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generation? Its clonal expansion, coupled with
its persistence since birth, is highly suggestive
of self-renewal. Its clonal relation to more
differentiated cell types both in the healthy and
in the leukemic twins implies differentiation
potential. The balance of evidence thus favors
the notion that this cell may itself function as a
preleukemic stem cell. This proposal is sup-
ported by our xenograft modeling studies, which
further suggest that TEL-AMLI may be suffi-
cient to generate this population of preleukemic
stem cells.

Our results suggest that a hierarchical struc-
ture, which has been demonstrated in frank
leukemia (2, 4), is also a feature of “carly” or
preleukemic populations. Understanding the
nature of the preleukemic hierarchy is fundamen-
tal to understanding the function of the first-hit
mutation and how it predisposes to leukemic
transformation. Our studies therefore have impli-
cations for disease etiology, and the xenograft
model presented may provide a tool for exam-
ining the biological role of genetic alterations that
cooperate with the TEL-AML]I fusion gene. Our

studies may also be relevant to cancer therapy
where specific targeting of tumor propagating
cells may be desirable. The observation that
children in lengthy remission can relapse late
with a novel leukemic clone (27), but which
nonetheless appears to derive from the identical
preleukemic clone that initiated the disease at
presentation, suggests that the preleukemic stem
cell compartment may persist even when the cells
propagating the overt leukemia have been
effectively eradicated.
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Effects of Molecular Memory
and Bursting on Fluctuations

in Gene Expression

Juan M. Pedraza® and Johan Paulsson®?*

Many cellular components are present in such low numbers per cell that random births and
deaths of individual molecules can cause substantial “noise” in concentrations. But biochemical
events do not necessarily occur in single steps of individual molecules. Some processes are greatly
randomized when synthesis or degradation occurs in large bursts of many molecules during a
short time interval. Conversely, each birth or death of a macromolecule could involve several
small steps, creating a memory between individual events. We present a generalized theory

for stochastic gene expression, formulating the variance in protein abundance in terms of

the randomness of the individual gene expression events. We show that common types of
molecular mechanisms can produce gestation and senescence periods that reduce noise without
requiring higher abundances, shorter lifetimes, or any concentration-dependent control loops.
We also show that most single-cell experimental methods cannot distinguish between qualitatively
different stochastic principles, although this in turn makes such methods better suited for
identifying which components introduce fluctuations. Characterizing the random events

that give rise to noise in concentrations instead requires dynamic measurements with

single-molecule resolution.

ene expression is a complex stochastic
process, involving numerous components
and reaction steps and spanning several
time and concentration scales (/—8). This com-
plexity has motivated two very different views on
fluctuations in protein levels. A widespread notion
in biology suggests that random variation is re-
strained because each individual chemical step
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only contributes marginally to the total, just as
rolling more dice reduces relative fluctuations in
the sum of the outcomes. Physics-inspired theory
has instead emphasized that all the underlying
processes could propagate rather than average out
fluctuations, as when one die roll is used to de-
termine how many dice to roll next. Both sce-
narios are plausible: The mapping from details
on finer scales into effective events on coarser
scales—coarse graining—depends on molecular
mechanisms that support a wide range of fea-
tures, including precise “gestation” periods be-
tween birth events, gradual aging of individual
molecules, or sudden random bursts of synthesis.

This raises two central questions: How do single-
cell fluctuations in abundances depend on the
coarse graining of the biochemical hardware, and
how can the effective coarse graining be inferred
from measurements of fluctuations in single cells?

