normal rank ‰ TB… s† Š would be equal to
rank ‰ TB… z† Š , which is a contradiction). It then follows

that a ® nite transmission zero of T ‰ B E Š … s† is also a ® nite
transmission zero{ of T ‰BŠ … s† .

Because of stability, the ® nite unstable invariant
zeros and the ® nite unstable transmission zeros of the
stable system … A; ‰ B EŠ ; C† coincide, since no unstable
pole-zero cancellations are possible in T ‰ B E Š … s† , It then
follows that all the ® nite unstable transmission zeros of
the combined system … A; ‰ B EŠ ; C† are included in the
set of the ® nite unstable transmission zeros of the undis-
turbed system … A; B; C† , which coincide with the set of
its ® nite unstable invariant zeros (because of stability).
The previous arguments are quite simple but cannot
directly apply to the case of multiple zeros. For that
more general situation, classical results from completion
problems actually give a complete answer. Indeed, it has
been shown in Thompson (1979, Theorem 2) and SaÂ
(1979) that in a principal ideal ring, a matrix P of nor-
mal rank k and invariant factors h1… P† j h2… P† j h3… P† j

j hk … P† (here hi… P† j hi‡ 1… P† means that the ith invariant
factor hi… P† divides the (i ‡ 1)th factor hi‡ 1… P† † may be
augmented (in the same principal ideal ring), with a
single row to obtain a matrix Q, of normal rank k and
invariant factors h1… Q† j h2… Q† j h3… Q† j j hk … Q† if and
only if

h1… Q† j h1… P† j h2… Q† j h2… P† j hk… Q† j hk… P†

As far as the disturbance rejection problem is con-
cerned, the system matrix of … A; ‰ B EŠ ; C† can be seen as
the augmentation of the system matrix of … A; B; C† with
new columns (originated by the presence of the disturb-
ances). These columns play in this case the role that the
rows, which augment matrix P to obtain matrix Q, play
in the result cited above. Since the rank condition in
Property 2, the result of Thompson (1979, Theorem 2)
and SaÂ (1979) can be directly applied to obtain a com-
plete proof of Property 2. Indeed, from the fact that the
largest invariant polynomial of the system matrix of the
composite system divides the largest invariant poly-
nomial of the system matrix of the undisturbed system
immediately follows that all the zeros of A; ‰ B EŠ ; C†

(unstable or not) are zeros of … A; B; C† . This is a fortiori
true for the unstable ones and consequently
C‡

… A; ‰ B EŠ ; C† C‡
… A; B; C† , which ends the proof.

&

We can now present Theorem 1.

Theorem 1: Given a disturbed system … A; B; C; E† , un-
der the assumption … A; B† controllable, the disturbance
rejection problem with stability is solvable if and only if
both the undisturbed system … A; B; C† and the combined
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plant … A; ‰ B EŠ ; C† have the same normal rank and the
same total content, i.e.

(a) normal rank ‰ T ‰ BŠ … s† Š ˆ normal rank ‰ T ‰ B E Š … s† Š

(b) C‡
1 … A; B; C† ˆ C‡

1 … A; ‰ B EŠ ; C† .

Proof: If (b) and (c) in Lemma 2 hold, then

C‡
1 … A; B; C† ˆ C‡

1 … A; ‰ B EŠ ; C† … 4†

Conversely, suppose that (4) and (a) hold. We then have
from Properties 1 and 2 that C1 … A; B; C† ˆ

C1 … A; ‰ B EŠ ; C† and C‡
… A; B; C† ˆ C‡

… A; ‰ B EŠ ; C† ,
which ends the proof. &

Note that (a) in Theorem 1 always holds if … A; B; C†

is right invertible, since right invertibility of … A; B; C†

implies right invertibility of … A; ‰ B EŠ ; C† . We then
have the following corollary.

Corollary 1: Assuming that … A; B; C† is right invertible
and … A; B† is controllable, the disturbance rejection
problem with stability is solvable if and only if … A; B; C†

and … A; ‰ B EŠ ; C† have the same total content, i.e.
C‡

1 … A; B; C† ˆ C‡
1 … A; ‰ B EŠ ; C† .

