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SUMMARY

Aging-associated muscle insulin resistance has
been hypothesized to be due to decreased mito-
chondrial function, secondary to cumulative free
radical damage, leading to increased intramyocellu-
lar lipid content. To directly test this hypothesis, we
examined both in vivo and in vitro mitochondrial
function, intramyocellular lipid content, and insulin
action in lean healthy mice with targeted overexpres-
sion of the human catalase gene to mitochondria
(MCAT mice). Here, we show that MCAT mice are
protected from age-induced decrease in muscle
mitochondrial function (~30%), energy metabolism
(~7%), and lipid-induced muscle insulin resistance.
This protection from age-induced reduction in mito-
chondrial function was associated with reduced
mitochondrial oxidative damage, preserved mito-
chondrial respiration and muscle ATP synthesis,
and AMP-activated protein kinase-induced mito-
chondrial biogenesis. Taken together, these data
suggest that the preserved mitochondrial function
maintained by reducing mitochondrial oxidative
damage may prevent age-associated whole-body
energy imbalance and muscle insulin resistance.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) and impaired glucose tolerance
affect ~40% of the population over the age of 65 (Harris et al.,
1998), and more than half of the 16 million Americans estimated
to have T2DM are over age 60 (NDIC, 2002). However, the under-
lying mechanism for the increased prevalence of T2DM associ-

ated with aging is unknown. Using multinuclear magnetic reso-
nance spectroscopy (MRS) to directly assess rates of muscle
mitochondrial oxidative phosphorylation activity and intramyocel-
lular lipid content in vivo, Petersen et al. found that healthy lean
elderly individuals had an ~35% reduction in basal rates of muscle
mitochondrial oxidative phosphorylation activity, which was asso-
ciated with an ~30% increase in intramyocellular lipid content and
severe muscle insulin resistance (Petersen et al., 2003). These
results led to the hypothesis that age-associated reductions in
muscle insulin sensitivity may be secondary to reduced mitochon-
drial activity, resulting in increased intramyocellular lipid content,
leading to defective insulin signaling (Griffin et al., 1999; Shulman,
2000; Yu et al., 2002). However, it remains to be determined
whether the increased intramyocellular lipid content and muscle
insulin resistance associated with aging is a cause or conse-
quence of the mitochondrial dysfunction. Furthermore, the nature
of the mitochondrial dysfunction associated with aging remains
unknown. Although cumulative oxidative stress has been
proposed to cause age-associated reductions in mitochondrial
function (Cadenas and Davies, 2000; Jang et al., 2009; Pérez
et al., 2008; Shigenaga et al., 1994; Stadtman, 2002; Wei et al.,
1998), this remains a controversial topic (Anderson et al., 2009;
Bashanetal., 2009; Bonnard et al., 2008; Evans et al., 2005; Hous-
tis et al., 2006; Loh et al., 2009; Ristow et al., 2009), and in vivo
studies assessing the potential role of oxidative stress in causing
muscle mitochondrial function are lacking.

In order to directly examine whether age-associated reduc-
tions in mitochondrial function were due to cumulative oxidative
damage, and whether age-associated reductions in muscle
mitochondrial function would lead to intramyocellular lipid
accumulation and muscle insulin resistance, we examined both
in vitro and in vivo mitochondrial function as well as intramus-
cular lipid content and insulin action in young and lean healthy
old mice with targeted overexpression of human catalase to the
mitochondria (MCAT). Whole-body and tissue-specific effects of
insulin were assessed in awake young and old wild-type (WT)
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and MCAT mice using a hyperinsulinemic-euglycemic clamp in
combination with *H/'“C-labeled glucose, and in vivo rates of
muscle mitochondrial ATP synthesis were assessed in vivo using
S'P-MRS.

