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Regulatory RNA interactions
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RNA’s ability to form complex structures that can interact with other RNA mol

ecules, proteins, and small molecules enable sophisticated behavior.



Synthetic riboregulator is able to trans-activate
the translation of a cis-repressed gene
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Thermodynamic scheme of SRNA-mRNA int

eraction

>

Free Energy

Fig.

Unfolded stat 1
RNA interaction
—— ~ .
Transition

state

------------------ P55 /

Individual j% Intermolecular | AG,
folding state

folding state g

v

1A

nnnnnnn

Reaction Coordinate



General concepts in their computational approach

Inverse folding Watson-Crick Monte Carlo
problem Base pairing Simulated annealing
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Computational design of SRNA circuit

B Optimization
scheme
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Engineered RNA devices
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A closer look at device RAJ11
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The making of a device

* Both cis and trans elements
were expressed in a single pl
asmid, but in opposite direc
tions
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Cis repression of the RBS is very effective.

In the cis repressed form, the RBS
site is blocked
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Measuring device response

e Maximum activation fold of 11.2
 4/6 devices had activation fold |

ower than 5
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Measuring device response

Negative control Without sRNA
. . . Positive control With sRNA
e Maximum activation fold of 11.2
* 4/6 devices had activation fold Flow Cytometry Data
Negative control: no RBS
lower than 5

Positive control: open RBS
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Measuring device response

* Fluorometry and flow cytometry were used to measure
GFP fluorescence independently

e Results varied by scale, but both methods increased
together with high correlation
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The six devices were orthogonal in vivo.

5-UTR
. . B :tes58gs
 Computational prediction of \)@ R EEE
orthogonality at 1 uM and -
. transRAJ11
100 uM initial conc CansRAL2
‘2( transRAJ21
Flgure 4B. % transRAJ22
transRAJ23
transRAJ31
- N ™ N O v
@ - = 0N N N ™
NEEEEEE
N g 8 4 4 8 9
transRAJ11
transRAJ12
Figure S11. transRAJ21
transRAJ22
transRAJ23
transRAJ31

l100

50

0

Fraction bound



The six devices were orthogonal in vivo.

 Computational prediction of
orthogonality at 1 uM and
100 uM initial conc
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RAJ11 device successfully used in an AND gate.

 aTcand IPTG used as system inducers.
— Sound familiar?

* Gate activation quantified by fluorescence

Figure 5A.

A AND logic gate
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RAJ11 device successfully used in an AND gate.
 RAJ11 exhibits AND gate functionality, as tested by fluorometry

* A computational transfer function was computed based on
model equation and experimental results.
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Strengths
Engineer devices using a systematic algorithm!

Work done in context of cell

— Predetermined structures known to be stable in vivo

Both cis and trans elements expressed on same plasmid
— SRNA and mRNA transcribed locally

RNA regulated gates faster than protein regulated gates

Implement the device on your favorite gene!



Discussion

* Key assumptions
— Modeling using only base pair interactions, not secondary structure
— lIgnores kinetics of folding process

— Initial interactions between sRNA and mRNA caused by unpaired nucl
eotides only

e Weaknesses

— AND gate governed by the same two molecules in previous papers
(aTc and IPTG)

— Premature / inefficient transcription may occur
— Was the algorithm successful?
— Poor presentation of ideas in paper



Questions?



L0LOSd

EcoRI Xbal

KanR



100

Cell counts

1004

Cell counts

RAJ11

754

(4]
o
N

Fluorescence (arbitrary units)

RAJ22

10° 10

Fluorescence (arbitrary units)

4

Negative control

Without sSRNA

Positive control With sRNA
RAJ12 RAJ21
100 100
75: 75;
2 2
3 50- 3
o 8 50'
ol 3
© 2 © 2]
0- S N 0. |
1" 10" 10° 10" 10’ 10° 10" 10® 10’ 10’
Fluorescence (arbitrary units) Fluorescence (arbitrary units)
RAJ23 RAJ31

100

Cell counts

10° 10" 10°  10°  10°

Fluorescence (arbitrary units)

100

-~
o
PR TR

Cell counts
o
o

254

4

10" 10" 10° 10" 10

Fluorescence (arbitrary units)