Most experimental noise studies have mea-
sured how the variation in single-cell protein
levels depends on transcription and translation
rates and typically compare the results with sto-
chastic models based on specific assumptions
about the underlying molecular mechanisms.
Gene activation and transcription require numer-
ous chemical events: from repressors falling off
DNA to RNA polymerase elongating nascent
transcripts. For synthetically engineered gene
circuits in Escherichia coli, these processes can
produce exponential waiting times between tran-
scription events (9—/7) despite the many mi-
croscopic substeps involved. Similar Poisson
statistics have been observed in a wide range of
physical systems, starting with Bortkewitsch’s
classic study on the number of Prussian cavalry
officers kicked to death by horses (/2). Howev-
er, most genes have a more complex control,
involving several repressors, transcription fac-
tors, and mediators, as well as chromatin re-
modeling or changes in supercoiling. Such
systems generate nonexponential time intervals
between transcription windows, unless a single
elementary reaction step is rate limiting. In par-
ticular, promoters that gradually mature through
a series of inactive states (with several hidden
Poisson steps) before activating can create nar-
rowly distributed gestation periods between
transcription windows (Fig. 1). The statistical
uncertainty in the waiting times can also be re-
duced by programmed cell cycle activation,
replication-activated transcription, or circadian
clocks (/3). On the other hand, fluctuations can
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be increased when many copies of a transcript
are made in short-lived transcription windows
(Fig. 1), creating random bursts of synthesis. A
great variety of scenarios is possible, but the
stochastic properties of individual gene expres-
sion events have only been measured in a few
simple systems (10, /1), and the molecular mech-
anisms are not sufficiently characterized to predict
specific burst or waiting-time statistics. Because
gestation and bursting can decrease and increase
fluctuations in gene expression, respectively, their
combined effect is also hard to intuit. However, it
is possible to collectively understand such com-
plex mechanisms by mathematically analyzing
families of processes. Here, we consider a cell
with m molecules of an mRNA and p molecules
of the protein and make two generalizations with
respect to previous analyses: We allow transcripts
to effectively be made both in arbitrary indepen-
dent bursts of b molecules (m — m + b) and at
arbitrary independent time intervals 7' (Fig. 1),
where T"and b vary randomly. To understand how
different types of transcription statistics affect
single-cell protein fluctuations, we evaluate these
assumptions in the context of a standard model
(14, 15), where translation (p — p + 1) occurs
with a constant probability per second per tran-
script, and where both molecules decay (1 — m—1,
p — p— 1) exponentially with average lifetimes
7,, and 1,. Similar models have been suggested
for gene activation (6, 16, 17) and many other
processes, but as with the earlier gene expres-
sion model, these have not considered gener-
alized burst or waiting-time distributions. Basic
tools from probability theory (/8) can then be
used to show that the stationary variance in pro-
tein abundance—the most commonly reported
noise measure in the experimental literature—is
insensitive to the shapes of the distributions for b
and 7 (Fig. 2) and approximately follows

low-copy noise

~—
o 1
P> (p)
mRNA noise
OAT/TY 0, B +1 1 5
- 2 . my  tw+1,

coarse graining

where (...) and ¢ denote averages and SDs, re-
spectively. The equation is exact for exponential
time intervals and is an excellent approximation
for many types of strongly nonexponential times
but breaks down when large and narrowly distrib-
uted bursts occur at precise time intervals [(/9)
and (Fig. 2)]. At low average protein abundances
{p), relative protein levels spontaneously fluctuate
because each random birth and death of a protein
then has a larger relative effect on the total. The
simplicity of this low-copy noise term reflects the

assumption of individual protein molecules being
produced and degraded at exponential time inter-
vals. Because mRNAs determine the rate of pro-
tein synthesis, proteins also inherit noise from
mRNAs. The mRNA noise, in turn, depends on
the average mRNA abundance (m) and the burst
and waiting-time statistics. Because the protein
level cannot immediately adjust to changes in the
protein synthesis rate, proteins effectively take a
time average of a series of mRNA fluctuations
and 0 < 1, /(T + 1,) < 1.

Equation 1 is related to a previous analysis in
which we similarly considered a model for sto-
chastic gene expression and used it to reinterpret
experiments (/9). That model used fluctuation-
dissipation relations to generalize the concentration-
dependent tendencies to return to an average, while
assuming simple exponential waiting times be-

Number of molecules >

tween events. Here, we took the opposite approach
and generalized the randomness of the individual
events, while assuming simple average dynamics.

The different parts of Eq. 1 represent qual-
itatively different aspects of random processes.
The overall topology of the reaction network
determines which components produce fluctua-
tions, which are captured by (p) or (m). The
connections between the chemical species in the
network, in turn, determine the average amplifica-
tion or suppression of fluctuations: effects that can
be understood from deterministic analyses in which
one component adjusts to another (/7), which is
captured by the time-averaging factor. Finally,
the dynamics of how fluctuations are generated—
the most central aspect of stochasticity—are
captured by the bursts and waiting times in the
coarse-graining factor. Most studies overlook

b transcripts

o
\_./-‘\_/-.

