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Multistability is found to be an important recurring theme in synthesis biology. In this article, the multistability
analysis problem is investigated by applying control theory and mathematical tools. Both the modelling and
analysis issues are discussed. Specifically, the genetic regulatory networks (GRNs) with multistability are
modelled as switched systems with interval time-varying delays and parameter uncertainties, where the piecewise-
affine models are used to approximate the inherent non-linearities existing in the GRNs. Then, by using a novel
Lyapunov functional approach and linear matrix inequality (LMI) techniques, a few delay-dependent criteria for
the multistability of such genetic regulatory networks are established in the form of LMIs, which can be readily
verified by using standard numerical software. A three-component network and a genetic toggle switch with
bistability are employed to illustrate the applicability and usefulness of the developed theoretical results.

Keywords: multistability; genetic regulatory networks; linear matrix inequality; switched system; robust stability;

interval time-varying delay

1. Introduction

Pioneering theoretical work on genetic regulatory
networks (GRNs) has anticipated the emergence of
postgenomic research and provided a mathematical
framework for the current description and analysis of
complex regulatory mechanisms (Glass and Kauffman
1973; Savageau 1974). In biochemical networks, the
rates of reaction of substrates, enzymes, factors or
products have attracted considerable attention in
correspondence with changes in concentrations. The
dynamical behaviours of genes, proteins and metabo-
lites can be modelled by a series of non-linear
differential equations (Smolen, Baxter and Byrne
2000; de Jong 2002), in which the detailed understand-
ing of different non-linear behaviours exhibited
by a genetic regulatory network could be explored.
One method to construct the equations is the
Michaelis—Menten model which has been developed
to describe the reaction relationship of metabolites in
non-linear differential equations in terms of their
concentrations (McAdams and Arkin 1998). Another
approach is the S-system, one of whose hallmarks is
that, although it is highly non-linear, its steady states
are characterised by linear equations (see Voit (2000)
and references therein). Recently, piecewise-affine
models have been proposed in Ghosh and Tomlin
(2004) and Batt, Yordanov, Weiss and Belta (2007) to
approximate the non-linearities existing in GRNG.

Therefore, one could not only explain but also predict
the gene functions by means of mathematical models
that can be obtained through dynamics analysis of
many underlying regulation mechanisms.

The genetic regulatory network diagrams that
resemble complex electrical circuits are generated by
the connectivity of genes and proteins. Similar to
electrical circuits, mathematical and computational
tools are utilised in developing circuits and systems
with biotechnological design principles of synthetic
genetic regulatory networks and new kinds of inte-
grated circuits like neurochips learnt from biological
neural networks (Elowitz and Leibler 2000; Hasty,
McMillen and Collins 2002; Yokobayashi, Weiss
and Arnold 2002). Construction of electrical circuits
benefits from a large collection of well-characterised
parts and modules, including resistors, capacitors
and inductors, which can be connected to generate a
complex circuit with useful functions. Since capacitors
and inductors are dynamic components, one can
describe an electrical circuit by differential equations
even when non-linear components are included.
A Dbasic theme for electrical circuits design is the
feedback. The notion of feedback is also a central
recurring theme in genetic regulatory circuits. In fact,
feedback is so prevalent in biological systems that it
can be found at all levels of organisation, from the
molecular and cellular levels, to the organism and
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ecological levels (Wiener 1961). It is impossible to
overstate the importance of feedback as a strategy for
the maintenance and evolution of life. Since feedback is
the central topic in control theory, it is reasonable to
expect that ideas from control theory will lead to new
understanding of the underlying biological processes
(Tomlin 2005). Applying control theory to study
biology is fast becoming an interesting and exciting
idea, although there exist large differences in culture,
approach and the tools used in these two fields.
Similar to other dynamic systems, genetic regula-
tory networks have the stability as their key property.
In Becskei and Serrano (2000), Li, Chen and Aihara
(2006) and Wang, Gao, Cao and Liu (2008), the
stability has been discussed for different genetic regu-
latory networks models. The term ‘stability’ mentioned
here aims at the unique equilibrium point while the
term ‘multistability’ is concerned with the coexistence
of multiple steady states in response to a single set of
external inputs. Multistability, the capacity to achieve
multiple internal states in response to a single set of
external inputs, plays an important role in gene circuit
design in synthetic biological systems, because it
satisfies the minimal requirement for the networks to
possess memory where the state of the networks stores
information about its past. When forced by a transient
stimulus into one state or the other, such a system
remains in that state after the transient stimulus has
been removed. Multistability has certain unique
properties which are not shared by other mechanisms
of integrative control and it almost certainly plays
an essential role in the dynamics of living cells
and organisms (Ferrell and Machleder 1998; Laurent
and Kellershohn 1999; Pomerening, Sontag and
Ferrell 2003). Bistability, the property of having two
stable fixed points, is a special case of multistability.
It is becoming increasingly clear that bistability is an
important recurring theme in cell signalling. Bistability
is of particular relevance to biological systems that
switch between discrete states, generate oscillatory
responses, or ‘remember’ transient stimulus. Mutual
inhibition, which is an alternative to the positive
feedback networks in generating bistability, bears
an analogy with the Reset-Set latch circuit design in
engineering. Co-repressive switches in the well-known
lac operon in the bacteria Escherichia coli have long
been proposed as a common regulatory theme (Monod
and Jacob 1961), and the synthetic toggle switch
(Gardner, Cantor and Collins 2000; Ozbudak,
Thattai, Lim, Shraiman and van Oudenaarden 2004)
serves as a model system in which the multistability
or bistability is the defining character to study such
networks. Applying control theory to investigate
the multistability of genetic networks will be of
great significance in both control engineering and

