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Modelling in Biology
Assignment 2
Question 1: A one-dimensional model from population dynamics

We are given a non-dimensionalized version of an ecological model of an insect population

in aforest below.
2
X:rx(l—éj— X 5
k) 1+x

The first source term is the logistic growth of the insects and the second sink term refersto
the depletion of the population caused by predation. If we first consider the smple case
where there are no predators, we can obtain the following equation.

e

Finding the fixed points of this system is straight forward. First, weset x=0, and solve for
the values of x* , which satisfy the equation. The fixed points of the equation are:

x* =0,k

For values between 0 and k, the value of x is greater than O, but for values of x above k, the
value of x islessthan O, leading to the conclusion that x* = kis a stable node of the system
while x* = 0is an unstable node. Plotting a graph of the phase plane with the one
dimensional flows gives us better intuition of the system.

Figure 1. r = 0.9, k = 3, Phase Plane With Flows
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0.6 | =09and k = 3, thesystemis
attracted to x* = 3, the stable fixed
point of the system. However, since
x* =0 isaso afixed point, if the
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o0al | zero. If thisvalue were perturbed,

then the population would increase to
x* = 3(the attractor of the system).
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L et us now consider the complete system:

2
X:rx(l—zJ— X 5
k) 1+x

We can do asimilar analysis to above to obtain the fixed points by setting x=0 and solving
for values of x which satisfy the equation. It can also be seen that if x is factored out, x* =0
isaways afixed point of the system.

2
O:rx[l—zj— X 5 =X r(l—ﬁj— X 5
k) 1+x k) 1+x

To obtain the local stability of the problem, we can look at the gradient of the phase plot
closetox* = 0. If welet x= f(x), then we differentiate to obtain the following and evaluate

itat x* =0.

rx X 2x° 2x
f' (X)=——+r]1—— |+ -
g k ( j [L+x?f 1+%°

f'(0)=r

Hence, the stability of the fixed point at x* = 0 depends on the value of r. We assume that r
isapositive real value and we can conclude that x* = 0 is an unstable node.

The other fixed points of the system can be obtained through several different methods. The
easiest, but least accurate is to use a geometric approach by looking at the intersection of two
lines. We make the following substitutions to our complete system:

2

)= 11 and =

1+ x?

If the value of his above the value of g, then we can conclude that the value of xis positive
and the flows are in the positive direction. The reverse holds true when the value of g is
greater than h. Plotting h and g on the same graph we obtain figure 2.

Figure 2. h(x) and g(x)
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By zooming in closer to where the

o8l 1 Intersection occurs, we can deduce that

N Y | the other fixed point occurs when x* =
o 1.44 to three digits of accuracy (3sf).
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A more accurate method would be to

. | allow the computer to do a numerical

solution to find where the two curves

. intersect (i.e. when h—g = 0). For this

o ™~ method, we can use the fsolve

04 ‘ ‘ ‘ ‘ ‘ : ‘ function.

0 0.5 1 15 2 25 3 3.5 4
X

h(x)/g(x)
/

0.2} S

0

Posted online at: http://www.openwetware.org/images/0/0c/MiB_Assignment_2_write_up.doc



We define our function in a separate m file as shown below.

function F = myfun (x)
global r k
F = r*x.*(1-(x./k)) - ((x.72)./(1+x.72));

Then we can call the £ solve function as shown below supplying our initial guessin the
second argument of the function.

B = fsolve(@myfun, 1)

Thisyields the solution B = 1.4373, the second fixed point in our system. Although zooming
into the function gave us a pretty good estimate of the value of the fixed point, fsolve is
much faster, more elegant, and the value is reusable in Matlab. To analyze the stability of
this fixed point, we can again find the slope of the phase plane as above.

f'(1.4373)=-0.27

Asthisisanegative value, this shows that our new found fixed point is stable. But have we
really found al the fixed points of the system? One method is to use the solve function to
find al valuesfor which x = 0. Thisfunction finds all of the roots of the equation without
having the need for initial guesses. Multiplying out the function, it can be seen that we get a
guartic term meaning that we should be getting 4 different fixed points to our system.

