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John Sy 
28 November 2007 

 
Modelling in Biology 

 
Assignment 2 

 
Question 1:  A one-dimensional model from population dynamics 
 
We are given a non-dimensionalized version of an ecological model of an insect population 
in a forest below. 
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The first source term is the logistic growth of the insects and the second sink term refers to 
the depletion of the population caused by predation.  If we first consider the simple case 
where there are no predators, we can obtain the following equation. 
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Finding the fixed points of this system is straight forward.  First, we set 0=x& , and solve for 
the values of *x , which satisfy the equation.  The fixed points of the equation are: 
 

kx ,0* =  
 

For values between 0 and k, the value of x&  is greater than 0, but for values of x above k, the 
value of x&  is less than 0, leading to the conclusion that kx =* is a stable node of the system 
while 0* =x is an unstable node.  Plotting a graph of the phase plane with the one 
dimensional flows gives us better intuition of the system. 

 
In figure 1, we can see that if we let r 
= 0.9 and k = 3, the system is 
attracted to 3* =x , the stable fixed 
point of the system.  However, since 

0* =x  is also a fixed point, if the 
initial condition was set to 0, then the 
population would also continue to be 
zero.  If this value were perturbed, 
then the population would increase to 

3* =x (the attractor of the system). 
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Figure 1. r = 0.9, k = 3, Phase Plane With Flows
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Let us now consider the complete system: 
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We can do a similar analysis to above to obtain the fixed points by setting 0=x&  and solving 
for values of x which satisfy the equation.  It can also be seen that if x is factored out, x* = 0 
is always a fixed point of the system.   
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To obtain the local stability of the problem, we can look at the gradient of the phase plot 
close to x* = 0.  If we let )(xfx =& , then we differentiate to obtain the following and evaluate 
it at x* = 0. 
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Hence, the stability of the fixed point at x* = 0 depends on the value of r.  We assume that r 
is a positive real value and we can conclude that x* = 0 is an unstable node. 
 
The other fixed points of the system can be obtained through several different methods.  The 
easiest, but least accurate is to use a geometric approach by looking at the intersection of two 
lines.  We make the following substitutions to our complete system: 
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If the value of h is above the value of g, then we can conclude that the value of x& is positive 
and the flows are in the positive direction.  The reverse holds true when the value of g is 
greater than h.  Plotting h and g on the same graph we obtain figure 2. 

 
By zooming in closer to where the 
intersection occurs, we can deduce that 
the other fixed point occurs when x* = 
1.44 to three digits of accuracy (3sf).   
 
A more accurate method would be to 
allow the computer to do a numerical 
solution to find where the two curves 
intersect (i.e. when h – g = 0).  For this 
method, we can use the fsolve 
function. 
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We define our function in a separate m file as shown below. 
 
function F = myfun(x) 
global r k 
F = r*x.*(1-(x./k)) - ((x.^2)./(1+x.^2)); 
 
Then we can call the fsolve function as shown below supplying our initial guess in the 
second argument of the function. 
 
B = fsolve(@myfun, 1) 
 
This yields the solution B = 1.4373, the second fixed point in our system.  Although zooming 
into the function gave us a pretty good estimate of the value of the fixed point, fsolve is 
much faster, more elegant, and the value is reusable in Matlab.  To analyze the stability of 
this fixed point, we can again find the slope of the phase plane as above. 
 

( ) 27.04373.1' −=f  
 
As this is a negative value, this shows that our new found fixed point is stable.  But have we 
really found all the fixed points of the system?  One method is to use the solve function to 
find all values for which x&  = 0.  This function finds all of the roots of the equation without 
having the need for initial guesses.  Multiplying out the function, it can be seen that we get a 
quartic term meaning that we should be getting 4 different fixed points to our system. 
 