biological science. Recently, it draws great attention
on the modelling and stability analysis of GRNs
(Wei, Wang, Shu, Fraser and Liu 2007; Wang, Lam,
Wei, Fraser and Liu 2008; Wang, Yang, Ho, Swift,
Tucker and Liu 2008).

Theoretical results obtained for the multistability of
a genetic regulatory network have been scattered in
the literature. The biological system with multistability
and hysteresis has been modelled as monotone
dynamic systems in Angeli and Sontag (2004), where
the rich and elegant theory of monotone dynamical
system has provided an efficient mathematical tool for
analysis (see Angeli and Sontag (2003) and references
therein). Especially, in the biological systems with
bistability, each stable mode of operation is associated
with an appropriate invariant set in the state space
and stability with respect to each set has been studied
in terms of a local notion of input-to-state stability
with respect to compact sets in Chaves, Eissing and
Allgower (2008). A general method for studying
multistability in a large class of biological systems
has been provided in Angeli, Ferrell and Sontag (2004).
Meanwhile, a piecewise power-law approximation has
been proposed to approach bistability in (Savageau
2001; Savageau 2002) where the S-system models have
been applied.

It should be pointed out that, although the multi-
stability of GRNs has received some initial research
attention, there are still many open problems left for
further investigation. For example, the time-delay and
parameter uncertainty issues will need to be considered
in the context of multistability. On the one hand, it has
been recognised that the slow processes of transcrip-
tion, translation and translocation inevitably cause
time delays, which should be taken into account in the
biological systems or artificial genetic networks in
order to have more accurate models. Time delays can
be easily detected in the synthetic toggle switch
(Gardner et al. 2000) shown in Figure 2. On the
other hand, an accurate model can hardly be obtained
when we model a dynamical system from the systems
point of view. In other words, there is always some
error between the mathematical model and the physical
system, which can be represented in the form of
external perturbations, parameter fluctuations and
unstructured dynamics (Zhou, Doyle and Glover
1996). This also applies to the modelling of a genetic
regulatory network, and the analysis results without
taking into account modelling uncertainties may not
be as useful as expected in real-time applications.
Therefore, it is essential and important to investigate
the robust multistability of delayed genetic regulatory
networks with parameter uncertainties. To the best of
the authors’ knowledge, up to now, very little effort
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has been made towards this challenging problem,
which then motivates the present study.

In this article, we are concerned with two research
issues. One is the modelling of time-delayed genetic
regulatory networks with multistability and parameter
uncertainties, and the other is the robust multistability
analysis of a genetic regulatory network with time-
varying delays and parameter uncertainties. The
delayed uncertain genetic regulatory networks are
modelled as switched systems with interval time-
varying delays and parameter uncertainties, which
share the similarity with Reset—Set latch and relay in
electrical engineering. Methods in switched systems are
applied (Branicky 1998; Daafouz, Riedinger and Iung
2002). An important feature of the model proposed
here is that this model can describe a genetic regulatory
network with multiple steady states (multistability)
rather than only two steady states (bistability).
Another feature lies in that this model serves as a
more practical description of the physical system by
introducing time delays and parameter uncertainties.
Additionally, in many practical cases, the delay may
typically exist in an interval (0</h; < d(t) < h»), that is,
the range of delay varies in an interval for which the
lower bound is not restricted to 0. For this purpose, we
decompose the interval time-varying delay d(7) as two
parts: the constant part /#; and the time-varying part
h(?), that is,

d(t) = hy + h(?), (1)

0 <h(t) <hy—hy. (2)

Then, we introduce a novel Lyapunov—Krasovskii
functional by utilising the most updated techniques
for achieving delay dependence and guarantee less
conservatism. A new condition is then proposed for the
multistability of a genetic regulatory network with
time-varying delays and parameter uncertainties, in the
form of linear matrix inequalities (LMIs), which can be
readily verified by using standard numerical software
(such as Matlab) (Boyd, El Ghaoui, Feron and
Balakrishnan 1994). An important feature with the
results to be reported is that, all the stability conditions
are dependent on the upper and lower bounds of the
delays, which is made possible by utilising the up-
to-date techniques to achieve delay dependence and by
proposing a novel Lyapunov functional dependent on
the uncertain parameters to guarantee the robustness
of the genetic regulatory network. A three-component
network and a genetic toggle switch with bistability are
employed to illustrate the applicability and usefulness
of the developed theoretical results.