A = solve('0.9%x* (1-(x/3))-((x"2)/(1+x"2))");

Which when run gives:
A =

0.

1.4372866581082433838758550746653
.78135667094587830806207246266737+1.2152152275843732767755856584891*1
.78135667094587830806207246266737-1.2152152275843732767755856584891*1

As expected, there are 4 fixed points; however, two of them are imaginary and would not be
found using the £solve method. After analysis of the only two real fixed points, we can
conclude that for almost all initial conditions (except for 0), the value of the population will
approach x* = 1.4373, the only stable fixed point in our system. Thisislessthan the value
we obtained in the absence of predators as expected. Predation limits the growth of a
population and the equilibrium value would be expected to be less than without predation.

To further continue our stability analysis, we can perturb the values of k and r to see changes
in the behavior of our system. First if we fix the value of k to be 10 and see changes to the
behaviour when we increase the value of r (0.2, 0.4, and 0.6), we can see that the number of
fixed points increases from two to a maximum of 4 (including the one at x* = 0) and
decreases again to two fixed points asr isincreased even further (figure 3).

Let us consider each value of r separately and sketch the flows on theline. First, whenr =

0.2, there are two fixed points at 0 and 0.0204 (obtained using solve function). They are
unstable and stable respectively and we can plot this on the line as shown below.
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Figure 3. Phase Plane with various r values
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Calculating for the fixed points can also be done by £solve, knowing a priori how many
fixed points we expect. Interpreting the results of our stability analysis, we can infer that if r
=0.2, then for al initial conditions not at x = 0, then the value of the population will be
attracted to x* = 0.02. For r = 0.4, there are four fixed points and starting at any of the fixed
points will cause the population to remain at the point. However, for al initial conditions
between 0 and 3.7, then the population will move to the stable 0.5 fixed point. For initial
conditions above 3.7, the population will tend to the stable 5.8 fixed point. For r = 7.9, thisis
again similar to when we were considering r = 0.2, and for all initial conditions except O, the
population will tend to 7.9, the only stable fixed point of the system.

An important feature of this system isthat it exhibits hysteresis, or that perturbation of a
parameter in one direction does not yield the same results as perturbation of the same
parameter in adifferent direction. We shows this by simulating a slow drift of the growth
rate of r, which could be the result of natural selection, weeding out the slower lessvirile
insects, leaving the faster insects to replicate, speeding up the growth rate.

L In figure 4, we can see the result of the
hysteresis. The blue solid line reflects the
only fixed point found whenr = 0.05.
Increasing the values of r slowly using the
x* value calculated as the next guess, will
cause us to track the fixed point as we
increase the value of r. However, at
approximately r = 0.6, we see that the
fsolve function loses the fixed point and
finds the fixed point near x* = 8 (adlso a
stable fixed point). Upon return (red
1T 0 03 o4 05 os  os crosses), the £solve function findsthe
' only fixed point at around x* = 8 and
tracks that fixed point. A bifurcation

occurs and the fixed point islost. The fsolve function picks up again on the original fixed
point until reaching r = 0.05 again.
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Thus, in the above figure (4), we can see that the behavior of the function depends on which
path istaken. Two bifurcations occur on thisinterval, corresponding to the jumps seen in
figure 4. We can approximate these values by asking matlab to print the value of r when the
exitflag = -2 (referring to when no convergent solutions are found). Unfortunately, this only
works when we are sampling r values on return. To get the bifurcation on the upward
direction, we can make the assumption that the x* value that we find will not be less than the
previousvalue. Thisisimplemented inthe code below. Ther values at which the
bifurcations occur are at r = 0.37 and 0.57.