4.2. Structural solutions of DP and DPS

4.2.1. Structural solution of DP. The next lemma has
been proved in Martõ Â nez Garcõ Â a and Malabre (1994).
The proof, which is not presented here, uses the fact
that for any right invertible system … A; B; C† , with m
inputs and p outputs, p m, the outputs can always
be numbered in order that n 0

i ni, for all
i 2 f 1; . . . ; pg , where n 0

i denotes the order of the zero
at in® nity of the row-subsystem … A; B; ci† .

Let us recall that we restrict our attention here to
… A; B; C† systems which are right invertible and control-
lable.

Lemma 3 (Dion and Commault 1993) : The row by
row decoupling problem is solvable if and only if
C1 … A; B; C† ˆ

P p
iˆ 1 C1 … A; B; ci† .

Remark 3: The original form of this result has been
given in Descusse and Dion (1982) in terms of an
equality between both sets f nig and f n 0

i g . In fact a
closer look at their geometric proof shows that the
authors indeed establish the result of Lemma 3, which
is an equivalent condition, due to the natural ordering
relation existing between f nig and f n 0

i g and the full
row rank assumption.

4.2.2. Structural solutions of DPS. We can recall the
following structural result, which is given in Martõ Â nez
Garcõ Â a and Malabre (1994)

Lemma 4 (Theorem 6, Martõ Â nez Garcõ Â a and Malabre
(1994) : Assuming … A; B; C† right invertible and … A; B†

controllable, the (regular) row by row decoupling prob-
lem with stability is solvable if and only if

… a† C1 … A; B; C† ˆ

X
p

iˆ 1

C1 … A; B; ci †

… b† C‡
… A; B; C† ˆ

X p

iˆ 1
C‡

… A; B; ci†

In fact, the two solvability conditions in Lemma 4
can be reduced to only one. For this purpose we shall
consider the following properties of a system … A; B; C† .

Property 3: For a system … A; B; C† , supposed to
be right invertible, C1 … A; B; C†

P p
iˆ 1 C1 … A; B; ci†

always holds.

Proof: This a classical result, quite direct from
Verghese (1978) (see for instance Dion et al. 1994). &

Property 4: For any right invertible system
… A; B; C† ; C‡ … A; B; C†

P p
iˆ 1 C‡ … A; B; ci† .

Proof: We again just give a sketchy proof, as for
Property 2. A complete proof has already been pro-
posed in Koussiouris (1984) within an algebraic setting
(see also Icart et al. 1990 for a geometric counterpart).

In what follows we shall consider, without loss of
generality, that … A; B; C† is stable (if not, because of
our assumptions, we can always ® nd a static state feed-
back which stabilizes the system).

Let us denote T i … s† the transfer function of the row
subsystem … A; B; ci† , i.e. T i … s† ˆ ci … sIn ¡ A†

¡ 1B. Then,
the transfer function matrix of … A; B; C† is given by

C… sIn ¡ A†
¡ 1B :ˆ

c1… sIn ¡ A†
¡ 1B

c2… sIn ¡ A†
¡ 1B

..

.

cp… sIn ¡ A†
¡ 1B

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

Since its right invertibility, it is clear that this matrix
has a loss of rank (for a given complex frequency) if one
of its row subsystems is equal to zero. It means that a
® nite transmission zero of a row subsystem … A; B; ci † ,
i 2 f 1; 2; . . . ; pg , is also a ® nite transmission zero of
the global system … A; B; C† .

Because of the impossibility of unstable pole-zero
cancellations to occur in an internally stable system,
the set of the ® nite unstable invariant zeros of the global
system … A; B; C† coincide with the set of its ® nite
unstable transmission zeros (the sample applies for the
row subsystems). As a ® nite transmission zero of a row
subsystem is also a ® nite transmission zero of the global
system, we have that

P p
iˆ 1 C‡

… A; B; ci† C‡
… A; B; C† ,

which ends the proof. &
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We can now present the following synthetic version
of Lemma 4.

