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The human gut microbiome encodes a wealth of 
gene families

Which of these gene families allow particular bacteria to 
thrive in the gut, either
– in general, or
– in different niches?



  

The variance of gene families could help us 
understand selection in the gut

Invariable gene families could 
point to functions necessary for life 
in the gut in general

Variable gene families might be 
important in specific niches

Looking across healthy 
individuals...



  

Study design

● We gather shotgun 
sequencing samples from 
either explicitly healthy 
people (HMP) or controls 
from case-control studies 
(MetaHIT, GC, T2D)

● Total n = 53

● Studies rarefied to 20M 
reads, then mapped to ~6K 
KEGG Orthology families 
using Shotmap (Nayfach et 
al, submitted)

MetaHIT Glucose Control

Type II Diabetes

HMP

globe adapted from jasondavies.com



  

We fit a model to all of these data as follows
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Residual variances of real gene families
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Overview of residual variances
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How do we tell if these 
residual variances are 

higher/lower than expected?



  

Two possible options for the null

1) Generate data from a null distribution, then 
calculate test statistics

2) Generate a bootstrap distribution of (real) test 
statistics, then center and scale them using the 
null distribution



  

First option: generate data from the null
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Assume that under the 
null, each gene's 
residual variance is 
what you would expect 
based on its mean:



  

Problem

● We evaluated this on a dataset 
that we know to be null

– Generate fake dataset, 
purely based on sampling 
with replacement from a real 
sample

● Result: anti-conservative bias

● Reasons?

– Breaks dependence between 
gene families

– Underestimates variability 
around null (related)

“Null” p-values
(left tail is variable)

yikes



  

New desiderata for null distribution

● Under the null, assume reads just being 
drawn from the exact same population with 
replacement => Poisson

● But also, gene families aren't independent 
from one another. Our null should take that 
into account as well.



  

Second option: bootstrap test statistics



  

Second option: bootstrap test statistics

N.B. Here, I'm showing just one gene family, but the key is that they're all bootstrapped 
together (i.e. we're drawing entire samples with replacement). This is how we are trying to 
preserve gene-to-gene correlations.



  

Second option: center and scale



  

Second option: center and scale



  

More detail on centering and scaling

An alternative technique would be to try to generate V'
null

 by generating null 
data, but then you would break the gene-to-gene correlations unless you had 
some kind of explicit model for them.



  

Appears to work properly

● Results on same “null” dataset 
to left

● p-values centered around 0.5

● (note, still not a flat distribution; 
thus the test may actually be 
slightly conservative?)



  

Next steps

● Make sure I'm still able to make discoveries on real data
● Right now still working with counts; need to add in 

normalizations for:

– average family length
– average genome size

● Rewrite and submit
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