A = solve('0.9*x*(1-(x/3))-((x^2)/(1+x^2))'); 
 
Which when run gives: 
A = 
  
                                                                    0. 
                                     1.4372866581082433838758550746653 
 .78135667094587830806207246266737+1.2152152275843732767755856584891*i 
 .78135667094587830806207246266737-1.2152152275843732767755856584891*i 

 
As expected, there are 4 fixed points; however, two of them are imaginary and would not be 
found using the fsolve method.  After analysis of the only two real fixed points, we can 
conclude that for almost all initial conditions (except for 0), the value of the population will 
approach x* = 1.4373, the only stable fixed point in our system.  This is less than the value 
we obtained in the absence of predators as expected.  Predation limits the growth of a 
population and the equilibrium value would be expected to be less than without predation. 
 
To further continue our stability analysis, we can perturb the values of k and r to see changes 
in the behavior of our system.  First if we fix the value of k to be 10 and see changes to the 
behaviour when we increase the value of r (0.2, 0.4, and 0.6), we can see that the number of 
fixed points increases from two to a maximum of 4 (including the one at x* = 0) and 
decreases again to two fixed points as r is increased even further (figure 3). 
 
Let us consider each value of r separately and sketch the flows on the line.  First, when r = 
0.2, there are two fixed points at 0 and 0.0204 (obtained using solve function).  They are 
unstable and stable respectively and we can plot this on the line as shown below. 
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For r = 0.2,  
 
 
 
 
For r = 0.4, 
 
 
 
 
For r = 0.6, 
 

 
 

 
Calculating for the fixed points can also be done by fsolve, knowing a priori how many 
fixed points we expect.  Interpreting the results of our stability analysis, we can infer that if r 
= 0.2, then for all initial conditions not at x = 0, then the value of the population will be 
attracted to x* = 0.02.  For r = 0.4, there are four fixed points and starting at any of the fixed 
points will cause the population to remain at the point.  However, for all initial conditions 
between 0 and 3.7, then the population will move to the stable 0.5 fixed point.  For initial 
conditions above 3.7, the population will tend to the stable 5.8 fixed point.  For r = 7.9, this is 
again similar to when we were considering r = 0.2, and for all initial conditions except 0, the 
population will tend to 7.9, the only stable fixed point of the system. 
 
An important feature of this system is that it exhibits hysteresis, or that perturbation of a 
parameter in one direction does not yield the same results as perturbation of the same 
parameter in a different direction.  We shows this by simulating a slow drift of the growth 
rate of r, which could be the result of natural selection, weeding out the slower less virile 
insects, leaving the faster insects to replicate, speeding up the growth rate.   

 
In figure 4, we can see the result of the 
hysteresis.  The blue solid line reflects the 
only fixed point found when r = 0.05.  
Increasing the values of r slowly using the 
x* value calculated as the next guess, will 
cause us to track the fixed point as we 
increase the value of r.  However, at 
approximately r = 0.6, we see that the 
fsolve function loses the fixed point and 
finds the fixed point near x* = 8 (also a 
stable fixed point).  Upon return (red 
crosses), the fsolve function finds the 
only fixed point at around x* = 8 and 
tracks that fixed point.  A bifurcation 

occurs and the fixed point is lost.  The fsolve function picks up again on the original fixed 
point until reaching r = 0.05 again.  
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Figure 3. Phase Plane with various r values

x

xd
ot

0 0.0204 

0 0.5 3.7 5.8 

0 7.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

0

1

2

3

4

5

6

7

8

9
Figure 4. r Values vs. Fixed Point - Hysteresis

r

x* ↑↓



5 
Posted online at: http://www.openwetware.org/images/0/0c/MiB_Assignment_2_write_up.doc 

Thus, in the above figure (4), we can see that the behavior of the function depends on which 
path is taken.  Two bifurcations occur on this interval, corresponding to the jumps seen in 
figure 4.  We can approximate these values by asking matlab to print the value of r when the 
exitflag = -2 (referring to when no convergent solutions are found).  Unfortunately, this only 
works when we are sampling r values on return.  To get the bifurcation on the upward 
direction, we can make the assumption that the x* value that we find will not be less than the 
previous value.  This is implemented in the code below.  The r values at which the 
bifurcations occur are at r = 0.37 and 0.57.   
 
