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Within-patient HIV populations evolve rapidly because of a high mutation rate, short generation time, and strong positive
selection pressures. Previous studies have identified “consistent patterns” of viral sequence evolution. Just before HIV
infection progresses to AIDS, evolution seems to slow markedly, and the genetic diversity of the viral population drops.
This evolutionary slowdown could be caused either by a reduction in the average viral replication rate or because
selection pressures weaken with the collapse of the immune system. The former hypothesis (which we denote “cellular
exhaustion”) predicts a simultaneous reduction in both synonymous and nonsynonymous evolution, whereas the latter
hypothesis (denoted “immune relaxation™) predicts that only nonsynonymous evolution will slow. In this paper, we
present a set of statistical procedures for distinguishing between these alternative hypotheses using DNA sequences
sampled over the course of infection. The first component is a new method for estimating evolutionary rates that takes
advantage of the temporal information in longitudinal DNA sequence samples. Second, we develop a set of probability
models for the analysis of evolutionary rates in HIV populations in vivo. Application of these models to both
synonymous and nonsynonymous evolution affords a comparison of the cellular-exhaustion and immune-relaxation
hypotheses. We apply the procedures to longitudinal data sets in which sequences of the env gene were sampled over the
entire course of infection. Our analyses (1) statistically confirm that an evolutionary slowdown occurs late in infection,
(2) strongly support the immune-relaxation hypothesis, and (3) indicate that the cessation of nonsynonymous evolution is
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associated with disease progression.

Introduction

Describing and quantifying the forces that shape HIV
evolution within patients is critical to both (1) a mechanis-
tic understanding of the interaction between the virus
population and the immune system and (2) the design and
implementation of clinical intervention strategies. Viral
adaptation to the host environment is thought to play
a causal role in HIV pathogenesis (Tersmette et al. 1989;
Nowak et al. 1991; Wodarz, Klenerman, and Nowak 1998;
Wolinsky and Learn 1999). Therefore, precisely charac-
terizing the adaptive changes that occur during chronic
infection should help elucidate the series of evolutionary
events that lead to disease progression (e.g., Ross and
Rodrigo 2002; Williamson 2003). Viral evolution also
confounds medical treatment efforts because HIV pop-
ulations quickly evolve resistance to antiviral drugs (see
Shankarappa [1999] for review). Only those strategies that
directly account for viral evolution in response to the
intervention have been successful. For instance, highly
active antiretroviral therapy (HAART) has proved to be
a very successful long-term treatment strategy, primarily
because the introduction of “drug cocktails™ greatly slows
the evolution of drug resistance (Finzi et al. 1997; Wong
et al. 1997). Clearly, a detailed description of within-patient
viral evolution is necessary to understanding the dynamics
of HIV infection.

The most detailed information regarding viral evolu-
tion in vivo comes from longitudinal studies, in which
samples of viral DNA or RNA are taken from the same
infected patient over time (e.g., Balfe et al. 1990; Wolfs
et al. 1991; Holmes et al. 1992; Zhang et al. 1993). We use
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“longitudinal data set” to refer to the set of all sequences
sampled from a single patient over time. The temporal
structure of longitudinal data sets allows researchers to
determine the immediate consequences of specific events
in viral evolution. Examples include the evolution of
drug resistance (e.g., Larder, Darby, and Richman 1989),
the evolution of viral phenotypes that escape the current
immune response (McMichael and Phillips 1997; Goulder
et al. 2001), and disease progression (Viscidi 1999; Ross
and Rodrigo 2002; Williamson 2003).

Shankarappa et al. (1999) published an extensive
collection of longitudinal data sets, including data from
nine infected individuals. Sequences of the C2-V5 region
of the envelope gene (env) were sampled over the entire
course of infection in each patient. Samples were taken at
approximately 10-month intervals with 10 to 20 sequences
determined per sample. The authors assert that the most
important pattern evident in their data is “consistent
stages” of viral evolution (figure 6 in Shankarappa et al.
[1999]). In the first stage, both env nucleotide diversity and
divergence from the founding population increase linearly.
During the next stage, which lasts, on average, approxi-
mately 2 years, nucleotide diversity either stabilizes or
declines, but divergence continues to accumulate. In the
final stage, divergence also stabilizes—that is, env
sequence evolution nearly comes to a halt. This final
stage usually begins less than 1 year before the onset
of clinical AIDS (CD4" T cell counts <300 cells/ul).
Further, Shankarappa et al. (1999) found close associations
with these patterns and the emergence of the X4 viral
genotype, an important indicator of disease progression
(Schuitemaker et al. 1992). They noted that the time of
peak diversity coincided with the initial emergence of X4
viruses, and divergence stabilization coincided with the X4
viruses reaching their highest frequency. In this paper, we
investigate the causal factors leading to these consistent
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patterns of env evolution. In particular, we address what
causes the evolutionary rate to slow so dramatically toward
the end of infection.