Transcription

Fig. 1. (A) Generalized birth process where molecules are made in random bursts of b molecules at
random time intervals T, where each b and T is independent, as for the mRNAs in Eq. 1. (B) Simplified
sketch of polymerase Il (Pol I)-mediated transcription in S. cerevisiae. Transcription factor TFIID binds
DNA and is stabilized by TFIIA, which is followed by TFIIB. This complex then recruits Pol Il, a Mediator,
and TFIIF, after which TFIIE and TFIIH bind. Upon transcription initiation, Pol I, TFIIB, and TFIIF are
released, but the rest of the complex remains, facilitating rapid reinitiation. Depending on parameters,
this process can repeat and produce an effective burst of b transcripts, until the entire complex falls off
the DNA and has to be reassembled, requiring a time T. The cartoon illustrates a roughly irreversible
progression, which requires energy consumption, but the mathematical analysis allows for any
distribution of waiting times T between transcription events.

Fig. 2. Random intervals T be-
tween transcription events and
their effect on protein fluctuations. ~ —
Noise versus average in protein bﬂ&
abundance for varying rates of
transcription is shown. Curves are  ¢g
from Eq. 1 and symbols are from o
exact simulations that sample 7 &
from f(T) in the inset. For a given ¢
or/(T), the choice of f(T) has no @
)
o
.

o, /(T)=0.8 O, /(T)=1 &, /(T}=12

Input time distributions -

Bimodal Gamma

effect on c,/(p) despite the exotic —Th |
distributions used. The parameters T 5 Ga{ra‘r(])r:"lya

(p)m) =300 and T/t =6 0.104 , Bimodal

(19) are representative for many Imoda

genes, and near-perfect matches 10‘00 ) 20‘00 30'00

are also observed over many or-
ders of magnitude in all parameters.
(Inset) Hypothetical probability den-
sities f(T), with gamma distributions (exponential for o7/(T) = 1) in the top row and examples of
bimodal distributions (truncated sum of two Gaussians) in the bottom row, and with the same averages
and variances in each column.

Protein average
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nontrivial coarse graining for simplicity (20),
though some consider geometrically distributed
bursts of mRNA or protein synthesis (74, 15) at
exponential time intervals, as observed in certain
simple systems (9—1/). In this case, the coarse-
graining factor (for the mRNA or protein) can
be expressed as 1 + (b), which does not explain
the effect of variation in the bursts and waiting
times. By contrast, Eq. 1 shows how cells could
exploit narrowly distributed gestation periods to
greatly reduce variation in protein abundance
from cell to cell, with the largest relative effect
when synthesis, on average, occurs in large bursts.
However, because the effect is determined by the
sum of the normalized variances in bursts and

waiting times, it also shows that narrowly dis-
tributed gestation periods only marginally reduce
noise when burst sizes are widely distributed.
Many macromolecules approach their deaths
gradually, passing through a series of states be-
fore finally degrading. For example, eukaryotic
transcripts have their polyadenylate [poly(A)]
tails sequentially chewed up (27) before degrad-
ing the protein-coding part of the message (Fig. 3).
Measurements in Saccharomyces cerevisiae (by
researchers using, for example, PGK1 or GAL10)
indeed demonstrate (22) strongly nonexponential
mRNA decay curves, with long refractory periods
where the poly(A) tail is shortened before the
mRNA is degraded. Such “senescence” before

REPORTS

death is in some sense similar to gestation be-
fore birth, reducing the uncertainty in the lifetimes
of individual molecules. Here, we consider how
senescence affects fluctuations in abundances
across cells in the population. To keep the mathe-
matical analysis as simple as possible, we assume
that transcripts are made one by one at exponen-
tial time intervals and use the same assumptions
regarding translation and proteolysis as previous-
ly indicated. The stationary mRNA distribution is
then Poissonian, with o2, = (m), regardless of
the distribution of mRNA lifetimes as long as
the deaths of individual transcripts are indepen-
dent of each other. However, even though the
mRNA distribution is unaffected, mRNA fluc-

A mRNA B protein c 0.4 oo MRNANGSS ]
Coding sequence Poly-A tail — "o, 0'? s
( ——— T (Translation Ubiquitination m"
* Deadenylation i e U728 a8
enzyme — LV EJ' # of decay steps A &
CTranslation D 0.3 [ |
; i ¥ 2
i v c .
¥ ‘ o .
 ——) Translation o e ° .
Degradation ‘ * Degradation O g2le mRNJ.% senescence i
. - o A Protein senescence
e A S Pul : ; ; : :
- g A - 1 2 3 4 5