kil = 10;
rvals = 0.05:0.01:0.7;
x0 = 0.5; %The initial guess
E(1) = x0;
for 1 = 2:length(rvals)+1
rl = rvals(i-1);
[E(i),fval,exitflagup(i)] = fsolve(@myfuna, x0);
if E(i) < E(i-1)
x0 = 8;
upbif = rl %Finds first bifurcation
else
x0 = E

—

i);
end
end
figure;
plot (rvals,E(2:1length(rvals)+1))
title('Figure 4. r Values vs. Fixed Point - Hysteresis')
xlabel ('r'")
ylabel ('x*")
hold on;
rvalsl = 0.7:-0.01:0.05;
x0 = 8; %The initial guess
for 1 = 1:length(rvalsl)
rl = rvalsl (i) ;
[K(1),fval,exitflagdown(i)] = fsolve (@myfuna, x0);
if exitflagdown (i) == -2
x0 = 0.8;
downbif = rl %$Finds second bifurcation
else
x0 = K(1i);
end
end
plot (rvalsl,K, 'xred')
hold off;

For the bifurcation that occurs at r = 0.37, we can see that one stable and another unstable
node collide and annihilate each other. The sameis seen for the bifurcation that occursat r =
0.57. Thus we can conclude that both bifurcations are saddle nodes.

For all models, it is necessary to bring it back to the biology to interpret our results.
Outbreaks occur when we the population resides at a high fixed point value. Following the
plot of figure 4, we can see that the r value can be perturbed substantially before the fixed
pointislost. From this, we can infer that an outbreak does not readily occur so long asther
valueis below 0.57. Once the growth rate increases past this value, an outbreak occurs and
the population jumps to a higher fixed point. However, once an outbreak occurs, the r values
must again be perturbed to r = 0.37 for the outbreak to be controlled again. So once a
relatively rare outbreak occurs, it takes long to disappear.
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Question 2: A two-dimensional (two-species) population model

In this problem, we now look at the two-dimensional model of rabbits and sheep competing
for the same food resources. The two equations governing the growth of each speciesis

shown below.
X
X=3x1-=1|-2
x( 3) i

y=2y( —gj—xy

The population of rabbitsis given by the variable x and the population of sheep by the
variabley.

If we first consider growth of both species without the competition (xy) term, then we can see
that it follows alogistic growth curve. We can differentiate the logistic growth curve and see
which one has the higher maximum to determine which species reproduces faster by the
model.

X=3X-XxX>= %X=3-2x=0= x:g: X(g):Z.ZS
y=2y-y’=§y=2-2y=0=>y=1=y(1)=1

So rabbits are capabl e of reproducing 2.25 times faster than sheep (under the right conditions).
In the absence of competition, we can also determine the maximum population level (which
isalso equal to the carrying capacity for each species) and conclude which population would
belarger. By solving the differential equations, we can get functions of the population of
rabbits and sheep as a function of time with ¢; and ¢, being constants of integration. The
solution was done using the matlab commands shown bel ow:

egqns = dsolve('Dx = 3*x - x"2')
egqnsl = dsolve('Dy = 2*y - y"27")

3
)'(=3X—X2:Xt =
® 1+3ce™

2
:2 —_ 2: t:—
y=2y-y = y(t) 1+ 2087

The maximum value of the population will occur as the value of t approachesinfinity.
!i mx(t) =3
!i my(t) =2
Here we can see that the population of rabbits reaches at equilibrium without competition is

higher than the population of sheep. Now let’s consider the competition term xy in both
equations. We can see that the population of rabbits decreases twice as fast as the popul ation
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of sheep since theratio of the two competing termis2. Presumably, the rabbits die faster
when there isless food available (which is related to the amount of competition). This sink
term isbiologically interpreted as the rate of change of either the sheep or rabbitsis
dependent on the number of that species and the number of the other species while the
numerical factor attenuates the effect of the competition depending on how quickly the
competition takes effect.

Proceeding onto the linear analysis of the system, we can find the fixed points of the system
again using the solve function of matlab.