k1 = 10; 
rvals = 0.05:0.01:0.7; 
x0 = 0.5; %The initial guess 
E(1) = x0; 
for i = 2:length(rvals)+1 
    r1 = rvals(i-1); 
    [E(i),fval,exitflagup(i)] = fsolve(@myfuna, x0); 
    if E(i) < E(i-1) 
        x0 = 8; 
        upbif = r1 %Finds first bifurcation 
    else 
        x0 = E(i); 
    end 
end 
figure; 
plot(rvals,E(2:length(rvals)+1)) 
title('Figure 4. r Values vs. Fixed Point - Hysteresis') 
xlabel('r') 
ylabel('x*') 
hold on; 
rvals1 = 0.7:-0.01:0.05; 
x0 = 8; %The initial guess 
for i = 1:length(rvals1) 
    r1 = rvals1(i); 
    [K(i),fval,exitflagdown(i)] = fsolve(@myfuna, x0); 
    if exitflagdown(i) == -2 
        x0 = 0.8; 
        downbif = r1 %Finds second bifurcation 
    else 
        x0 = K(i); 
    end 
end 
plot(rvals1,K, 'xred') 
hold off; 
 
For the bifurcation that occurs at r = 0.37, we can see that one stable and another unstable 
node collide and annihilate each other.  The same is seen for the bifurcation that occurs at r = 
0.57.  Thus we can conclude that both bifurcations are saddle nodes. 
 
For all models, it is necessary to bring it back to the biology to interpret our results.  
Outbreaks occur when we the population resides at a high fixed point value.  Following the 
plot of figure 4, we can see that the r value can be perturbed substantially before the fixed 
point is lost.  From this, we can infer that an outbreak does not readily occur so long as the r 
value is below 0.57.  Once the growth rate increases past this value, an outbreak occurs and 
the population jumps to a higher fixed point.  However, once an outbreak occurs, the r values 
must again be perturbed to r = 0.37 for the outbreak to be controlled again.  So once a 
relatively rare outbreak occurs, it takes long to disappear. 
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Question 2:  A two-dimensional (two-species) population model 
 
In this problem, we now look at the two-dimensional model of rabbits and sheep competing 
for the same food resources.  The two equations governing the growth of each species is 
shown below. 
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The population of rabbits is given by the variable x and the population of sheep by the 
variable y.   
 
If we first consider growth of both species without the competition (xy) term, then we can see 
that it follows a logistic growth curve.  We can differentiate the logistic growth curve and see 
which one has the higher maximum to determine which species reproduces faster by the 
model.   
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So rabbits are capable of reproducing 2.25 times faster than sheep (under the right conditions).  
In the absence of competition, we can also determine the maximum population level (which 
is also equal to the carrying capacity for each species) and conclude which population would 
be larger.  By solving the differential equations, we can get functions of the population of 
rabbits and sheep as a function of time with c1 and c2 being constants of integration.  The 
solution was done using the matlab commands shown below: 
 
eqns = dsolve('Dx = 3*x - x^2') 
eqns1 = dsolve('Dy = 2*y - y^2') 
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The maximum value of the population will occur as the value of t approaches infinity. 
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Here we can see that the population of rabbits reaches at equilibrium without competition is 
higher than the population of sheep.  Now let’s consider the competition term xy in both 
equations.  We can see that the population of rabbits decreases twice as fast as the population 
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of sheep since the ratio of the two competing term is 2.  Presumably, the rabbits die faster 
when there is less food available (which is related to the amount of competition).  This sink 
term is biologically interpreted as the rate of change of either the sheep or rabbits is 
dependent on the number of that species and the number of the other species while the 
numerical factor attenuates the effect of the competition depending on how quickly the 
competition takes effect. 
 
Proceeding onto the linear analysis of the system, we can find the fixed points of the system 
again using the solve function of matlab.   
 