Notation: The notation
article is standard. The

used throughout the
superscript 7 indicates

10| «— High State
(Stable Fixed Point)
8 H
Separatrix
= 6
2,
4 L
Unstable Low State
2[ Fixed Point (Stable Fixed Point) |
0 _ n n 1
0 2 4 6 8 10

[lacl]

Figure 1. Phase-plane diagram of the toggle switch. Analysis
of a bistable toggle network with equal promoter strengths
driving the expression of lacl and cI proteins. The plots show
the presence of three steady states: two stable steady states
(low lacl, high cI (High State) and high lacl, low cI (Low
State)) and one unstable steady state.

matrix transposition; R” denotes the n-dimensional
Euclidean space and R"" is the set of all n x m real
matrices. / and 0 denote identity matrix and zero
matrix respectively, the notation P>0 means that P
is symmetric and positive definite and the symbol *
indicates symmetric blocks in the LMIs. In addition,
diag{...} stands for a block-diagonal matrix and for
a matrix A.

2. Model and preliminaries

The genetic toggle switch (Gardner et al. 2000) is
shown in Figure 1. Each of the two proteins negatively
regulates the synthesis of the other in such a genetic
regulatory network. Intuitively, one might anticipate
that there could be two possible stable steady states in
this system. Because lacl production is repressed by the
cl protein, an initial high concentration of ¢I would be
self-sustaining and leads to a state with high cI and
low lac repressor concentrations. Conversely, because
cl production is repressed by the lac repressor, if the
lac repressor is initially present in high concentrations,
a second stable state would entail high lac and low cl
concentrations. It is important to applying mathemat-
ical and computational tools in deducing the criteria
for a robust toggle switch. The feasibility of a toggle
switch is manifest in the existence of two stable fixed
points; any initial state above the dividing line in
Figure 1 will evolve to the fixed point that is
characterised by a high cl (low lac repressor) concen-
tration, whereas initial states below the dividing line
will evolve to a high lac repressor (low cl) concentra-
tion. The design of an operating toggle depends on

235

240

245

250

255

260



XML Template (2009)

{TANDF_FPP}TSYS/TSYS_A_407411.3d (T8YS)

265

270

275

280

285

290

295

300

[22.6.2009-3:48pm] [1-12]
[FPP Stage]

4 W. Pan et al.

5 ———1q 14Kk =
=
4 12
10 D
3 £ = 5
5 3
g, l T |& T l
6 c
c
1 4
P 2
0= . c F_G
0 2 4 1 2 3 4 5
[IPTG] [IPTG]

Figure 2. Bistability property.

parameter choices that lead to bistability. These
criteria include the use of strong and balanced consti-
tutive promoters, effective transcriptional repression,
the formation of protein multimers and similar protein
degradation rates. The reliable toggling between states
is induced experimentally through the transient intro-
duction of either a chemical or a thermal stimulus.
Specifically, isopropyl-B-p-thiogalactopyranoside
(IPTG), which binds to lac repressor tetramers, is
used to render the lac repressor unable to repress its
promoter.

As extracellular concentration of stimulus (IPTG)
or environment condition (temperature, pH value)
changes slightly or abruptly, the intracellular concen-
tration of steady states changes. At one stable fixed
point, the biological system that is described by non-
linear differential equations could be linearised. The
concentration of stimulus at the jump/switch point
is treated as a threshold value. Between these two
threshold values, three steady state points coexist with
two stable and one unstable. By noticing Figure 2,
D and E are threshold values. From low stimulus to
high stimulus, the system comes across the bistable
district at B, and the mode does not switch abruptly.
With the concentration of stimulus rising consecutively
to C, the switch occurs. From high stimulus to low
stimulus, the occasion is similar. Therefore, we take
B and F as threshold value points. It indicates that
the history of the system is remembered: the change
direction of stimulus plays the role of signal. Within
the bistable district, the steady state point does not run
far beyond its former state in the mono-stable district,
which means that D shares neighbourhood with B and
so does E with F. This property is shown in Figure 2.

Consider the non-linear differential equation that
describes Michaelis—Menten model with Hill sigmoid
function:

20 = f(t,2(0).

Nearing a steady-state point (e.g. when gene expression
does not change substantially over time), the above

non-linear system may be approximated as the first-
order linear system explaining the rate of accumulation
of each network species:

2(t) = A(0)z(1t) + u,

where z(7)eR" are the concentrations of RNAs,
proteins and metabolites in the network; z(7) represents
the rate of accumulation of the species in z(¢), and
the system matrix A(f) describes the network model.
A reverse-engineering method is used to map an
unknown network using only RNA expression changes
that result from the steady state transcriptional
perturbations to get the system matrix 4 (Gardner,
di Bernardo, Lorenz and Collins 2003).