RESULTS

MCAT Protects Mitochondria from Cumulative Oxidative
Damage and Age-Associated Reductions in
Mitochondrial Function

As an index of reactive oxygen species (ROS)-induced mito-
chondrial damage and oxidative phosphorylation activity, we
examined muscle mitochondrial hydrogen peroxide (H2Oy)
production, mitochondrial DNA (mtDNA) damage, oxidative
protein carbonylation, mitochondrial oxygen consumption, and
in vitro and in vivo muscle mitochondrial ATP synthesis in age/
weight-matched young and old WT and MCAT mice. The mito-
chondrial targeted catalase is mainly overexpressed in both
slow- and fast-twitch muscle tissues (Figure S1A), and catalase
overexpression attenuated muscle mitochondrial H,O, produc-
tion by ~45% in both young and old MCAT mice compared to

associated with reductions in both

state lll and state IV oxygen consumption
(Figures 1E and S1D) and decreased rates of muscle mitochon-
drial ATP synthesis (Figure 1F) assessed by in vivo 3'P-MRS. In
contrast, old MCAT mice were protected from these age-associ-
ated reductions in both in vitro and in vivo mitochondrial function
(Figures 1E and 1F).

MCAT Protects Mice from Age-Associated Reductions

in Whole-Body Energy Metabolism

To assess the impact of preserved mitochondrial function on
age-associated changes in whole-body energy metabolism,
body composition-matched young and old MCAT and WT
mice were studied by indirect calorimetry. Consistent with
the decreased mitochondrial oxygen consumption and ATP
synthesis observed in the old WT mice, whole-body oxygen
consumption (VO,) and energy expenditure were decreased by
6.8% and 6.9%, respectively, in old WT mice compared to young
WT mice (Figures 2A and S2A). In contrast, old MCAT mice were
protected from these age-associated reductions in oxygen
consumption, CO, production, and energy expenditure (Figures
2B, 2D, and S2B). Body weights and body fat composition
were identical between young MCAT and WT mice, with similar
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Figure 2. Whole-Body Energy Metabolism

(A-F) Whole-body oxygen consumption (VO,) (A),
CO, production (VCO,) (C), and respiratory
quotient (E) in young and old WT and MCAT mice
during 72 hr analysis. Also shown are hour-to-
hour average VO, (B), VCO, (D), and respiratory
quotient (F) in old WT and MCAT mice during
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24:00 6:00 in young groups; n = 12-15 in old groups.

*p < 0.05; **p < 0.01; ***p < 0.001 by ANOVA with
post hoc analysis.
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Although basal rates of hepatic glucose
production were slightly increased in the

24:00 6:00

A 3500 * o B 400 Light Cycle
—_ || | — 3500
= =
~ £ 3000 > o =
g 2 / > g‘ 30004 %
= 7 / = %
£
E 2500 / % = 2500
2000 % //: 2000 .
WT MCAT 6:00 12:00
Young Old
C D
3500 -
3500 Light Cycle
*
o E 3000 1 o £ 3000
2 o2
> = 7 > ‘=E‘
E, 2500 % % £ 2500{ g ¥
v " 2000+— ,
WT  MCAT WT  MCAT 6:00 12:00
Young Old
E
€ k=
8 " k3
5 3 100
S 095 NS ]
<3 <3
> — - >
S 0.90 1 7 p, =
g // /// g
© / ©
= ] =
8 0 / / z
& A A & 080 .
WT MCAT WT  MCAT 6:00 12:00
Young Old

increases in body weight occurring with aging in both groups
(Table S1). There were no differences in respiratory exchange
rate (Figures 2E and 2F) or locomotor activity (Figures S2E and
S2F) between the young and old WT and MCAT mice, although
there was a tendency for the old MCAT mice to have a slight
increase in food intake compared to the old WT mice (Figures
S2C and S2D), which may explain the similar body weights
and body composition in the old WT and MCAT mice despite
an ~7% increase in whole-body energy expenditure in the old
MCAT mice. Taken together, these data demonstrate that aging
is associated with ROS-induced mitochondrial damage, which is
associated with reductions in muscle mitochondrial function and
whole-body energy metabolism, and that these changes are pre-
vented by overexpression of catalase in mitochondria.