A = solve('3*x*(1-x/3) - 2*x*y = 0','2*y*(1-y/2) - x*y = 0'); 
for i = 1:length(A.x) 
    fp(i,:) = [A.x(i) A.y(i)]; 
end 
fp 
 
The fixed points found were: 
fp = 
  
[ 0, 0] 
[ 0, 2] 
[ 3, 0] 
[ 1, 1] 

 
We can also calculate the Jacobian of the system with matlab and evaluate the Jacobian at the 
fixed points to find the eigenvalues and eigenvectors.  First, we calculate the Jacobian 
analytically. 
 
syms x y 
F = [3*x*(1-x/3)-2*x*y; 2*y*(1-y/2)-x*y]; 
v = [x,y]; 
jac = jacobian(F,v) 
 
jac = 
  
[ 3-2*x-2*y,      -2*x] 
[        -y,   2-2*y-x] 
 

And now evaluating it at each point to determine the stability of the 4 fixed points: 
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We calculate the linear stability of the nodes depending on the relative values of the trace and 
delta from the evaluated Jacobian matrix at the fixed point.   
 

Fixed Point Δ− 42τ  Stability 
(0,0) 1 Unstable Node 
(0,2) 1 Stable Node 
(3,0) 4 Stable Node 
(1,1) 8 Saddle Node 

 
We can also use matlab to draw a flow of trajectories on the phase plane (x,y) to get an 
intuition for various initial conditions to get an idea of where the function will tend to.   

 
Through looking at figure 5, it can clearly 
be seen that (0,2) and (3,0) are attracting 
points of the system.  (0,0) is a repelling 
node and initial conditions move away 
from that node and approach the other two 
stable nodes.  Although (1,1) is a saddle 
node and should be stably approachable 
along one axis, none of the initial 
conditions presented in figure 5 are exactly 
on that path.  We also notice that the axes 
also contain straight-line trajectories 
whereby any value not equal to zero will 
be driven towards the fixed point (ie the 
case of population growth without 

competition as we explored in the first part of the question). 
 
To return to the biology of our model, we can infer that since we have only two stable nodes, 
most initial conditions will tend to cause the populations to move towards those stable nodes.  
Unfortunately, the stable nodes only have one species, leading us to conclude that in the end, 
only one species can survive on any given resource unless the population is controlled very 
specifically.  Here we see the principle of competitive exclusion where two competing 
species for the same limited resource cannot typically coexist (Strogatz, p. 158).  The fixed 
point (1,1) is the only theoretical stable node where both species can live in harmony, and 
corresponds to the populations .  We can see in figure 6a and 6b this effect of competitive 
exclusion except for when the initial conditions are both (1,1). 
 
In the management of a farm, one would try to get as close as possible to the (1,1) fixed point 
to sustain the population of both species for as long as possible.  Furthermore, initial 
conditions along the stable manifold, the special trajectory which dives into the saddle point, 
the population of the farm would remain stable.  With our currently knowledge of systems, it 
is difficult to say exactly which initial values lie on this stable manifold, but as we can see 
with our phase diagram, it lies somewhere between the two trajectories flanking a line going 
closest to the (1,1) fixed point.  This fixed point refers to the concentration or density of each 
species in the farm.  Only if we have the density of 1 sheep and 1 rabbit per unit area will be 
have a stable population of animals.  If there would be two sheep and two rabbits per unit 
area, this would no longer be on the stable manifold and the population would tend to another 
fixed point and competitive exclusion holds again. 
 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Figure 5. Trajectories on the Phase Plane

Rabbits

S
he

ep



9 
Posted online at: http://www.openwetware.org/images/0/0c/MiB_Assignment_2_write_up.doc 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
Figure 6a. Rabbits Over Time

Time

R
ab

bi
ts

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
Figure 6b. Sheep Over Time

Time

R
ab

bi
ts

 
 
If we slightly change the form of the equations to the ones below, we see a different 
behaviour altogether.   
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In this model, we see that the competition term is the same for both rabbits and sheep 
meaning that they both will die just as fast for given levels of population.  For every one 
sheep that dies, there will be one rabbit that dies.  We also have a slight change in the 
carrying capacity of the rabbit population.  Instead of the fixed point when no competition 
occurs being at x* = 3, it now occurs at x* = 3/2, or half the previous population.  We can do 
a similar analysis to above and obtain the fixed points and trajectories of the system to 
become more aware of the consequences of these small changes we have made. 
 