To facilitate the readers, we introduce the com-
monly used genetic regulatory network models in
this section. A genetic regulatory network can be
described by the following differential equation for
m=1,2,...,m

Zm([) = _amzm([) +fm(la Z(l)), (3)
where zy,...,z, are metabolites, such as genes,
proteins, activators, repressors, enzymes, factors

or products of a biochemical network, and z(-)=
[21(), 22()s . . ., zo()] € R" is the metabolite state
vector. Their rates of degradation are denoted by
an€R*. %, the rate of change in z,, represents
concentration change of a variable due to production
or degradation. f,,(-) represents the feedback regulation
function on the m-th metabolite, which is generally
a non-linear or linear function of the variables
[z1(:), 22(*), . . ., z,(*)], but has a form of monotonicity
with each variable. Regulation function is used to
capture the combined effect of several regulatory
proteins on the control of gene expression or protein
degradation and it describes the connection and
topology structure of metabolites.

In this article, the function f,,(z,z(?)) is taken as

Son(ts 2(0) = 37, fnj(t,2)(1)),  which is called SUM

logic, because each metabolite acts additively to
regulate the m-th metabolite. If f,,(1,z;(1))>0, x; is
an activator of z,,; if f,,,; (¢, z;(f)) =0, x; has no link with
X 1f fr; (2, 2;(1)) <0, X; is a repressor of z,,. Note that
the regulation functions are generally expressed in a
sigmoid form in Elowitz and Leibler (2000) and
Gardner et al. (2000).

Now, we assume that the system (3) has N stable
steady states. Let z¥ = (z},z%,...,2;)" be the i-th
equilibrium point, i=1,2,...,N. We linearise this
non-linear differential equation at each equilibrium
point and obtain

N
X(1) = Z £ (A; + By)x(1), 4)

i=1
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with
1, when the i-th subsystemis ON
sik: . k) (lzla"'a]v)a
0, otherwise
where
Ai = diag{_ala L) _an},
I mi(t, 2j(1))
Bi = bm 5 bm == d J
[ ]]nxn 7l ax/(l) Z/:Z*

Then, the genetic regulatory network with multi-
stability can be modelled as a switched system to be
discussed in more detail later.

As mentioned in the Introduction, time delay often
occurs in the regulation term and parameter uncertain-
ties result from both the linearisation procedure and
the external disturbances. Therefore, we generalise the
model (4) as follows to reflect the time-varying delay
and parameter uncertainties:

N
(1) = Y EN(Ai + AA(1)X(1) )
i=1

+ (Bi + ABi(0)x(t — di(1))],
with

s

£ — 1, when the i-th subsystem is ON at the k-th time
“ 1o, otherwise

(i=1,...,N: k=1,...,M),

when & =1, x(r)eR" are the concentrations of
mRNA and protein deviated from the i-th equilibrium
point, we certainly know the system is stable when
lim,_, o, x(7) = 0. The rates of degradation are denoted
by the matrices 4, € R"™". A,=diag{a;,ap,...,a;} <0
is a negative diagonal matrix. The matrices B;
represents the delayed feedback regulation weight
coefficients of the protein on transcription. The
matrices 4; and B; are known. AA4t) and AB/t) are
unknown matrices representing the uncertainties of

the system, which are assumed to be of the form:
AA(t) = MioFio()Nio,  ABi(t) = My Fu()Ni,

where My, Ny, M; and N, are known real constant
matrices, F;(1)eR"*", j=0,1, are unknown time-
varying matrices, satisfying

FL(O)Fy(r) <1, j=0,1.

The time delay dff) is a time-varying differentiable
function that satisfies

0 < hjy <di(t) < hys,
di(l) = Wi,

where A, h;y and p; are constants.

For convenience, set
Ji(t) = (Ai + AA(0)x(1) + (B; + ABi(1)x(t — di(1)).

Then system (5) becomes

N
X0 =& [i0). (6)
i=1

To be more specific, we point out that i represents
the i-th subsystem, k represents the switching moment
counter which goes as 0,1,..., M, while a certain
subsystem is ON, i, may or may not equal to i,
p.q€Z". Throughout this article, we assume that the
switching sequence is minimal in the sense that
ik;é ik+1, ke zZ".

We are now ready to deal with systems that switch
among differential equations over time and regions of
state space. One can associate such a system with the
following switching sequence, indexed by an initial
state,

(i()a Z‘0)9 (ilv tl)a R} (i)1a [Vl)n cees (7)

The sequence may or may not be infinite. In the finite
case, we may take ,, = oo, with all further definitions
and results holding. However, we present in the
sequel only in the infinite case to simplify notation.
The switching sequence, along with (6), completely
describes the trajectory of the system according to the
following rule: (i, t,) means that the system evolves
according to x(¢) = fi(¢) for t; <t<t;,. We denote this
trajectory by xo(:).
Define the sequence of indexes:

X0 : Q = Xo;

Qi:xo; iOSils"'ainy"'s (8)
and the sequence of switching time:
Q[:xo; thlla"'atn)"'a (9)

respectively. Suppose Q is a switching sequence as in (7).
We denote by Q|i the endpoints of the times that the
i-th subsystem is active in the continuous-time cases.
The interval completion A(7") of a strictly increasing
sequence of time T'=ty, ty,...,1,,...1s the set:

U (ks tit1], (10)
keZ+
Hence, A(Qlir) is the set of times that the i-th
subsystem is active.