Fig. 3. Molecular senescence and its effects on noise in mRNA and protein
abundance. (A) Cartoon of mRNA senescence when the poly(A) tail is progres-
sively shortened before degradation. (B) Cartoon of protein senescence when the
protein is ubiquitinated several times before degrading. (C) Noise in the abun-
dance of proteins (main graph) and mRNA (inset) as a function of the number of
Poisson steps N in the degradation pathway, as compared for the same average
lifetimes. The graphs come from exact analytical calculations (19). For the mRNA

Fig. 4. Simulated time

Number of decay steps

senescence curve, proteins are assumed to decay exponentially, and for the pro-
tein senescence curve, mRNAs are assumed to decay exponentially. Parameters
are the same as in Fig. 2 for the exponential f(T). The mRNA senescence
(black circles) has no effect on the mRNA variance but reduces protein noise
because time averaging of the mRNA fluctuations becomes more efficient.
Conversely, protein noise increases with more pronounced protein senescence
(red triangles) because time averaging of mRNA fluctuations is impaired.

>
N
o
o
o

courses for averages
(smooth curves) and sam-
ple paths (jagged curves)
illustrating the difference
between feedback and
different coarse-graining
mechanisms. At time ¢ =
10, the rate of tran-

= Negative feedback
— Transcriptional gestation
~ No feedback or gestation
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Transcription

1000+

B 2000

= Positive feedback
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(B), respectively. (A) Com- 500 4Y L o l

parison of an idealized

Number of proteins

500 -

negative feedback loop B s

10 15 20

(blue curve), nonexpo-
nential gestation between
transcription events (red
curve), and a reference
gene without feedback or gestation (green curve). For the idealized negative
feedback, the transcription intensity follows k,2/(1 + (p/600)?), where k,,, is the
transcription rate of the reference gene. For gestation, the time intervals
between creation events follow a gamma distribution of order N = 8 and
average 1/k,,. Both negative feedback and gestation produce less noise than
the reference gene (inset), but the average response is greatly reduced for
negative feedback. (B) Comparison of an idealized positive feedback loop
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Time
10 20

Time

(blue curve), with the combination of positive feedback and mRNA
senescence (five exponential time steps; red curve), and the same reference
gene as in (A) (green curve). For the idealized positive feedback, the
transcription intensity follows k,,(0.01 + 0.99 p/(600 + p)). In both cases,
the output level is roughly doubled, but when positive feedback is combined
with mRNA senescence, the noise increase is smaller relative to that of the
reference gene (inset).
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tuations still contribute less to the width of the
protein distribution than they would without senes-
cence. If transcripts are degraded after N Poisson
steps, producing gamma-distributed lifetimes, the
stationary protein variance exactly follows

o 1 1

W

Coarse-grained time-averaging factor

The time-averaging factor now depends on the
coarse graining and decreases with increasing
number of decay steps N [(/9) and (Fig. 3)].
The intuitive explanation for these somewhat un-
expected effects lies in the distinction between
the dynamics of the noise and the overall dis-
tribution: For any given average mRNA lifetime,
senescence accelerates changes in the mRNA
levels in individual cells without affecting the
probability of occurrence in the population. If
each molecule lived for exactly t,, time units,
mRNA levels at time ¢ would be completely
uncorrelated with the levels before time 7—1,,.
This in turn makes it easier for the protein to
“time-average out” mRNA fluctuations, because
the efficiency of time averaging depends on the
rate of change in the protein relative to the rate of
change in the mRNA ([see (/9) for autocor-
relation analyses]. Simple and well-documented
molecular mechanisms of degradation (22) thus
allow cells to exploit the internal transitions of
independent molecules to reduce fluctuations in
total concentrations. Protein senescence [for ex-
ample, when multiple ubiquitination events are
required before degradation (Fig. 3)] would in-
stead speed up the protein response at any given

average lifetime and thus prevent time averag-
ing. Reducing the variability in the lifetimes
then causes increased variability in protein con-
centrations (Fig. 3).