The new fixed points are: 
nfp = 
  
[   0,   0] 
[   0,   2] 
[ 3/2,   0] 
[   1,   1] 

 
And the stability analysis of these points using the Jacobian matrix: 
jac1 = 
  
[ 3-4*x-y,      -x] 
[      -y, 2-2*y-x] 
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We calculate the linear stability of the nodes depending on the relative values of the trace and 
delta from the evaluated Jacobian matrix at the fixed point.   
 

Fixed Point Δ− 42τ  Stability 
(0,0) 1 Unstable Node 
(0,2) 9 Saddle Node 

(3/2,0) 4
49  Saddle Node 

(1,1) 5 Stable Node 
 
From the stability analysis, we see that (1,1) has now become a stable node while (3/2,0) and 
(0,2), the nodes corresponding to only rabbits or only sheep existing, are saddle nodes.  We 
can guess that the stable manifold to these saddle nodes would be along the axes where there 
is exclusively one species in the population.  Otherwise, we expect the population approach 
the stable node at (1,1).  In this case, both populations can coexist harmoniously so long as 
the initial conditions are correct.  Below in figure 7 we see a phase portrait of the system with 
a few trajectories. 

 
In figures 8a and 8b below, we can see the 
effect over time of the model.  Although 
there are trajectories over time going to 1.5 
for rabbits and 2 for sheep, this corresponds 
to the other population being set to 0.  All 
other trajectories over time will converge to 
1 (except of course when both populations 
are zero).  In this model, the management of 
a farm is simple as the population of both 
species will tend to (1,1) equilibrium over 
time. 
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Question 3:  The production of energy in yeast:  a model for glycolysis 
 
In this problem we attempt to analyze one section of the metabolism of glucose, specifically 
the energy input stage of glycolysis or the conversion of glucose first into glyceraldehyde-3-
phosphate (G3P) and then into pyruvate, the final product of glycolysis.  In the first reaction, 
glucose (B) is converted to F6P (fructose-6-phosphate) (Y) by a hexokinase enzyme.  The 
next enzyme in the pathway, phosphofructokinase, is a rate limiting step for glycolysis and 
hydrolyses ATP (C) into ADP (X) and transferring the phosphate group to F6P making 
F1,6BP (fructose-1,6-bisphosphate) (D).  This step is one of the rate limiting steps of 
glycolysis as it synthesizes a high energy intermediate which can then undergo a series of 
exothermic reaction to release energy ultimately in the form of ATP.  Later in the glycolysis 
pathway, F6P is converted to 2 molecules of G3P.  The G3P is then converted to pyruvate, 
each G3P molecule releasing 2 molecules of ATP, and is the final product of glycolysis. 
 
Identifying the key steps in this pathway, we come up with the 4 chemical equations below. 
 

EX

XYX

DXYC

YB

k

k

k

k

⎯→⎯

⎯→⎯+

+⎯→⎯+

⎯→⎯

3

3

2

1

32
 

 
Where B, C, D, and E are metabolites in the pathway we assume to be in equilibrium, and we 
are only concerned with the concentrations of ADP (X) and F6P (Y).  Utilizing the law of 
mass action, we can come up with rate equations governing the system below. 
 

Xk
dt
dX

YXk
dt
dXYXk

dt
dY

CYk
dt
dXCYk

dt
dY

Bk
dt
dY

3

2
3

2
3

22

1

,

,

−=

=−=

=−=

=

 

 
Now, gathering the equations together, we get the governing relationships below (ie the 
system of differential equations describing the system). 
 

XkYXkCYk
dt
dX

YXkCYkBk
dt
dY

3
2

32

2
321

−+=

−−=

 

To non-dimensionalize the equations, we first divide both equations by k3 and we make the 
following substitutions. 
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Yy = , Xx = , 
3

1

k
Bkb = , 

3

2

k
Cka = , and tk3=τ  

 
We get now the non-dimensionalized form of the equations found below. 
 

xyxay
d
dxx

yxayb
d
dyy

−+==

−−==

2

2

τ

τ

&

&

 

 
To get a feel of this function, we can first solve the differential equations numerically with 
ode45 and plot the value of ADP (x) and F6P (y) as a function of time.  We defined the 
matlab function with the equation as shown below. 
 
function dx = adpfun(t,x) 
global a b 
dx = zeros(2,1); 
dx(1) = a*x(2) + (x(1)^2).*x(2) - x(1); 
dx(2) = b - a*x(2) - (x(1)^2).*x(2); 
 
Fixing b = ½, we can obtain different trajectories for different values of a as shown in the 
next four plots (figure 9). 
 