Theorem 2: Assuming … A; B; C† right invertible and
… A; B† controllable, the row by row decoupling problem
with stability is solvable if and only if

C‡
1 … A; B; C† ˆ

X p

iˆ 1

C‡
1 … A; B; ci†

Proof: Note that if (a) and (b) in Lemma 4 hold,
then

C‡
1 … A; B; C† :ˆ C1 … A; B; C† ‡ C‡

… A; B; C†

ˆ

X
p

iˆ 1

C1 … A; B; ci † ‡

X
p

iˆ 1

C‡
… A; B; ci†

ˆ :
X n

iˆ 1
C‡

1 … A; B; ci†

Conversely, if … A; B; C† is right invertible, we have
from Properties 3 and 4 that the positive integer equality
C‡

1 … A; B; C† ˆ
P p

iˆ 1 C‡
1 … A; B; Ci† implies C1 … A; B; C† ˆ

P p
iˆ 1 C1 … A; B; ci† and C‡

… A; B; C† ˆ
P p

iˆ 1 C‡
… A; B; ci † :

&

Let us now consider simultaneous disturbance rejec-
tion and decoupling with stability.

4.3. Structural solution of DRDP and DRDPS
First of all let us recall that:

Lemma 5 (Chang and Rhodes 1975) : The simul-
taneous disturbance rejection and (regular) row by row
decoupling problem (DRDP) has a solution if and only
if both the disturbance rejection problem (DRP) and the
regular row by row decoupling problem (DP) are solva-
ble separately.

And for the stable case:

Lemma 6 (Theorem 9, Martõ Â nez Garcõ Â a and Malabre
1995) : The simultaneous disturbance rejection and
(regular) row by row decoupling problem with stability
(DRDPS) has a solution if and only if both the disturb-
ance rejection problem with stability (DRPS) and the
regular row by row decoupling problem with stability
(DPS) are solvable separately.

Lemma 5 has been used in Dion et al. (1994) and
Malabre and Martõ Â nez Garcõ Â a (1994) to obtain the fol-
lowing structural solution of the simultaneous disturb-
ance rejection and (regular) row by row decoupling
problem, when no internal stability of the closed-loop
system is required.

4.3.1. Structural solution of DRDP.

Lemma 7 (Dion et al. 1994, Malabre and Martõ Â nez
Garcõ Â a 1994) : Assuming … A; B; C† right invertible and
… A; B† controllable, the simultaneous disturbance
rejection and (regular) row by row decoupling problem is
solvable if and only if C1 … A; B; C† ˆ

P p
iˆ 1

C1 … A; ‰ B EŠ ; ci † :

Thanks to Lemma 6 and in the light of the new
structural solutions of both the disturbance rejection
(Corollary 1, since the right invertibility of the system
is a necessary condition for decoupling to have a sol-
ution) and the (regular) row by row decoupling prob-
lems with stability (Theorem 2), we can now present our
® nal result.

4.3.2. Structural solution of DRDPS.

Theorem 3: Given the disturbed system … A; B; C; E† ,
under the assumptions … A; B; C† right invertible and
… A; B† controllable, the simultaneous disturbance rejec-
tion and (regular) row by row decoupling problem with
stability is solvable if and only if

C‡
1 … A; B; C† ˆ

X
p

iˆ 1
C‡

1 … A; ‰ B EŠ ; ci † … 5†

Proof: From Lemma 6, Corollary 1 and Theorem 2,
DRDPS is solvable if and only if

C‡
1 … A; B; C† ˆ C‡

1 … A; ‰ B EŠ ; C†

C‡
1 … A; B; C† ˆ

X
p

iˆ 1
C‡

1 … A; B; ci†

9

>
>
=

>
>
;

… 6†

We have to prove that (5) and (6) are equivalent. For
this purpose, note that Properties 1 and 2 imply, under
our assumptions (right invertibility of … A; B; C† implies
normal rank ‰ T ‰ BŠ … s† Š ˆ normal rank ‰ T ‰B E Š … s† Š † , that
the positive integer inequalities

C‡
1 … A; B; C† C‡

1 … A; ‰ B EŠ ; C†

X p

iˆ 1

C‡
1 … A; B; ci †

X p

iˆ 1

C‡
1 … A; ‰ B EŠ ; ci†

9

>
>
=

>
>
;

… 7†

always hold.
On the other hand, right invertibility of system

… A; B; C† and controllability of … A; B† imply, from
Properties 3 and 4, that the following inequalities always
hold

C‡
1 … A; B; C†

X p

iˆ 1
C‡

1 … A; B; ci†

C‡
1 … A; ‰ B EŠ ; C†

X p

i¡ 1
C‡

1 … A; ‰ B EŠ ; ci †

9

>
>
>
>
>
=

>
>
>
>
>
;