The bursting, gestation, and senescence mech-
anisms above modify the spontaneous noise in a
system without affecting the average suscepti-
bility to changes in parameters: A change in the
rates of synthesis or degradation, which in turn
may depend on upstream signaling, still has a
proportional effect on average abundances (Fig. 4)
in all cases. Positive or negative feedback con-
trol, by contrast, amplifies (23) or dampens (24)
noise, respectively, while at the same time am-
plifying or dampening external signals (Fig. 4).
Furthermore, negative feedback control only sub-
stantially suppresses noise when operating at high
gain, but high-gain mechanisms are instead more
susceptible to time lags or noisy intermediates,
which destabilize feedback control and increase
noise levels. Gestation and senescence, by con-
trast, operate without closing a potentially un-
stable loop and may therefore reduce spontaneous
noise more efficiently. The noise reduction can
indeed be extremely efficient when gestation and
senescence are combined, because they prevent
fluctuations from arising rather than correcting
existing fluctuations.

The convenience of fluorescent reporters is
creating a shift of focus in quantitative cell bi-
ology from bulk averages to individual cells,
producing a wealth of data on nongenetic het-
erogeneity from microbes (25, 26) to humans
(27). The extent of heterogeneity is interesting
in itself, but single-cell data can also be used to
extract more information about the underlying
processes: Individual responses to individual sig-
naling events say much more than average re-
sponses to average signals. In particular, many
quantitative studies have used the properties of
the noise to infer microscopic kinetic mecha-

Fig. 5. Noise versus average in
protein abundance from Eq. 1 for
varying rates of transcription (solid
lines) and translation (dotted lines). bﬂ|‘&“
Red and blue lines correspond to
exponential (o7/(T) = 1) or non-
exponential (67/(T) = 0.6) waiting
times between transcription events,
respectively, without mRNA bursting.
Symbols correspond to nonexponen-
tial (o7/(T) = 0.6) waiting times,
with the use of mRNA bursting with
(by=1 and op/b) = 0.8. The

Protein noise
=
—_
(63}
1

noise responds more sharply to

Average varied transcriptionally
- Exponential times =
- Gestation
= Gestation and bursting

Average varied translationally 7
- Exponential times

~ Gestation

a Gestation and bursting

changes in the transcription rate than
to changes in the translation rate,
reflecting the fact that, for the pa-
rameters used (19), most of the pro-

2000 3000

Protein average

1000

tein noise comes from random births and deaths of the mRNAs. However, if proteins are measured in
arbitrary fluorescence units, the horizontal axis can be scaled and the transcriptional curves are
indistinguishable. Similarly, if mRNA numbers are not measured directly, it is impossible to distinguish

the effect of low mRNA numbers from that of high

coarse-graining factors, because either effect shifts

the curves vertically. Finally, the coarse-graining factor itself depends on factors not usually measured.
Each line can then correspond to many combinations of timing and bursting.

nisms, testing stochastic models by analyzing
how the variance in protein abundance responds
to changes in the rates of transcription and trans-
lation (3-5, 7, 25). Analyses in Bacillus subtilis
(3), E. coli (4, 28), and S. cerevisiae (5, 6, 25)
studied a range of genes and measured the dis-
tributions of protein abundance for different pa-
rameter values by changing the expression rates
genetically, by changing growth conditions, or
by adding inducers or inhibitors: in some cases
with the use of dual fluorescent reporters to first
separate the “intrinsic” randomness of the chem-
ical events in gene expression from the “extrin-
sic” intracellular variation in the expression rates
(4, 6, 28). Some studies also measured noise
correlations between different proteins in genetic
activation cascades (7) or between different time
points in the same cell (13, 28, 29). The con-
clusions varied in the specific details but have
formed a broad consensus that the intrinsic noise
in protein abundance reflects low numbers of
transcripts per cell, possibly with burstlike
transcription resulting from brief random periods
of gene activation.