Age-Associated Reductions in Mitochondrial Function
Predispose Aged Mice to Intramyocellular Lipid
Accumulation and Insulin Resistance

To determine whether protection from age-associated reduc-
tions in muscle mitochondrial function would result in protection
from age-associated muscle insulin resistance, we performed
hyperinsulinemic-euglycemic clamp studies in the body compo-
sition-matched young and old WT and MCAT mice. Old WT mice
were markedly insulin resistant, as reflected by a 35% reduction
in the glucose infusion rate (GIR) required to maintain euglycemia

18:00

2200 oo old versus young WT mice, there were

wn o differences in basal rates of hepatic

glucose production (Table S1) or sup-

pression of hepatic glucose production

during the hyperinsulinemic-euglycemic

clamp between the WT and MCAT mice (Table S2). Fasting

plasma glucose and insulin concentrations were similar between
WT and MCAT mice (Table S1).

Insulin resistance in skeletal muscle has been attributed to
increases in diacylglycerol (DAG) content, which in turn activates
protein kinase C-0 (PKCO) and inhibits insulin signaling at the
level of IRS-1 tyrosine phosphorylation (Griffin et al., 1999;
Shulman, 2000; Yu et al., 2002). Consistent with this hypothesis,
skeletal muscle membrane DAG content was increased by
~70% in the old WT mice (Figure 3D) and was associated with
increased PKC6 activation, as reflected by increased PKC6
translocation to the plasma membrane (Figure 3E) and by
a ~30% reduction in insulin activation of AKT2 (Figure 3F). In
contrast, MCAT mice exhibited no increases in membrane
DAG content or PKC6 activation and similar activation of AKT2
compared to young WT and MCAT mice (Figures 3D-3F).
Thus, catalase overexpression in the mitochondria prevented
muscle mitochondrial dysfunction, which in turn prevented
increases in intramuscular DAG content, PKCO activation, and
muscle insulin resistance.

MCAT Reduce the Aging-Associated Declines

in Mitochondrial Biogenesis

AMP-activated protein kinase (AMPK) is a critical regulator of
mitochondrial biogenesis (Bergeron et al., 2001; Hardie, 2007;
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Zong et al., 2002), and aging is associated with a reduction in
AMPK-induced mitochondrial biogenesis (Reznick et al., 2007).
In the present study, age-associated decline in AMPK activation
was also observed. Specifically, the ratio of phosphorylated
AMPK™'72 (0-AMPK™72) to AMPKa. protein levels in skeletal
muscle of WT mice was decreased and was accompanied by
decreased acetyl-CoA carboxylase (ACC2) phosphorylation
and decreased PGC-1a expression (Figure 4A). Furthermore,
there were morphological changes in mitochondrial structure
during aging, mainly in size and density (Figure 4B). The intra-
myofibrillar mitochondrial density in soleus muscle was reduced
by ~27% in old WT mice compared to young WT mice (Figures
4C and 4D). In contrast, MCAT mice were protected from these
age-associated declines in AMPK activity (Figure 4A) and mito-
chondrial density (Figures 4C and 4D). Consistent with this
finding of protection from age-associated reductions in mito-
chondrial density, we found a similar pattern of reduced VDAC
mitochondrial membrane protein expression in the gastrocne-
mius and quadriceps muscles of the old WT mice, which in
contrast was normal in the old MCAT mice (Figure S3).

responsiveness in young and old WT

and MCAT mice. Using this approach,
we found that overexpression of catalase in mitochondria pre-
vented age-associated mitochondrial damage and age-associ-
ated reductions in muscle mitochondrial function. Furthermore,
we found that prevention of age-associated reduction in muscle
mitochondrial function prevented age-associated increases
in muscle DAG content, PKCO activation, and muscle insulin
resistance. These studies support the hypothesis that age-asso-
ciated reductions in mitochondrial function predispose to intra-
myocellular lipid accumulation, PKC6 activation, and muscle
insulin resistance (Lowell and Shulman, 2005; Morino et al.,
2006; Petersen et al., 2003). We also found that the overexpres-
sion of catalase in mitochondria protected mice from age-asso-
ciated reductions in muscle AMPK activity and mitochondrial
biogenesis (Reznick et al., 2007). This data demonstrates that
overexpression of catalase in mitochondria prevents age-asso-
ciated (1) reduction in muscle mitochondrial function in vivo; (2)
decreases in whole-body oxygen consumption; (3) increases in
muscle DAG content, PKC6 activity, and muscle insulin resis-
tance; and (4) decreases in AMPK activity and reductions in
mitochondrial biogenesis.
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Figure 4. AMPK Activity and Mitochondrial
Density in Skeletal Muscle in Young and
Old WT and MCAT Mice

(A) Representative immunoblots and densito-
metric quantification for p-AMPK''72, p-ACC25212,
and PGC-1a in quadriceps muscle (n = 4-6 per
group).