… 8†
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Thus

C‡
1 … A; B; C† C‡

1 … A; ‰ B EŠ ; C†

X
p

iˆ 1

C‡
1 … A; ‰ B EŠ ; ci† … 9†

and

C‡
1 … A; B; C†

X
p

iˆ 1

C‡
1 … A; B; ci†

X
p

iˆ 1

C‡
1 … A; ‰ B EŠ ; ci †

… 10†

It is then clear that if (5) holds, then from (9) and (10) we
have that

C‡
1 … A; B; C† ˆ C‡

1 … A; ‰ B EŠ ; C† ˆ

X
p

iˆ 1

C‡
1 … A; B; ci †

For the reverse part, suppose now that there exists a
control law u… t† ˆ Fx… t† ‡ Gv… t† ‡ Hd… t† , t 0, such
that

C… sIn ¡ AF †
¡ 1

‰ BGj BH ‡ EŠ ˆ ‰ diag f ±1… s† ; . . . ; ±p… s† g j 0j 0Š

and

¼ … AF † C ¡

where AF :ˆ A ‡ BF and with ±i … s† standing for a
strictly proper transfer function matrix. Since u… t† ˆ

Fx… t† ‡ Gv… t† ‡ Hd… t† , t 0, rejects the disturbance
and performs input± ouput decoupling with internal sta-
bility of the closed-loop system, it means that
C‡

1 … A; B; C† ˆ C‡
1 … A; ‰ B EŠ ; C† and C‡

1 … A; B; C† ˆ
P p

iˆ 1 C‡
1 … A; B; ci † . Then de® ning

Fc :ˆ
F

0

" #

Gc :ˆ
G H

0 Iq

2

4

3

5 AFc :ˆ A ‡ ‰ B EŠ Fc

we have that

C… sIn ¡ AFc†
¡ 1

‰ B EŠ Gc ˆ C… sIn ¡ AF †
¡ 1

‰ BGj BH ‡ EŠ

ˆ ‰ diag f ±1… s† ; . . . ; ±p… s† g j 0j 0Š

and ¼… AFc† ˆ ¼… AF † C ¡ . This means that … A; ‰ B EŠ ; C†

is also regularly row by row decouplable with stability.
Consequently C‡

1 … A; ‰ B EŠ ; C† ˆ
P p

iˆ 1 C‡
1 … A; ‰ B EŠ ; ci † ,

which ends the proof. &

5. An illustrative example

Let us consider the stable system … A; B; C; E† with

A ˆ

¡ 1 1 0 0

0 ¡ 1 0 0

0 0 ¡ 1 1

0 0 0 ¡ 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; B ˆ

0 0

1 0

0 0

0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

C ˆ
¡ 5 1 0 0

0 1 1 1

" #

; E ˆ

¬

1

­

®

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Has the simultaneous disturbance rejection and (regular)
row by row decoupling problem a stable solution for these
data?

First of all, note that … A; B† is a controllable pair (in
fact the realization … A; B; C† is minimal). Now, because
of the stability of the open-loop system, we can obtain
directly all the structural information that we need, in
order to conclude about the solvability of our current
problem, from an input± output approach. In particular,
the information concerning the unstable ® nite invariant
zeros is present in the transfer function matrices related
with the system, since no unstable pole/zero cancella-
tions are possible. The unstable ® nite invariant zeros
coincide with the unstable ® nite transmission zeros.

We proceed then to the obtention of the transfer
functions matrices TB … s† :ˆ C… sI4 ¡ A†

¡ 1B and
TE … s† :ˆ C… sI4 ¡ A†

¡ 1E

TB… s† ˆ NB … s†

1
… s ‡ 1†

2 0

0
1

… s ‡ 1†
2

2

6

6

6

6

4

3

7

7

7

7

5

and

TE … s† ˆ NE … s†
1

… s ‡ 1†
2

where

NB… s† ˆ

s ¡ 4 0

s ‡ 1 s ‡ 2

" #

and

NE … s† ˆ

s… 1 ¡ 5¬† ¡ … 4 ‡ 5¬†

s… 1 ‡ ­ ‡ ® † ‡ … 1 ‡ ­ ‡ 2® †

" #

5.1. First case: ¬ ˆ 0
Let T ‰ B E Š … s† be the transfer function matrix of the

combined system … A; ‰ B EŠ ; C† , i.e.