Remark 1: The parameter uncertainties are inevitable
during the linearisation process, and therefore we
are actually dealing with the analysis problem for
the robust multistability of (5). That is, how to
establish sufficient conditions under which the system
(5) with unknown-but-bounded parameters remains
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asymptotically stable for all admissible parameter
uncertainties and make sure that such conditions are
as less conservative as possible.

Remark 2: Time delays are frequently encountered
in biological networks. Time delays of biochemical
reactions are the main causes of hysteresis property of
a genetic regulatory network with bistability men-
tioned above. In many practical engineering systems,
such as communication, electronics and chemical
systems, time delays have gained considerable research
interests and a large amount of results have appeared
in literature. Time delay may cause instability and poor
performance of control system. Most of the existing
results related to time-varying delayed systems are
based on the assumption 0<d(7) <h,. However, it is
common in practice that the delay typical exists in an
interval (0</h; <d(t) < h»), that is, the range of delay
varies in an interval for which the lower bound is not
restricted to 0. The aforementioned stability criteria
for a genetic regulatory network with the assumption
0<d(f) < h, (Lietal. 2006), when applied to such cases,
may be inevitably conservative due to their ignorance
of the lower delay bound /;. Therefore, it is of great
significance to investigate the stability of systems with
interval time-varying delay.

Remark 3: A switched system with different sub-
systems is analogous to a genetic regulatory network
with multistability for both are running in different
modes as the external inputs change. This way, the
multistability analysis of a genetic regulatory network
has been transformed into the stability analysis of
a switched system. A switched system with time delays
is referred to as a switched delay system, which is
a brand new type of system and can find many
applications. Roughly speaking, a switched delay
system appears if switching and time delay coexist in
either system modelling or signal transmission. Due to
the interaction between continuous dynamics and
discrete dynamics and because of the impact of time
delays, the behaviour of switched delay systems is
usually much more complicated than that of a switched
system or a delay system. To date, there are a few
correspondences on such systems (Kim, Campbell and
Liu 2006; Sun, Wang, Liu and Zhao 2008).

3. Robust multistability of genetic networks

In this section, we present our new interval delay-
dependent robust multistability condition for a genetic
regulatory network with time-varying delays described
in the above section.

Lemma 1 (Wang, Xie and de Souza 1992): Let A, D,
S, W and F be real matrices of appropriate dimensions

such that W>0 and FTF <I. Then, we have the
following:

(1) For any scalar ¢>0 and any vectors x,y € R",
matrix P>0,

2xTD]-"Sy < e 'XTDDTx + SyTSTSy, (11)

2Ty <xTP'x+ yTPy; (12)

(2) For any scalar & >0 such that W — DD >0,

(A+DFS)"W A+ DFS)

< ATW—eDD") ' A+e71STS. (13)
In this article, the delay we consider exists in an
interval (0<h <h{t)<hp, i=1,...,N), that is, the
range of delay varies in an interval for which the lower
bound is not restricted to 0. The main idea to solve this

problem is to represent the time delay d(¢) as two parts:

the constant part /;; and the time-varying part /1,(¢),
di(t) = hiy +hi(0), 0 < hi(t) < hin — ha.

Then, we introduce a novel Lyapunov—Krasovskii
functional as follows:

N
V(x(0) = Y & Vi(x(1),
i=1
with

b

£ — I, when the i-th subsystem is ON at the k-th time
“7 10, otherwise

(i=1,....N; k=1,...,.M),
where

Vi(x(®)) = Vi (x(6)) + Via(x(2)) + Viz(x(2)),
Vir(x(1)) = x" (1) Pix(1),

Via(x(t)) = /

t—hi

1

x"(@)Qnx()da
t—h;
+ f x" (o) Q2 x(er)dar,
t—d;(1)

0 t
Va(x(t)) = / h f @7 adadp
—hy Jt+

—hy et
T .
+j;h;z /t;ﬁx () Zirx(e)ded B. (14)

By utilising the most updated techniques for achieving
delay dependence, a new condition is proposed for
the asymptotic stability of switched system with time-
varying delays in the form of LMIs.
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Definition 1: A genetic regulatory network is called to
possess multistability if it has more than one stable