A = solve('3*x*(1-x/3) - 2*x*y = 0','2*y*(1-y/2) - x*y = 0');
for 1 = 1:length(A.x)
fp(i,:) = [A.x(1) A.y(1)];
end
fp

The fixed points found were:
fp =

—_ ——
R W oo
R o N O

I
7

We can also calculate the Jacobian of the system with matlab and evaluate the Jacobian at the
fixed pointsto find the eigenvalues and eigenvectors. First, we calcul ate the Jacobian
analyticaly.

syms xX y

F = [3*x*(1-x/3)-2*x*y; 2%*y*(1l-y/2)-x*y];

v = [x,y];
jac = jacobian(F,v)

jac =

[ 3-2*x-2*y, -2*x]
[ -Vv, 2-2*y-x]

And now evaluating it at each point to determine the stability of the 4 fixed points:

Fixed Point | Jacobian Trace Delta Eigenvalues Eigenvectors
30 10
00 (o 2] ° ° 23 (0 1]
-1 0 0 1
(02) P 3 2 21 (1 -2
-3 -6 -3 1
(30) 0 1 -4 3 13 (1 0
-1 =2 1 1
(1,1) 11 2 1 —1+4/2 (_\/54 \/Eé]
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We calculate the linear stability of the nodes depending on the relative values of the trace and
delta from the evaluated Jacobian matrix at the fixed point.

Fixed Point 2 —4A Stability
(0,0) 1 Unstable Node
(0,2) 1 Stable Node
(3,0 4 Stable Node
(1,2) 8 Saddle Node

We can also use matlab to draw aflow of trgjectories on the phase plane (x,y) to get an
intuition for various initial conditions to get an idea of where the function will tend to.

Figure 5. Trajectories on the Phase Plane
3
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Through looking at figure 5, it can clearly
be seen that (0,2) and (3,0) are attracting
points of the system. (0,0) isarepelling
node and initial conditions move away
from that node and approach the other two
stable nodes. Although (1,1) isasaddle
node and should be stably approachable
along one axis, none of theinitial
conditions presented in figure 5 are exactly
on that path. We also notice that the axes
also contain straight-line trajectories
whereby any value not equal to zero will
be driven towards the fixed point (ie the
case of population growth without

competition as we explored in the first part of the question).

To return to the biology of our model, we can infer that since we have only two stable nodes,
most initial conditions will tend to cause the populations to move towards those stable nodes.
Unfortunately, the stable nodes only have one species, leading us to conclude that in the end,
only one species can survive on any given resource unless the population is controlled very
specifically. Here we see the principle of competitive exclusion where two competing
species for the same limited resource cannot typically coexist (Strogatz, p. 158). The fixed
point (1,1) isthe only theoretical stable node where both species can live in harmony, and
corresponds to the populations. We can seein figure 6a and 6b this effect of competitive
exclusion except for when theinitial conditions are both (1,1).

In the management of afarm, one would try to get as close as possible to the (1,1) fixed point
to sustain the population of both speciesfor aslong as possible. Furthermore, initia
conditions along the stable manifold, the special trajectory which dives into the saddle point,
the population of the farm would remain stable. With our currently knowledge of systems, it
isdifficult to say exactly which initial values lie on this stable manifold, but as we can see
with our phase diagram, it lies somewhere between the two trgjectories flanking a line going
closest to the (1,1) fixed point. Thisfixed point refers to the concentration or density of each
speciesin thefarm. Only if we have the density of 1 sheep and 1 rabbit per unit areawill be
have a stable population of animals. If there would be two sheep and two rabbits per unit
area, thiswould no longer be on the stable manifold and the popul ation would tend to another

fixed point and competitive exclusion holds again.
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Figure 6b. Sheep Over Time
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If we slightly change the form of the equations to the ones below, we see a different
behaviour altogether.