T ‰ B E Š … s† ˆ ‰ TB… s† TE … s† Š ˆ
1

… s ‡ 1†
2 ‰ NB … s† NE … s† Š
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In order to obtain the structural information that we
need to conclude about the solvability of our current
problem, we proceed as follows.

5.1.1. Unstable ® nite invariant zero structure. The
transmission zeros of … A; B; C† are the roots of the
invariant polynomials of NB… s† , which are f 1; … s ¡ 4†

… s ‡ 2† g . It means that s ˆ 4 and s ˆ ¡ 2 are the trans-
mission zeros of … A; B; C† and consequently s ˆ 4 is
the only unstable ® nite invariant zero that … A; B; C†

has.
As far as the combined system … A; ‰ B EŠ ; C† is con-

cerned, the only unstable ® nite invariant zero which is
present is also s ˆ 4, for any ® and for any ­ . Note that
s ˆ ¡ 2 is also a transmission zero of … A; ‰ B EŠ ; C† ; if
® ˆ 1 and ­ ˆ 0.

Now, for the row subsystems of … A; B; C† and
… A; ‰ B EŠ ; C† we have the following situation.

Both … A; B; c1† and … A; ‰ B EŠ ; c1† have s ˆ 4 as their
only unstable ® nite invariant zero. On the other hand,
no unstable ® nite invariant zeros are present in … A; B; c2†

and … A; ‰ B EŠ ; c2† .

5.1.2. Structure of zeros at in® nity. Since

CB ˆ
1 0

1 1

" #

is invertible, it immediately follows that the global struc-
ture at in® nity of … A; B; C† is f 1; 1g as well as the row by
row structure at in® nity, i.e. C1 … A; B; C† ˆ 2,
C1 … A; B; c1† ˆ 1 and C1 … A; B; c2† :ˆ 1. It is then also
obvious that C1 … A; ‰ B EŠ ; C† ˆ 2, C1 … A; ‰ B EŠ ; c1† ˆ 1
and C1 … A; ‰ B EŠ ; c2† :ˆ 1.

5.1.3. Total contents. Consequently, the total content
C‡

1 … A; B; C† of … A; B; C† is given by

C‡
1 … A; B; C† ˆ C1 … A; B; C† ‡ C‡

… A; B; C† ˆ 2 ‡ 1 ˆ 3

and as far as the total sum of the total contents of the
row subsystems

P 2
iˆ 1 C‡

1 … A; ‰ B EŠ ; ci † of … A; ‰ B EŠ ; C† is
concerned

X 2

iˆ 1
C‡

1 … A; ‰ B EŠ ; ci† ˆ

X 2

iˆ 1

… C1 … A; ‰ B EŠ ; ci†

‡ C‡
… A; ‰ B E† ; ci † † ˆ 2 ‡ 1 ˆ 3:

Then C‡
1 … A; B; C† ˆ 3 ˆ

P 2
iˆ 1 C‡

1 … A; ‰ B EŠ ; ci† , and
because of Theorem 3, there exists at least one control
law u… t† ˆ Fx… t† ‡ Gv… t† ‡ Hd… t† , t 0, which simul-
taneously rejects the disturbance and decouples the
system under the constraint of internal stability.

As a particular static state feedback control law
which rejects the disturbance and simultaneously de-
couples the system (while ensuring internal stability of
the closed-loop system), for our current example (for the
case ¬ ˆ 0), we have

u… t† ˆ Fx… t† ‡ Hd… t† ‡ Gv… t† ; t 0

with

F ˆ

0 0 0 0

0 0 0 ¡ 1

" #

; H ˆ

¡ 1

¡ ­ ¡ ®

" #

G ˆ

1 0

¡ 1 1

" #

Indeed

C… sI4 ¡ … A ‡ BF† †
¡ 1

‰ BG j BH ‡ EŠ

ˆ

s ¡ 4
… s ‡ 1†

2 0 0

0
1

s ‡ 1
0

2

6

6

4

3

7

7

5

5.2. Second case: ¬ 6ˆ 0
In this case, the information concerning the total

content of … A; B; C† is not modi® ed, i.e. C‡

1

… A; B; C† ˆ 3.
Now, we can easily check that

C‡
1 … A; ‰ B EŠ ; c1† ˆ 1

(we have a zero at in® nity of order one, but we have no
unstable ® nite invariant zero) and