Figure 9.  Trajectories for Various r values 
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For low values of r, there seems to be a very periodic motion over time of both concentrations 
of ADP and F6P.  As the values of r increase, we still get a periodic function but the function 
begins to decay over time until when r = 0.2, we don’t see any sustained periodicity in the 
plot.  To get a better idea of the function, we can also plot each case on the phase plane 
(figure 10). 
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Figure 10.  Phase Plane for Various r Values with b = ½  
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When r = 0.01 and 0.05, we can clearly see a limit cycle appearing, correlating with the fact 
that we see oscillations and periodicity in the trajectories as a function of time in figure 9.  As 
r is increased to 0.11, the limit cycle is still visible but in a slightly different shape to what is 
seen with smaller values of r, but when r is increased to 0.2, we obtain a stable spiral 
correlating with the eventual diminishing of the trajectories in figure 9. 
 
If we now go through the stability analysis of the system, we can obtain a better 
understanding of the type of behavior seen in figures 9 and 10.  First, we find the fixed points 
of the system by solving for x and y in the following simultaneous equations. 
 

xyxay
yxayb

−+=
−−=
2

2

0
0

 

 
Adding the two equations, and re-substituting our result, we obtain that the fixed point of the 
system occurs at: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

+
= 2,**,

ba
bbyx  

 
Now for the linear stability analysis of the fixed point we first obtain the Jacobian matrix: 
 

( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛

+−−
++−

= 2

2

2
21

,
xaxy

xaxy
yxJacobian  
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Evaluating the trace and determinant of the Jacobian matrix will ultimately determine the 
stability of our fixed point. 
 

( )( ) ( ) 222

2

221
21

xaxaxyxaxy
xaxy

+=++++−−=Δ

−−+−=τ
 

 

Evaluating the trace and determinant at the fixed point, ( ) ⎟
⎠
⎞

⎜
⎝
⎛

+
= 2,**,

ba
bbyx : 

2

2
221

ba

ba
ba

bb

+=Δ

−−⎟
⎠
⎞

⎜
⎝
⎛

+
+−=τ

 

 
We assume that both a and b are greater than zero, so our determinant will always be positive.  
Thus, we will either have a stable or unstable node/spiral.  The point at which the behavior 
will flip from being stable to unstable and vice versa is when 0=τ .  This change in stability 
is referred to as the Hopf bifurcation.  We now solve for b to determine at which value of a 
this will occur for any given value of b.   
 

( )( )
( ) 422

222

2
2

120
12

210

bbaaa
babab

ba
ba

bb

+−++=

+++=

−−⎟
⎠
⎞

⎜
⎝
⎛

+
+−=

 

 
Let 2bx =  and by solving the quadratic equation, we obtain: 
 

2
81212 aabx −±−==  

 
From the above equation, we can see that to maintain a and b positive and real, a is bounded 
on the interval [0, 1/8].  Furthermore, the value of b is also bounded on the interval [0, 1], 
corresponding to values when a = 0.    In our values above, for b = ½, we can solve for the 
value of a at which the bifurcation occurs.  This point is at a = 0.1160.  If we plot the 
boundary for the values of a and b for when the system moves from a stable limit cycle to a 
stable spiral (i.e. values for a and b at which the bifurcation occurs), we get the plot obtained 
in figure 11.   
 