2X
x=3x1-°2 |-
( 3) a4

y=2y( —%]—xy

In this model, we see that the competition term is the same for both rabbits and sheep
meaning that they both will diejust asfast for given levels of population. For every one
sheep that dies, there will be one rabbit that dies. We also have a dight change in the
carrying capacity of the rabbit population. Instead of the fixed point when no competition
occurs being at x* = 3, it now occurs at x* = 3/2, or half the previous population. We can do
asimilar analysis to above and obtain the fixed points and trgectories of the system to
become more aware of the consequences of these small changes we have made.

The new fixed points are:
nfp =

3/

—_ ——
RN OO
R oONO

I
7
7

And the stability analysis of these points using the Jacobian matrix:

jacl =
[ 3-4*x-vy, -x1
[ -y, 2-2%y-x]
Fixed . . .
Point Jacobian Trace | Deta | Eigenvalues Eigenvectors
0,0 30 5 6 2,3 01
(0,0) 0 2 ! 10
1 0 -3, 0
- - - 2
0.2) [—2 —2] 1 2 1-2 [ 1 1}
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We calculate the linear stability of the nodes depending on the relative values of the trace and
delta from the evaluated Jacobian matrix at the fixed point.

Fixed Point 72— 4A Stability
(0,0) 1 Unstable Node
(0,2) 9 Saddle Node

(3/2,0) a9 Saddle Node
(1,2 5 Stable Node

From the stability analysis, we see that (1,1) has how become a stable node while (3/2,0) and
(0,2), the nodes corresponding to only rabbits or only sheep existing, are saddle nodes. We
can guess that the stable manifold to these saddle nodes would be along the axes where there
is exclusively one speciesin the population. Otherwise, we expect the population approach
the stable node at (1,1). Inthis case, both populations can coexist harmoniously so long as
theinitial conditions are correct. Below in figure 7 we see a phase portrait of the system with

afew trgjectories.

Figure 7. Trajectories of an Altered Model on the Phase Plane

In figures 8a and 8b below, we can see the
effect over time of the model. Although

25+
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Figure 8a. Rabbits Over Time for Altered Model
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there are trgjectories over time going to 1.5
for rabbits and 2 for sheep, this corresponds
to the other population being set to 0. All
other trajectories over time will convergeto
1 (except of course when both populations
are zero). Inthismodel, the management of
afarmis simple as the population of both
species will tend to (1,1) equilibrium over
time.

Figure 8b. Sheep Over Time for Altered Model
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Question 3: The production of energy in yeast: a model for glycolysis

In this problem we attempt to analyze one section of the metabolism of glucose, specifically
the energy input stage of glycolysis or the conversion of glucose first into glyceraldehyde-3-
phosphate (G3P) and then into pyruvate, the final product of glycolysis. Inthefirst reaction,
glucose (B) is converted to FEP (fructose-6-phosphate) (Y) by a hexokinase enzyme. The
next enzyme in the pathway, phosphofructokinase, is arate limiting step for glycolysis and
hydrolyses ATP (C) into ADP (X) and transferring the phosphate group to F6P making
F1,6BP (fructose-1,6-bisphosphate) (D). Thisstep is one of the rate limiting steps of
glycolysis asit synthesizes a high energy intermediate which can then undergo a series of
exothermic reaction to release energy ultimately in the form of ATP. Later in the glycolysis
pathway, F6P is converted to 2 molecules of G3P. The G3P isthen converted to pyruvate,
each G3P molecule releasing 2 molecules of ATP, and isthe final product of glycolysis.

|dentifying the key stepsin this pathway, we come up with the 4 chemical equations below.

B—Y

C+Y—25X+D

2X +Y—53X

X—E

Where B, C, D, and E are metabolites in the pathway we assume to be in equilibrium, and we

are only concerned with the concentrations of ADP (X) and F6P (Y). Utilizing the law of
mass action, we can come up with rate equations governing the system below.

dy
2Y kB

o

N v, & ooy
ot ot

dy o dX s
N exey, B xey
- K g T
X _kx

ot

Now, gathering the equations together, we get the governing rel ationships below (ie the
system of differential equations describing the system).

c:j—\t( = kB-k,CY —k,X?Y

x_ K,CY + Kk, XY -k, X
at

To non-dimensionalize the equations, we first divide both equations by ks and we make the
following substitutions.