C‡
1 … A; ‰ B EŠ ; c2† ˆ 1

Consequently:

C‡
1 … A; B; C† ˆ 3 6ˆ 2 ˆ

X 2

iˆ 1
C‡

1 … A; ‰ B EŠ ; ci †

which implies that the simultaneous disturbance rejec-
tion and (regular) row by row decoupling problem has
no stable solution when ¬ 6ˆ 0. Let us now quickly show
where this unsolvability comes from. We can easily
check that

C‡
1 … A; B; C† ˆ 3 ˆ

X 2

iˆ 1

C‡
1 … A; B; ci †

which is a necessary and su� cient condition for the
(regular) row by row decoupling problem to have a
stable solution (see Theorem 2), but

C‡
1 … A; B; C† ˆ 3 6ˆ 2 ˆ C‡

1 … A; ‰ B EŠ ; C† … 11†

Indeed, the invariant polynomials of ‰ NB … s† NE … s† Š are
now the elements of the set f 1; 1g and consequently
… A; ‰ B EŠ ; C† has no unstable ® nite invariant zero. On
the other hand, the structure at in® nity of … A; ‰ B EŠ ; C†

is not a� ected by the choice of ¬ , thus
C‡

1 … A; ‰ B EŠ ; C† ˆ 2:

Because of Theorem 1, equation (11) implies that the
disturbance rejection problem has no stable solution for
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¬ 6ˆ 0. Thus, we cannot solve the simultaneous disturb-
ance rejection and (regular) row by row decoupling
problem with stability (see Lemma 5).

Since C1 … A; B; C† ˆ 2 ˆ C1 … A; ‰ B EŠ ; C† , we can
always ® nd a static state feedback control law which
rejects the disturbance, but because of C‡

… A; B; C† ˆ

1 6ˆ 0 ˆ C‡
… A; ‰ B EŠ ; C† we cannot ® nd a stable sol-

ution. This pathology (due to ¬ 6ˆ 0) can be illustrated
as follows.

Let u… t† ˆ ¿x… t† ‡ ¡d… t† , t 0, denote any solution
to the DRP. Then the precompensator K… s† which is
input± output equivalent to … ¿; ¡ † , i.e. such that

K… s† ˆ ‰ I2 ¡ ¿… sI4 ¡ A†
¡ 1BŠ

¡ 1
… G ‡ ¿ … sI4 ¡ A†

¡ 1E†

satis® es TB… s† K… s† ˆ ¡ TE … s† .
For our simple example, such a solution K… s† is

unique

K… s† ˆ ‰ TB… s† Š
¡ 1TE… s†

ˆ

s… 1 ¡ 5¬† ¡ … 4 ‡ 5¬†

s ¡ 4

… s ‡ 1† ‰ s… 1 ¡ 5¬† ¡ … 4 ‡ 5¬† Š

… s ‡ 2† … s ¡ 4†
‡

s… 1 ‡ ­ ‡ ® † ‡ … 1 ‡ ­ ‡ 2® †

s ‡ 2

2

6

6

6

4

3

7

7

7

5

Note that K… s† is stable{ only if ¬ ˆ 0, which con® rms
our structural result. &

6. Conclusion

In this paper we have presented necessary and su� -
cient conditions for the solvability of the simultaneous
disturbance rejection and decoupling problem by static
state feedback with stability. The if and only if condition
turns out to be simply the equality of two positive inte-
gers, i.e. the total content of system … A; B; C† and the
sum of the total contents of the row subsystems of
… A; ‰ B EŠ ; C† .

In order to reduce the complexity of solvability
analysis, it is not only of theoretical interest to obtain
as compact as possible solvability conditions, it could be
also of practical interest, see for example the case of
structured systems (Dion et al. 1994) where the sum of
the in® nite zero orders (content at in® nity) is much more
easily available on the associated graph than the whole
in® nite structure. It also must be pointed out that the
structural condition that we presented here is tool-inde-
pendent, which is the main characteristic of the results
obtained by the so-called structural approach.
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