
Standards in Scientific Communities II; Cell Viability

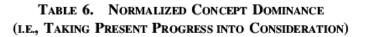
Module 3, Lecture 4

20.109 Spring 2011

Lecture 3 review

- What can you learn from a confidence interval? A t-test?
- What are three general engineering principles that might help make biology more "engineerable"?

From D. Endy, *Nature* **438**:449

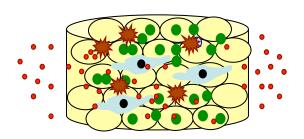

Topics for Lecture 4

- Standards in tissue engineering
 - introduction
 - writing exercise
 - discussion
- Cell viability
 - your data
 - relation to diffusion

How valued are TE standards?

- 2007 strategic plan for TE clinical success by 2021
 - 24 int'l leaders in TE listed high-priority areas
 - 1/3 named standards
- Analysis
 - concept dominance
 - progress so far
 - standards 7th of 14

P.C. Johnson et al., *Tissue Eng* **13:**2827 (2007)

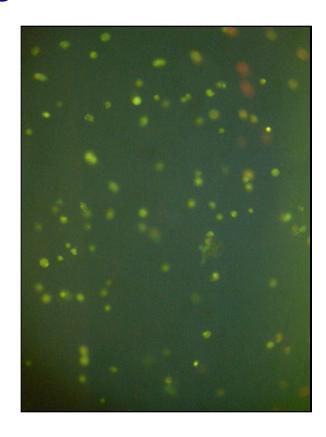


		O/F	
	Angiogenic control	3.3	
	Stem cell science	3.2	
\	4. Cell sourcing/characterization.		
	Immunologic understanding and control	2.0	
	Manufacturing/scale-up	1.1	
	7 (tie). Standardized mode	els.	
/	Multidisciplinary understanding/cooperation	0.8	
	Expectation management/communication	0.4	
	Pharmacoeconomic/commercial pathway	0.3	
	Multilevel funding	0.0	

- 2007 US govt. strategic plan
 - standards listed as part of "implementation strategy"

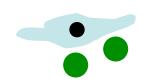
How useful are TE standards?

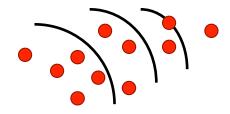
- See 2005 editorial by A. Russell
 - proposes need for standards
 - in data collection and sharing
- Choose and respond to a student excerpt (~10')
- Pros/cons/etc...?

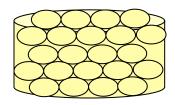


Can we standardize this TE construct?

Module progress: week 2

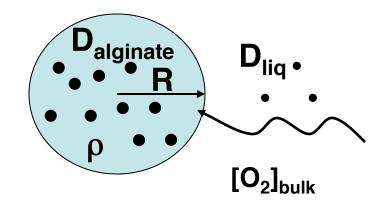

- Day 3: viability/cytotoxicity testing
- Groups generally found
 - mostly live
 - mostly round
 - not much clustering
- How can we improve the assay?
- What conditions killed cells?
- Other interesting findings?
- How do we explain the results?

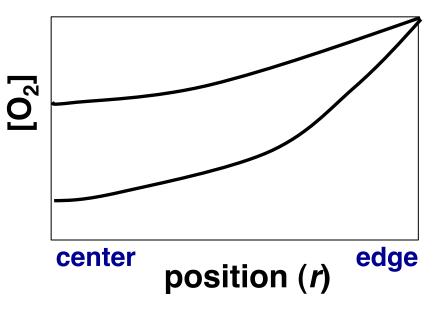




Factors affecting cell viability

- Cell-related
 - density
 - interactions
- Cytokine-related
 - proliferative
 - apoptotic
- Materials-related
 - bulk permeability
 - macro-porosity
 - toxicity





Diffusion in 3D constructs


- Nutrients, O₂
- Affected by
 - construct size R
 - cell density ρ
 - diffusivity D
 - conc. in medium $[O_2]_{bulk}$
- Concentration profile
 - can be solved (DE)
 - [O2] ↓ toward center
 - steepness = $f(D, \rho, ...)$

Significance of diffusion in TE

- Characteristic limit ~100 μm
- Diffusion and viability profiles correlated
- How can we make thick tissues?
 - in vitro: dynamic/perfusion culture
 - in vivo: promote rapid angiogenesis

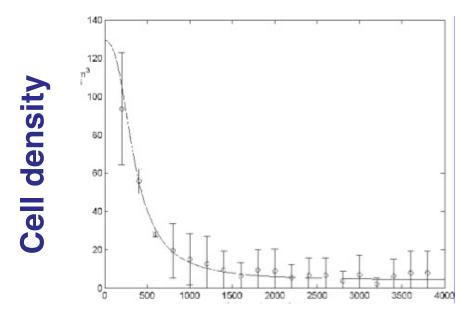
perfusion system zeiss.com.sg

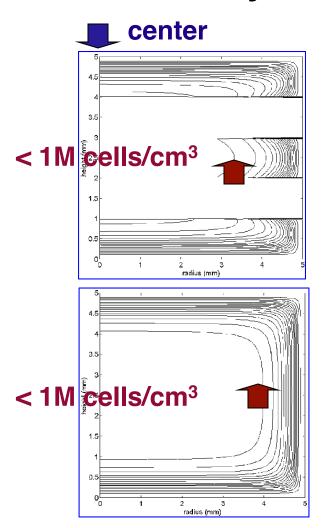
Modeling cell viability in TE constructs

- Porous PLGA scaffolds
- Seeded cells as in (A) or (B)
- Observed after 10 days
- Model includes
 - Diffusion
 - O₂ use
 - Cell growth
- Model assumes
 - [O₂]_{bulk} is constant
 - Quasi-steady state

A Cells in odd layers

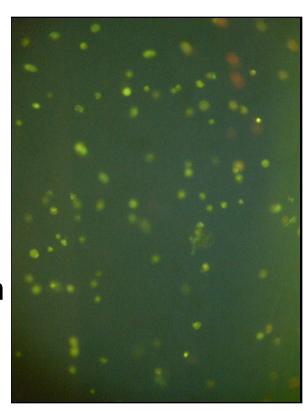
		_
	1	
	2	
	3	
	4	
-	5	


B Cells in all layers


Dunn, et al. *Tissue Eng* 12:705 (2006)

Dunn et al. results for cell viability

- A more uniform than B
- Cell growth matches O₂ tension
- Claim of predictive capability


Distance from edge

Lecture 4: conclusions

- Strategies besides standardization may take precedence in some BE fields.
- Cell viability in TE constructs is affected by cell, material, and soluble factors.
- Modeling can elucidate nutrient diffusion and cell viability profiles.

Next time: transcript and protein assays, imaging.