11
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y=Y, x=X, b=ﬁ, a=k2—C,and 7=kt
ks ks

We get now the non-dimensionalized form of the equations found below.

y=Y =b-ay-xy
dr

. dx 5

X=—=ay+Xy—X

To get afeel of thisfunction, we can first solve the differential equations numerically with
ode45 and plot the value of ADP (x) and F6P (y) as afunction of time. We defined the
matlab function with the equation as shown below.

function dx = adpfun(t,x)

global a b
dx = zeros(2,1);

dx (1) = a*x(2) + (x(1)72).*x(2) - x(1);

dx(2) = b - a*x(2) - (x(1)72).*x(2);

Fixing b = ¥, we can obtain different trgjectories for different values of a as shown in the
next four plots (figure 9).

Figure 9. Traectoriesfor Variousr values
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For low values of r, there seems to be a very periodic motion over time of both concentrations
of ADP and F6P. Asthevalues of r increase, we still get a periodic function but the function

begins to decay over time until when r = 0.2, we don’t see any sustained periodicity in the
plot. To get abetter idea of the function, we can also plot each case on the phase plane

(figure 10).
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Figure 10. Phase Plane for Variousr Vaueswith b =%
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When r = 0.01 and 0.05, we can clearly see alimit cycle appearing, correlating with the fact
that we see oscillations and periodicity in the trgjectories as afunction of timein figure 9. As
r isincreased to 0.11, the limit cycleis still visible but in aslightly different shape to what is
seen with smaller values of r, but when r isincreased to 0.2, we obtain a stable spiral
correlating with the eventual diminishing of the trajectoriesin figure 9.

If we now go through the stability analysis of the system, we can obtain a better

understanding of the type of behavior seenin figures9 and 10. First, we find the fixed points
of the system by solving for x and y in the following simultaneous equations.

O=b-ay-x%y
O=ay+Xxy—x

Adding the two equations, and re-substituting our result, we obtain that the fixed point of the
system occurs at:

b
X y*)=|b,——
b¢y7) ( a+b2j
Now for the linear stability analysis of the fixed point we first obtain the Jacobian matrix:

_ 2
Jacobian(x, y):( Lr2y  atx ]

2y —(a+x?)

13
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Evaluating the trace and determinant of the Jacobian matrix will ultimately determine the
stability of our fixed point.

r=-1+2xy—-a-x
A =—(-1+2xy)a+ X?)+ 2xy(a+ x*)=a+ X

Evaluating the trace and determinant at the fixed point, (x*,y*)

b
b, :
( a+ sz

r:—1+2b( b 2]—a—b2
a+b

A=a+b?

We assume that both a and b are greater than zero, so our determinant will always be positive.
Thus, we will either have a stable or unstable node/spiral. The point at which the behavior
will flip from being stable to unstable and vice versaiswhen 7 =0. This change in stability

isreferred to as the Hopf bifurcation. We now solve for b to determine at which value of a
thiswill occur for any given value of b.

0=-1+ Zb(ij—a—b2
a+

b2
20% = (1+a+b?fa+b?)
O=a+a’+(2a-1b’ +b*

Let x=Db* and by solving the quadratic equation, we obtain:

_1-2a+y1-8a

2

x = b?

From the above equation, we can see that to maintain a and b positive and real, a is bounded
on theinterval [0, 1/8]. Furthermore, the value of b is also bounded on the interval [0, 1],
corresponding to valueswhen a=0. In our values above, for b = %, we can solve for the
value of a at which the bifurcation occurs. Thispointisat a = 0.1160. If we plot the
boundary for the values of a and b for when the system moves from a stable limit cycleto a
stable spiral (i.e. values for a and b at which the bifurcation occurs), we get the plot obtained
infigure 11.