We consider two alternative hypotheses to explain di-
vergence stabilization. The first hypothesis, which we refer
to as cellular exhaustion, proposes that the viral generation
time increases as the primary target cell populations (CD4 ™
T cells) become depleted. As the generation time increases,
the evolutionary rate slows and divergence stabilizes. Sev-
eral factors could contribute to the increase in generation
time coincident with target cell depletion. First, as CD4" T
cells are depleted late in infection, a greater proportion of
replication cycles might go through other infectable cell
types, such as macrophages and CD4" memory T cells.
The intracellular stage of the viral life cycle occurs much
more slowly in these alternative cell types (Finzi et al.
1997, 1999), and a shift to increasing usage of these cell
types can have a major impact on the viral replication rate
(Kelly 1994, 1996; Kelly et al. 2003). Also, the average
time of the virion stage of the viral life cycle could
increase simply because target cells are more rare and
encountered less frequently by virions. This would also
increase the overall generation time.

The second hypothesis, which we refer to as immune
relaxation, is that the evolutionary rate slows because
infection disrupts immune function. This, in turn,
diminishes positive selection pressure to escape immune
response (Bonhoeffer, Holmes, and Nowak 1995). Immune-
mediated positive selection is thought to be an important
force driving evolution in the HIV genome, especially
in the env gene (e.g., Wolfs et al. 1990; Holmes et al.
1992; Bonhoeffer, Holmes, and Nowak 1995; Wolinsky
et al. 1996; Richman et al. 2003). As the immune system is
disrupted, the evolutionary rate could fall back closer to
the expected neutral rate. This hypothesis, if correct, would
have important implications for HIV evolution and dynam-
ics. First, it would suggest that the primary selective force
acting on env is the immune system itself. This result
would not be surprising as it is generally assumed that the
immune system is the primary source of positive selection
pressure. However, the importance of immune-mediated
selection relative to other selective pressures has been
difficult to establish. Second, and perhaps more impor-
tantly, the immune-relaxation hypothesis suggests that the
parts of the immune system disrupted by infection (most
notably, CD4" T cells) play an indispensable role in
responding to epitopes coded for by env and in driving env
sequence evolution. Thus, the immune-relaxation hypoth-
esis implies a feedback loop, with the virus directly impair-
ing HIV-specific responses. Immunological evidence
points to such an interaction between the virus and HIV-
specific CD4" memory T cells (Douek et al. 2002).
However, the evolutionary significance of this interaction
has not yet been established.

We can differentiate between cellular exhaustion and
immune relaxation by contrasting patterns of divergence
at nonsynonymous and synonymous sites within env. The
cellular-exhaustion hypothesis, because it is based on an
increase in the viral generation time, predicts that both
nonsynonymous and synonymous divergence will slow
down at the time of divergence stabilization. In contrast,
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the immune-relaxation hypothesis predicts a slow-down in
only the nonsynonymous sites because the synonymous
sites are not subject to immune-mediated selection. In this
paper, we measure the initial divergence rate and the time
of divergence stabilization for both nonsynonymous and
synonymous sites in the Shankarappa et al. (1999) data
sets in hopes of distinguishing between the two alternative
hypotheses of divergence stabilization.

When Shankarappa et al. (1999) initially identified
the “consistent patterns,” the times of peak diversity and
divergence stabilization were estimated by eye. Given
the stochastic nature of viral evolutionary dynamics, this
subjective procedure can be problematic. Mayer-Hamblett
and Self (2001) addressed this problem for changes in viral
diversity by using regression models to estimate the time
of peak diversity and to test hypotheses regarding changes
in the level of diversity. Here, we develop a statistical
procedure for characterizing changes in divergence rates
based on a simple probability model. This method not only
allows us to test the cellular-exhaustion and immune-
relaxation hypotheses but also allows more accurate asso-
ciation between divergence stabilization and other aspects
of infection (e.g., disease progression) and more accurate
measures of the divergence rate.

In the next section, we develop a statistical frame-
work for the analysis of divergence in longitudinal data
sets and apply it to the longitudinal data from eight of the
HIV-infected patients studied by Shankarappa et al.
(1999). We derive a diffusion model to predict the
likelihood of the various evolutionary trajectories observed
in the data, either with or without divergence stabilization.
This model serves as the underpinning for a maximum-
likelihood estimation routine, which allows estimation of
evolutionary parameters such as the mean and variance of
divergence rate. It also provides a rigorous statistical test (a
likelihood ratio) for the existence of divergence stabiliza-
tion within patients. We use a parametric bootstrapping
routine to evaluate the significance of the likelihood ratio
tests. Finally, we test the assumptions of our approach
using forward population-genetic simulations.