The qualitative agreement between different
studies and the excellent quantitative fits to the
accompanying stochastic models seem to sup-
port the underlying models, which typically as-
sume memory-less single-step transitions between
births and deaths of genes, mRNAs, and pro-
teins. However, Eqs. 1 and 2 show that very dif-
ferent stochastic processes can produce exactly
the same response in such experiments. Chang-
ing the translation efficiency or the frequency
of transcription bursts only affects (p) and
(m), and the response to changes then follows
Gﬁ/(p)z = 1/{p) + C/{m) in all cases, where C
is a proportionality constant. Such experiments
indicate which components in a network produce
fluctuations but unexpectedly say nothing about
how those fluctuations arise (30). For example,
if protein noise was reduced by increasing the
transcription rate but not by increasing the
translation rate, as shown for some genes in
B. subtilis (3), all versions of the mRNA-protein
models in Egs. 1 and 2 suggest that the noise
comes from mRNA fluctuations (3, 79). How-
ever, exactly the same fit is obtained (i) whether
transcription is burstlike or perfectly regular or
(if) whether individual transcripts decay expo-
nentially or gradually senesce (Fig. 4). Even in
the ideal case where simple models without
tunable parameters provide predictions that are
later tested experimentally (3, 15), perfect fits are
equally consistent with mechanisms that are very
random, very regular, or anything in between.
Occam’s razor can still eliminate obscuring
details, but when several simple yet very different
explanations work equally well, choosing one
specific model can also brush interesting phenome-
na under Occam’s “rug.”

What additional tests could be used to dis-
criminate between different types of underlying
stochastic processes? One approach is to directly
measure the relevant kinetic parameters. If fluc-
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tuations arise as a result of low abundances, the
average levels should be measured in absolute
numbers, not in arbitrary units of fluorescence
(as is typically the case). This is particularly impor-
tant for mRNAs: The low-copy components that
introduce fluctuations must be counted (instead
of the high-copy components that merely re-
spond to underlying randomness). Measuring { p)
and (m) would provide an estimate of C but
would still not separate coarse graining from time
averaging or other deterministic features (Egs.
1 and 2). Time averaging could be estimated by
measuring the average lifetimes of the compo-
nents, but the type of time averaging should also
be confirmed by manipulation experiments where
the degradation rates of mRNAs and proteins are
varied. If all these parameters are determined
with high accuracy, the coarse-graining factor in
Eq. 1 could be estimated. However, even in this
ideal case, the relative contributions of gestation
and bursting would still be unknown (Egs. 1 and
2 and Fig. 5). The effects of precise gestation and
random bursting could even cancel out and make
it appear in these experiments as if molecules
were born at exponential time intervals without
bursts. More information can also be gained by
considering the full distributions rather than just
variances, but the exact shapes of distributions
are more sensitive to experimental artifacts and
have similar problems with experimental discrim-
ination. Conclusive experimental analyses of
coarse graining instead require accurate time
series where the burst and dwell time statistics
can be directly observed. A few pioneering studies
have quantitatively monitored transcription (/1)
and translation (9, 10) in E. coli with single-
molecule resolution. For simple or synthetically
engineered genes, they demonstrated exponential
time intervals between geometric bursts of tran-
scripts and proteins, respectively. These methods
are now being used to study regulated genes and
gene expression in eukaryotes, where gestation,
senescence, and complicated bursting patterns
are expected (317).

The fact that standard methods cannot dis-
criminate between different types of coarse grain-
ing (Fig. 5) may explain why most experimental
results have so closely matched the first models
that were used. However, it also means that cer-
tain aspects of the conclusions are more robust to
flaws in some of the most central model assump-
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tions: By not distinguishing between how fluc-
tuations arise (i.e., fitting any type of coarse
graining), the methods are more suitable for
identifying which components produce the fluc-
tuations, which is both nontrivial and important.

Our findings mathematically connect noise
in the single-cell protein abundance to bursting,
gestation, and senescence in gene expression,
describing how 10 molecules in some sense can
statistically behave as if they were 5 or 20 mol-
ecules without control loops. We also show that
standard single-cell measurements cannot detect
or exclude these features: They only suggest which
components contribute fluctuations, not how
they contribute. Similar phenomena have been
observed for bunching and antibunching in
photon emissions (32), as well as for many
molecular-scale cellular processes. Microtubules
switch between growth and decay phases (33)
where a burst of subunits is added or removed,
and opening an ion channel can let a burst of
molecules through. Nonexponential gestation
periods have, in turn, been demonstrated in the
rotational switching of E. coli flagellar motors
(34) and in the replication control of bacterial
plasmids (/4), whereas the senescence of active
rhodopsin molecules was recently shown to ex-
plain the reproducibility of the retinal signaling
response to single photons (35). Advances in
single-molecule live-cell imaging could now
enable similar breakthroughs for mRNAs and
proteins and finally reveal the effective coarse
graining of gene expression.
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