Exploring further, we can now select values to check if the behaviour is what we predicted in
our analysis by taking values of a and b and looking at the phase plane plot. In figures 12a
and 12b, we can see that indeed, the values on the left side of the boundary in figure 11 lead
to stable limit cycles while values on the right side of the boundary lead to stable fixed points
(or spiralsto asingle point).
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Question 4: Compartmental modelsin biology and physiology

We first consider the compartmental model of glucose moving from the intestine to the blood
stream and from the blood to the other cellsin the body as shown in the diagram below.

Glucose: intestine (x)

k]_X

A 4

Glucose: blood (y)

The compartmental system above can be modelled with the following equations:

dx

—=—K X

at K
dy

2 —kx—k
p kx-k,y
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Through experimental data, it was shown that the rate constants are similar in all subjects, so
we assume that k; = k, = K, yielding the equations below.

o _
dt

dy
2 —k(x—
& (x-y)

To solve the system of differential equations, we first solve the above and substitute in the
second to get the following.

x(t)= Ae™

dy —kt
— + ky = kAe
dt Ky

To solve for y(t), we make the assumption that the solution isin the form below.
y(t)=Bte™ +C

From our initia condition y(0) = 0, we can immediately conclude that C = 0. Solving for the
value of B by differentiating and substitution, we get:

—kBte ™™ + Be™ + kBte™ = kAe ™
B =kA

Giving our general solution:

y(t) = kAte™

Matlab can also give us the solution of the differential equations with the code below.
[x y] = dsolve('Dx = -k*x', 'Dy = k*(x-y)', 'y(0) = 0')

Yielding the solution that we expected:

X =

C2*exp (-k*t)

y:

exp (-k*t) *k*C2*t

Now we know the general solution to the model, we need to see if it isagood fit to the data
provided in the files subjectl.dat and subject2.dat. We first import the datainto matlab with
the code below.

datal
data2

load ('subjectl.dat') ;
load ('subject2.dat"') ;

And defining the data imported as variables to fit the curve to:
T = datal(:,1);
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Y = datal(:,2
T2
Y2

o

Q.

@

o

@

N
N B —

We then define a function in matlab to which we want to fit our curveto, utilizing two
variables matlab will solve for.

function yhat = glucfun (beta,t)
cl = beta(l);

c2 = beta(2);

vhat = cl*c2*t.*exp(-cl*t);

Using the least squares method (function 1sgcurvefit), we can find the values of c1 and
c2 with the code below.

$Curve fitting for subject 1

cO0 = [0.01 10]; %Initial guess

n = length(T);

1imT = T(1l:n);

limY = Y(1:n);

foo = lsqcurvefit (@glucfun,c0,1limT, 1imY)

Z = foo(l)*foo(2)*1imT.*exp(-foo(1l)*1imT) ;
figure;

plot(T,Y)

hold on;

plot (1limT, Z, 'red")

hold off;

title('Subject 1 Data and Fit')

xlabel ('Time")

tsubl = 1/foo (1) %$Calculate characteristic time constant

The out values of k and A respectively are given below:
foo =

0.0167 9.9981

Where k = 0.0167 and A = 9.9981 from the general analytical solution solved above. We can
further derive the characteristic time constant 1/k = 60.0123 for the first subject.

The same method can be done to fit a curve to the data for subject 2. The output values of k
and A respectively for subject 2 are given below:
fool =

0.250 10.0744

With the characteristic time constant of 40.0303.

The plots with the original data (in blue) and the curve fits (in red) are shown below in
figures 13aand 13b.
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Figure 13a. Subject 1 Data and Fit
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Figure 13b. Subject 2 Data and Fit
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With the calculated time characteristic, we can determine that subject 1 is positive for GDM

and subject 2 is healthy. Our calculated T value for subject 1 was 60 min, which falls within
the range of 58 + 6 min characteristic of patients with GDM. The calculated T value for
subject 2 was 40 min, falling within the range of 42 £ 4 min, suggesting that this patient is

healthy.
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