(B) Representative figures for the intramyofibrillar
mitochondria (arrows) in soleus skeletal muscle.
(C and D) Mitochondrial density in soleus muscle
(C) and the percent of declines in mitochondrial
density between WT and MCAT during aging
(n = 3-5 per group) (D).

(E) Schematic figure of the potential effect of mito-
chondrial oxidative damage on insulin sensitivity.
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Taken together, these findings support the hypothesis that
age-associated reductions in mitochondrial function are due to
mitochondrial-generated ROS production, which contributes to
the pathogenesis of age-associated muscle insulin resistance
and T2DM. Furthermore, these data suggest that therapies tar-
geted to reduce mitochondrial oxidative damage may prevent
these age-associated changes.

EXPERIMENTAL PROCEDURES

Animals

Details of the generation of the mice overexpressing mitochondrial catalase
(MCAT) used in this study have been described previously (Schriner et al.,
2005). The ~3- to 6-month-old (young) and ~15- to 18-month-old (old) male
MCAT mice and their age-matched littermate WT control male mice were
used. To minimize environmental differences, mice were individually housed
for at least 2 weeks before each experiment. Fat and lean body composition
were assessed by 'H-nuclear-MRS (Bruker BioSpin; Billerica, MA) on WT
and MCAT mice and expressed as percentages of total body weight. A
comprehensive animal metabolic monitoring system (CLAMS) (Columbus
Instruments; Columbus, OH) was used to evaluate VO,, VCO,, respiratory

A\

—*TDAGIPKCB -

MCAT MCAT mice using MITO-ISO kit (Sigma) according

to the manufacturer’s instructions. Maximal mito-
chondrial H,O, production was measured using
dichlorodihydrofluorescein diacetate in the pres-
ence of horseradish peroxidase as described
(Andrews et al., 2008). Data are expressed as arbi-
trary fluorescence units (RFU). Protein concentra-
tion was determined by the Bradford method.

Mitochondrial DNA Damage and Oxidative

Protein Carbonylation

Total genomic DNA was isolated from snap-frozen

gastrocnemius skeletal muscle, and mtDNA copy
number and integrity were determined using the QPCR method established
by Van Houten and colleagues (Santos et al., 2006). Specific primers were
used to amplify a fragment of the B-globin gene (13.5 kb) to determine nuclear
DNA integrity, a large fragment of mtDNA (8.9 kb) to determine mtDNA integ-
rity, and a small fragment (221 bp) of the mitochondrial genome to monitor
changes in mtDNA copy number and to normalize the data obtained when
amplifying the 8.9 kb fragment. Relative amplifications were calculated,
comparing each group with the average of young WT, and used to estimate
the lesion frequency, expressed as number of lesions per 10 kb, assuming
a Poisson distribution of lesions on the template. Sensitivity limit of the tech-
nique is 1 lesion/10° bases. Oxidative protein carbonylation in both skeletal
muscle (quadriceps) lysate and the isolated mitochondrial protein were
measured by a western blot method using OxyBlot Protein Oxidation Detec-
tion Kit (Millipore).