Then the system becomes

equilibrium point. Specially, the network has bistabil- ) N _ _
ity if it has two stable equilibrium points, and the X(1) = Zfik [4i{(Dx(1) + Bi(1)x(1 — di(1))], (16)
network has N-stability if it has N (N>2) stable =1
equilibrium points (in this case, the network is called n- with
stable).
Theorem 1: The system in (5) is asymptotically 1, When the i-th subsystem
N-stable if there exist scalars ¢;>0, §;;>0, 8;,,>0, and £, = is ON at the k-th time ,
positive  definite  matrices P;>0, Q;>0, Z;>0, 0. otherwise
i=1,...,N (N>1), j=1,2, such that the following . ’
LMIs hold: (l:l,...,N;k:l,...,m.
[0, haMLA 'z, 0 (hiy — hi) M Al Z 0 MLPM;
* —hiZa hnZy M; 0 0 0
* * Sil 0 0 0 <o (15)
* * * —(hip — hi1)Zn (hp — hia)Zn M, 0
* * * * —8pd 0
L % * * * * —&l

where
O, =WLPWip+ W;ZQ_iWiQ +WLZWiy
+ (&4 8i +3i2)Mi_TgNiTNiMis,
0;=diag{Qi1, —0n, 0, —Oi},
Z_: diag{_Zils _Ziz}’

_ [0 P Ai 0, B;
Pi - s WfP = s
_Pi 0 I, 0, 0,
Ir[ On 0”
1, 0, 0, 0, 1y 0,
M;s= , Wip= ,
10, 0, 1, 0, 1, 0,
0, 0n 1 —pily

vV 1/hilln Y l/hilln On

Wiz =
0, 1/(hiz = ha)ly —/1/(hiz — ha)I,
Ny O
Mix:[ln 0y, 0}1]: Ni:|: :|:
N;
Ai:[Ai Bi], M,':[Ml’ Ml' ]

Proof: For convenience, set

Alt) = A; + AA(t),  Bit) = Bi + AB(t).

The Lyapunov—Krasovskii functional is defined
in (14). The derivatives of V;(x(r)), j=1, 2, 3, are
given by
Va(x(1)) = 2x" (1) Pix(0),

Via(x(1) = xT(0Qux(1) = x" (1 = h))Qunx(t — hy)
+ X7(1 = ha)Qinx(t — i)
— (1= di()x" (1 = di(1))Qiax(t — di(1)),

Vis(x(0) = X" () (ha Ziy + (hin — hi)Zi2)X(1)

— / t xT () Z1 x(er)dx
t—hy

t—h;
- / T () Z;rx(e)da. (17)
t—hi>
From Jensen’s inequality, we can easily get
!
— / xT (o) Zj1 x(cr)dax
t—hj
1 t T t
< —— ( / )'c(ot)dot> Zi < f )%(oz)doe)
hiv \J =y 1=hi
1
= ——(x(t) = x(t = ha)) Zin(x(2) — x(t — ha)),  (18)

h,’]
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(—hy —hy where
— / xT (o) Zirx(e)da < — f xT () Z;»x(c)dax
t—his —d(t) x(1)
1 t—hi) T (—hyt é‘(t) = X([ - hil) 5
<- ( / x(a)da) Z,«2< / X(oz)doz) x(1 — di(1))
his — hiy \Ji—a 1—di(1)
1 and
T
— — hi) — —d 7.
< hiz — /’l[l (X(Z hzl) X([ dz(t))) i2 p (t)_|:FIO([) 0 :|
x (x(t — hiy) — x(t — di(©))). (19) Lo Fao ]

510  Using (18) and (19), we have

Vi(x(1)) < 2xT()P{Ax(2) + Bix(t — di(1)) + ;' x (1) P;

x (MigMy + My M) Pix(2)

+ &i(xT(ONT Niox(t) + xT (1 — di(1))

x NiNux(1 — di1)))

+ X7 (0Qux(1) = X" (1 — hin)Qax(t — ha)
+ x7(t = hi)Qinx(t — )

— (1 = p)x"(t = di()Qiax(t — di(1))

+ (A1) + Bix(t — di(1)))"

X (hin Zit + (hiz — hi)Zi2)

x (A1) + Bix(t — di(1)))

= - 0) = (0 = ) Zi(x(0) = (0 — )

i = ) = x( D)
X Zia(x(t — hay) — x(t — di(1)))
By (15), it is easy to see that
haZiy — 85" (ha)* Zu MiMT Zy > 0,
(hiz — hi)Ziy — 83 (hia — ha)* ZinMiMT Z;y > 0.
Then, from (13) in Lemma 1, we have
(Aix(t) + Box(t — di(0))) " Ziy (A1) + Bix(t — di(1))
= H(MGLA; + MF(ON N ha Zay
x [Ai + MF(ON 1M 58(2)
< T + 8 MENTN Mis ) (0,
(Ai(0) + Bix(r — di1))” (hiz — hi) Zio
x (Ai(t) + Bix(t — di(1)))
= {(OMA; + MFON Y (hia = hi)Zia
x [Ai + MiF(ON IMist(0)
< KT(Z)<‘I’1‘2 + 8 MGN | NiM; )C(l),

Uy = MEA by 7, (haZi — 551}1?1Zilf\/li-/\/liTZny1
X hnZj AiMs,
Wiy = MEA iz — hi)Zio ((hia — ha)Zio
— 855 (hir — hn)ZZiszM,-TZiz)_lhn ZinAiMs.
Therefore,

Vilt) < £ () Eig(0),
where
Ei=0+ o+ W + Vi,
®;, =& ' M PMM!PM,,.