Exploring further, we can now select values to check if the behaviour is what we predicted in 
our analysis by taking values of a and b and looking at the phase plane plot.  In figures 12a 
and 12b, we can see that indeed, the values on the left side of the boundary in figure 11 lead 
to stable limit cycles while values on the right side of the boundary lead to stable fixed points 
(or spirals to a single point). 
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Question 4:  Compartmental models in biology and physiology 
 
We first consider the compartmental model of glucose moving from the intestine to the blood 
stream and from the blood to the other cells in the body as shown in the diagram below. 
 

 
The compartmental system above can be modelled with the following equations: 
 

ykxk
dt
dy

xk
dt
dx

21

1

−=

−=
 

 

Glucose: intestine (x) Glucose: blood (y) 
k1x k2y 
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Through experimental data, it was shown that the rate constants are similar in all subjects, so 
we assume that k1 = k2 = k, yielding the equations below. 
 

( )yxk
dt
dy

kx
dt
dx

−=

−=
 

 
To solve the system of differential equations, we first solve the above and substitute in the 
second to get the following. 
 

( )
kt

kt

kAeky
dt
dy

Aetx

−

−

=+

=
 

 
To solve for y(t), we make the assumption that the solution is in the form below. 
 

( ) CBtety kt += −  
 
From our initial condition y(0) = 0, we can immediately conclude that C = 0.  Solving for the 
value of B by differentiating and substitution, we get: 
 

kAB
kAekBteBekBte ktktktkt

=
=++− −−−−

 

 
Giving our general solution: 
 

( ) ktkAtety −=  
 
Matlab can also give us the solution of the differential equations with the code below. 
 
[x y] = dsolve('Dx = -k*x', 'Dy = k*(x-y)', 'y(0) = 0') 
 
Yielding the solution that we expected: 
 
x = 
C2*exp(-k*t)  
y = 
exp(-k*t)*k*C2*t 
 
Now we know the general solution to the model, we need to see if it is a good fit to the data 
provided in the files subject1.dat and subject2.dat.  We first import the data into matlab with 
the code below. 
 
data1 = load('subject1.dat'); 
data2 = load('subject2.dat'); 
 
And defining the data imported as variables to fit the curve to: 
T = data1(:,1); 
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Y = data1(:,2); 
T2 = data2(:,1); 
Y2 = data2(:,2); 
 
We then define a function in matlab to which we want to fit our curve to, utilizing two 
variables matlab will solve for. 
 
function yhat = glucfun(beta,t) 
c1 = beta(1); 
c2 = beta(2); 
yhat = c1*c2*t.*exp(-c1*t); 
 
Using the least squares method (function lsqcurvefit), we can find the values of c1 and 
c2 with the code below. 
 
%Curve fitting for subject 1 
c0 = [0.01 10]; %Initial guess 
n = length(T); 
limT = T(1:n); 
limY = Y(1:n); 
foo = lsqcurvefit(@glucfun,c0,limT,limY) 
Z = foo(1)*foo(2)*limT.*exp(-foo(1)*limT); 
figure; 
plot(T,Y) 
hold on; 
plot(limT,Z,'red') 
hold off; 
title('Subject 1 Data and Fit') 
xlabel('Time') 
tsub1 = 1/foo(1) %Calculate characteristic time constant 
 
The out values of k and A respectively are given below: 
foo = 
 
    0.0167    9.9981 
 
Where k = 0.0167 and A = 9.9981 from the general analytical solution solved above.  We can 
further derive the characteristic time constant 1/k = 60.0123 for the first subject. 
 
The same method can be done to fit a curve to the data for subject 2.  The output values of k 
and A respectively for subject 2 are given below: 
foo1 = 
 
0.250 10.0744 

 
With the characteristic time constant of 40.0303. 
 
The plots with the original data (in blue) and the curve fits (in red) are shown below in 
figures 13a and 13b. 
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Figure 13a. Subject 1 Data and Fit
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Figure 13b. Subject 2 Data and Fit
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With the calculated time characteristic, we can determine that subject 1 is positive for GDM 
and subject 2 is healthy.  Our calculated T value for subject 1 was 60 min, which falls within 
the range of 58 ± 6 min characteristic of patients with GDM.  The calculated T value for 
subject 2 was 40 min, falling within the range of 42 ± 4 min, suggesting that this patient is 
healthy.   