Mitochondrial Oxygen Consumption

Skeletal muscle mitochondria were isolated from mixed hindlimb skeletal
muscle (quadriceps and gastrocnemius) from overnight-fasted animals, and
oxygen consumption was assessed as previously described (Andrews et al.,
2008) using a Clark-type oxygen electrode (Hansatech Instruments; Norfolk,
UK) at 37°C with succinate (10 mM). State Il respiration was obtained by add-
ing ADP, and state IV respiration was obtained by adding oligomycin.
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Unidirectional Rate of Muscle ATP Synthesis by In Vivo *'P-MRS
After an overnight fast, the mouse was sedated using ~1% isoflurane, and the
left hindlimb was positioned under a 15 mm diameter 3'P surface coil.
The unidirectional rate of muscle ATP synthesis (Vatp) Was assessed by
3'p saturation-transfer MRS using a 9.4 T superconducting magnet (Magnex
Scientific; Oxford, UK) interfaced to a Bruker BioSpec console as described
previously (Choi et al., 2008).

Hyperinsulinemic-Euglycemic Clamp Study

Seven days prior to the hyperinsulinemic-euglycemic clamp studies,
indwelling catheters were placed into the right internal jugular vein extending
to the right atrium. After an overnight fast, [3-*H]glucose (HPLC purified)
(PerkinElmer) was infused at a rate of 0.05 pnCi/min for 2 hr to assess the basal
glucose turnover, and a hyperinsulinemic-euglycemic clamp in awake mice
was conducted for 140 min with a primed/continuous infusion of human insulin
(152.8 pmol/kg prime, 21.5 pmol/kg/min infusion) (Novo Nordisk; Princeton,
NJ) as described previously (Samuel et al., 2006). During the clamp, plasma
glucose was maintained at basal concentrations (~120 mg/dl). Rates of basal
and insulin-stimulated whole-body glucose fluxes and tissue glucose uptake
were determined by bolus (10 pCi) injection of 2-deoxy-D-[1-'*C]glucose
(2-DOG) (PerkinElmer) as described (Samuel et al., 2006; Zhang et al., 2010).

Tissue Lipid Measurements

DAG extraction and analysis in both cytosolic and membrane samples from
quadriceps muscle were performed as previously described (Neschen et al.,
2005; Yu et al., 2002). Total DAG content was expressed as the sum of indi-
vidual DAG species. Tissue triglyceride was extracted using the method of
Bligh and Dyer (Bligh and Dyer, 1959) and measured using a DCL Triglyceride
Reagent (Diagnostic Chemicals Ltd.; Oxford, CT).

Insulin and AMPK Signaling Assays
AKT2 activity and PKC6 membrane translocation were assessed in protein
extracts from gastrocnemius and quadriceps muscle, respectively, harvested
after hyperinsulinemic-euglycemic clamp study using the methods previously
described (Alessi et al., 1996; Choi et al., 2007; Samuel et al., 2004).
P-AMPK™'72 PGC-14, and phosphorylated ACC2 (p-ACC2) were assessed
in protein extracts from quadriceps muscle harvested after overnight fasting.
Immunoblots were quantified from multiple exposures using Imaged (NIH).
Relative values from band intensities normalized to actin were calculated
comparing each sample with the average of young WT. The primary anti-
bodies used in the current study were as follows: PKC6 (Santa Cruz Biotech-
nology; Santa Cruz, CA), p-AMPK"'72 (Cell Signaling; Danvers, MA), AMPKa.
(Cell Signaling), pan-actin (Cell Signaling), GAPDH (Cell Signaling), PGC-1a
(Santa Cruz), phospho-ACC2%%'2 (Santa Cruz), and Catalase (Abcam;
Cambridge, MA).

Mitochondrial Density Assessed by Transmission Electron
Microscopy
Mitochondrial density was assessed by transmission electron microscopy for
soleus muscle as described (Morino et al., 2005). For each sample, five images
of three random sections of individual muscle were taken. The average volume
density of these 15 images was used to estimate the mitochondrial volume
density for each muscle.

The study was conducted and analyzed at the Electron Microscopy Core
Facility, Yale School of Medicine. Images were acquired using a Tecnai
Biotwin TEM at 80 kV, using a Morada CCD and iTEM software.

Statistics

Values are expressed as mean + SEM. The significance of the differences in
mean values between two groups was evaluated by two-tailed unpaired
Student’s t tests. More than three groups were evaluated by ANOVA, followed
by post hoc analysis using the Bonferroni’s Multiple Comparison Test. P values
less than 0.05 were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and two tables and can be
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