Applying the Schur complement formula to (15),
we have

1]

;i <0. (20)

Thus, if (20) holds, we have Vi(x(¢))< —e,'nx(t)”2 for
a sufficiently small ¢;>0 and x(7) #0, then

N
V(x(0) = Y & Vilx(0),
ps

< —min e,'Hx(t)“2
with
1, When the i-th subsystem
&, = 1s ON at the k-th time ,
0, otherwise
(i=1,...,N; k=1,....M).
and the asymptotic multistability is established. Ll

Let us now consider a special case where there are
no parameter uncertainties. In such a case, the genetic
regulatory network (5) becomes

N
X(0) =Y & [Ax(t) + Bix(t — di(1)].  (21)
i=1

Based on the proof of Theorem 1, we will have the
following corollary readily.

515

520

525



XML Template (2009)
{TANDF_FPP}TSYS/TSYS_A_407411.3d (T8Y8)

530

535

540

545

550

[22.6.2009-3:48pm] [1-12]
[FPP Stage]

International Journal of Systems Science 9

Corollary 1: The system in (21) is asymptotically
N-stable, if there exist scalars &;>0, 8;;>0, §,>0,
and positive definite matrices P;>0, Q;>0, Z;>0,
i=1,..., N,j=1,2, such that the following LMIs hold.

O = WhHPWip+ WiQiWio + WHLZiWiz <0, (22)
where
0;=diag{Qi, —0i. 0, — 02},
Zi=diag{Z, Zir, — Znn, — Zio},

- [0 P; A; 0, B;
Pi= » Wip= ,
_Pi 0 In On On
1, 0, 0,
0, 1y 0y,
W' - )
oL o,
L0, 0, /1—wil,
hi 4, 0, ~hi B;
hi2 _hilAi On hi2 _hi]Bi
Wiz =
1/hil]n - 1/hilln On
On \/1/(hl2 _hil)ln _\/l/(hiZ _hil)]n

Remark 4: The stability conditions given in both
Theorem 1 and Corollary 1 are linear matrix inequal-
ities over the decision variables to be determined,
which can be easily verified using some standard
numerical software. Moreover, the form simplified
as WIXW, + WIYW, <0 is more laconic since it
expresses the LMI in several parts, each of which has
a symmetric structure with the matrix variable to be
determined in centre.

4. Illustrative examples

Example 1:
as follows:

21() = —21(1) = 2f (z3(1 = d (1)) + 0.5,
o) = —n) + /(23 —d(0) - 1,
23(1) = =0.523(1) = 3f(21(1 — d(1)))
—0.5f(z2(t — d(1))) — 0.2, (23)

where f(s) = tanh(s) and therefore the regulation func-
tion has a sigmoid form, and f(s) = 1 — tanh?(s). The
topology of this genetic regulatory network is shown
in Figure 3.

We denote e; =[x}, x3, x3] as the i-th equilibrium
point of the network. We can easily get three equilib-
rium points of the network: e; =[2.4698, —1.9849,
—2.4400]", ey =[—1.1453, —0.1773, 1.1650]" and e;=
[—0.3023, —0.5989, 0.4250]". We choose e; and e-.
After linearisation, we get

We consider a three-component network

3
X(1) = Z £, [(Ax(1) + Bix(1 — di(1)),

i=1

Figure 3. Topology of genetic network (23) (+: positive

regulation; —: negative regulation).
with
1, when the i-th subsystem is ON
i = {0, otherwise ’
(i=12, keZz"),
where
-1 0 0
A= 0 -1 0 |,
| 0 0 -0.5
0 0 —0.6465
B = 0 0 0.3232 |,
| —1.0015 —0.4846 0
-1 0 0
A= 0 -1 0 |,
| 0 0 =05
0 0 —0.0599
B, = 0 0 0.0299
| —0.0847 —0.0364 0

The time delays are assumed to be
d(t) =0.02+0.01sin¢,
and therefore we can have the parameters as follows:

hy =0.01, hy=0.03, p=0.03.

By solving the conditions in Theorem 1 using the 560
LMI toolbox in Matlab, we can obtain a feasible
solution with the following obtained matrix variables
(for space consideration, here we only list the matrix
variables P; and P»),

[13.4864 3.3045  6.8045
Py =| 33045 18.0211 —4.1629 |,

| 6.8045 —4.1629  6.7032

[ 0.9415  0.0014 —0.0256 355
Py=| 0.0014 0.9416 —0.0055

| —0.0256 —0.0055  1.2998
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Figure 4. Dynamics of system (23).

