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The human gut microbiome encodes a wealth of
gene families
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Which of these gene families allow particular bacteria to
thrive in the gut, either

- In general, or
- in different niches”?



The variance of gene families could help us
understand selection in the gut

Looking across healthy

individuals...

Invariable gene families could
point to functions necessary for life
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Variable gene families might be
iImportant in specific niches



Study design
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* We gather shotgun

sequencing samples from
either explicitly healthy
people (HMP) or controls
from case-control studies
(MetaHIT, GC, T2D)

Total n =53

Studies rarefied to 20M
reads, then mapped to ~6K
KEGG Orthology families
using Shotmap (Nayfach et
al, submitted)



We fit a model to all of these data as follows
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We fit a model to all of these data as follows
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We fit a model to all of these data as follows
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Residual variances of real gene families
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gene families
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How do we tell if these
residual variances are
higher/lower than expected?



Two possible options for the null

1) Generate data from a null distribution, then
calculate test statistics

2) Generate a bootstrap distribution of (real) test
statistics, then center and scale them using the
null distribution



First option: generate data from the null
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from what was fit originally

Assume that under the
null, each gene's
residual variance Is
what you would expect
based on its mean:




Problem

» \We evaluated this on a dataset “Null” p-values
that we know to be null % - (left tail is variable)
— Generate fake dataset, \
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purely based on sampling
with replacement from a real
sample

yikes
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* Result: anti-conservative bias

Frequency
1500
|

 Reasons?

— Breaks dependence between
gene families
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— Underestimates variability
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New desiderata for null distribution

* Under the null, assume reads just being
drawn from the exact same population with
replacement => Poisson

 But also, gene families aren't independent
from one another. Our null should take that
Into account as well.



Second option: bootstrap test statistics
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Second option: bootstrap test statistics
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N.B. Here, I'm showing just one gene family, but the key is that they're all bootstrapped
together (i.e. we're drawing entire samples with replacement). This is how we are trying to
preserve gene-to-gene correlations.



Second option: center and scale
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Second option: center and scale
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More detail on centering and scaling
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An alternative technique would be to try to generate V' by generating null

data, but then you would break the gene-to-gene correlations unless you had
some kind of explicit model for them.



Appears to work properly

- e Results on same “null” dataset
to left
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 p-values centered around 0.5
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* (note, still not a flat distribution;
thus the test may actually be
slightly conservative?)

2000
|

1000

o-——é_

0.2 0.4 0.6 0.8



Next steps

e Make sure I'm still able to make discoveries on real data

 Right now still working with counts; need to add in
normalizations for:

— average family length
— average genome size
e Rewrite and submit
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