@D,

+ .
(o D

Figure 5. Topology of genetic network (23) (—, +: same as
Figure 3).

For other combinations of these equilibrium points,
the solutions are found to be infeasible. We conclude
that the network is bistable, which is the same as the
dynamics shown in Figure 4.

Example 2: We consider a genetic toggle switch with
bistability (Gardner 2000):

o

1
_ 1),
1+Zg(l) ﬁlzl()
OlzXn
X1+ 1+ 2(1)

() =

(1) = Baza(1), (24)
where z;, z, are the concentrations of lacl and cl
respectively, X is the concentration of IPTG, and 8, 8>
denote the ratio of the decay rate. We select a set of
biologically plausible parameters as o) =14, o, =35,
Bi=p1=1, 0=n=y=2. From Figures 1 and 2, it is
easy to know that bistability exists with this set of
parameters. We linearise such non-linear differential
equations at these two stable steady points and obtain
the subsystem matrices A4, A, respectively. The topol-
ogy of this genetic regulatory network is shown in
Figure 5.

We denote high (low) state when lacl concentration
is high (low) and cI concentration is (high). When
X =3.8244, high state is switched to low state; when
X =2.1060, low state is switched to high state. Without
considering time delay, we get

2
X(1) = Z £ (A; + By)x(1), (25)

i=1

with
£ = I, when the i-th subsystem is ON
“710, otherwise ’
(i=1,2, kez"),
where

[—1 0 :| [ 0 —0.2688j|
Al = 5 B] = ’
0 -1 —0.3653 0

[ -1 0 i| [ 0 —3.0795 i|
A = , By= .
0 -1 —0.0159 0

We now introduce the time delay in the regulation
terms and parameter uncertainties, then we have the
model of the form (5):

2
X(1) = Z E(D[(As + AAD)X(0)

i=1

+ (Bi + AB(0)x(t — di(1))].
The time delays are assumed to be

d(t) = (14+0.3sin41)/2,
d>(t) = (1 +0.5co0s2¢)/2,

and therefore we can get the parameters as follows:

/’111 = 035, h12 = 065, np = 06,
hz] = 0.25, h22 = 0.75, U2 = 0.5.
We choose
A (0.2 0.37 ~ [0.1 0.27
My = , My = ,
(0.6 0.4 ] 105 0.1
“ [0.1256 0 A 0.1886 0
Ny = , N = )
. 0 0.1256 0 0.1886
K — (0.4 0.17 Al — [0.4 0.37
= lo1 04 T os 04)
N [0.2112 0 A 0.1222 0
Ny = , Ny = .
. 0 0.2112 0 0.1222

By solving the conditions in Theorem 1 using the LMI
toolbox in Matlab, we can obtain a feasible solution
with the following obtained matrix variables (for space
consideration, here we only list the matrix variables
Pl and Pz),

0.7488  —0.0807

' [—0.0807 0.6077 }
12,5594 —0.7919

2T [—0.7919 196.2415]

This shows the robust bistability of this kind of genetic
network.
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5. Conclusion

We have made an effort to show the possibility of
applying control theory to investigate the multistability
of a genetic network, therefore having potential
applications in synthetic biology. In this article, a
method has been presented for the analysis of multi-
stability of a genetic regulatory network with interval
time-varying delays and parameter uncertainties. The
motivation for considering an uncertain switched
system with time-delays is twofold. First, the model
can describe a genetic regulatory network with multiple
stable steady states (multistability) rather than only
two stable steady states (bistability). Second, the model
lies in the more practical description of the physical
system by introducing time delays and parameter
uncertainties. By using a Lyapunov functional app-
roach and LMI techniques, the multistability criteria
for a genetic regulatory network with time-varying
delays and parameter uncertainties have been estab-
lished in the form of LMIs, which can be readily
verified by using standard numerical software. An
important feature of the results reported here is that
all the stability conditions are dependent on the upper
and lower bounds of the delays, which is made possible
by utilising the most updated techniques for achieving
delay dependence. Also, a novel Lyapunov functional
dependent on the uncertain parameters has been
utilised to guarantee the robustness of the genetic
regulatory network. To the best of our knowledge, the
approach presented here is the first computational
approach developed specifically for multistability of
a genetic regulatory network. A three-component
network and a genetic toggle switch with bistability
have been employed to illustrate the applicability and
usefulness of the developed theoretical results.

In the future, many results in control theory can be
extended to GRNs. One important issue is to reduce
the conservativeness by allowing large time delays.
The idea of delay fractioning in Mou, Gao, Lam and
Qiang (2008) will be useful. Another important issue
is to study stochastic GRNs with mixed time-delays
by referring to the results in Wang, Liu, Fraser and Liu
(2006), Wang, Liu, Li and Liu (2006), Wang, Liu, Yu
and Liu (2006) and Wang, Shu, Fang and Liu (2000).
It is believed that control theory will be a powerful tool
in biology.
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