Methods
Measuring Divergence

We require an accurate method for measuring
divergence to detect potentially subtle changes in the rate
of divergence within a longitudinal data set. The typical
approach for measuring divergence between sequences is
to apply a nucleotide-substitution model that corrects for
saturation; that is, a prevalence of multiple substitutions
at the same nucleotide position (chapter 3 in Graur and
Li [2000]). This correction is important, because saturation
itself will lead to an apparent reduction in the rate of diver-
gence through time. Unfortunately, the correction applied
can be very sensitive to both the type of substitution model
chosen and the method used (if any) to account for rate
variation. Furthermore, the nucleotide substitution process
in the HIV genome is fairly complex; that is, the nucleo-
tide frequency profile is A-rich (A =~ 40%), and the A—C
transversion is more common than some transitions (Hillis,
Huelsenbeck, and Cunningham 1994). To account for
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these peculiarities, it is necessary to apply complicated
substitution models (Moriyama et al. 1991), which only
increases the uncertainty caused by model selection. For
instance, Anderson et al. (2001) found that the best approx-
imating substitution model for the gp120 region of env is
a general time-reversible model (GTR) with eight param-

eters plus one parameter for gamma-distributed rate variation.

We take an alternative approach for measuring
divergence. The temporal structure of longitudinal data
allows us to infer multiple substitutions at individual sites
by simple inspection of the time series. This approach is
sound as long as sampling times are frequent enough so
that multiple substitutions do not typically occur in be-
tween timepoints. We have developed a simple algorithm
for determining when multiple substitutions have occurred
between a given sequence and the progenitor sequence.
Also, we have developed an algorithm for using the tem-
poral information in the data to more accurately delineate
between nonsynonymous and synonymous substitutions
when more than one change has occurred in the same
codon. These methods are described in detail in the
Supplementary Material.

Data and Analysis Scheme for Each Patient

Nucleotide sequences in longitudinal data sets were
obtained for all patients from the Shankarappa et al. (1999)
study, except for patient 11, which was excluded because of
smaller sample sizes and infrequent sampling. First, the
progenitor sequence in each patient was approximated
as the consensus sequence of the earliest sample. Next,
the progenitor sequence and all of the sequences in the
remaining timepoints were aligned using the default
parameters of ClustalX (Thompson et al. 1997) and then
hand corrected. In data sets from most patients, there were
regions that could not be aligned for the whole data set;
these regions were excluded from the analysis. In terms of
the nucleotide position in the progenitor sequence (exclud-
ing gaps), these regions are p1 (574 to 588), p2 (382 to 411
and 577 to 597), p5 (573 to 579), p8 (382 to 387 and 565 to
585), and p9 (392 to 414 and 558 to 594). After alignment,
nonsynonymous, synonymous, and total nucleotide di-
vergence values were tabulated for each sequence using
the methods outlined in the Supplementary Material. Our
estimates of mean divergence (synonymous and non-
synonymous) within each patient are given as a function
of time in figure 1. The individual sequence values were
used in the series of statistical procedures described below.
Nucleotide sequence alignments and the source code for the
programs that implement the divergence tabulation are
available from the corresponding author.

Probability Model for Divergence

We assume that the mean divergence of the entire
population is governed by a diffusion process (Brownian
motion) with drift parameter ¢ (the divergence rate) and
diffusion parameter o (the variance in the divergence
rate). Hereafter, we will refer to the mean divergence of the
entire population as the “population divergence.” In
a small interval of time (Af), the change in population
divergence is a normally distributed random variable with

expectation @*A¢ and variance 6>*Ar. This model allows
random fluctuations in the realized rate of evolution, even
when the underlying rate is constant. The population
divergence can even decline in some time intervals,
although the whole process is subject to the boundary
condition that divergence must be greater than or equal to
zero for ¢ > 0. Also, note that the variance parameter o is
not directly related to any measure of within-population
genetic variation; rather, it describes the variance in
population divergence among replicate populations.

Our constant-rate model assumes that the divergence
rate (@) is constant throughout infection. This serves as
a null model for testing divergence stabilization. Let u(y, f)
be the probability density function of the population
divergence, y, at time ¢. u is governed by the following
partial differential equation:

Ou ou  ,10%u

ot (p@erG 2 0y? (1)
subject to the initial condition u(y,0) = 8(0), where 9§ is the
Dirac delta function, and a reflecting boundary at y=0. Our
divergence-stabilization model involves one additional
parameter, T, which is the time of divergence stabilization.
For ¢ < 1, the population divergence (y) follows a diffusion
with drift parameter ¢ and variance 6°. At time T however,
the drift parameter changes from ¢ to 0, whereas the
diffusion parameter remains unchanged.

If we ignore the boundary condition, the solution of
equation (1) is a normal density function. For the constant-
rate model, the mean is (¢ and the variance is o°t. The same
variance is obtained for the divergence-stabilization model,
but the mean is ¢¢ for + < 1 and @t for > 1. We use this
approximation to develop the maximum-likelihood frame-
work described below. However, the boundary is explicitly
included in the parametric bootstrapping simulations that
we use to evaluate our likelihood-ratio tests.

Two sorts of stochasticity must be considered:
evolutionary fluctuations and sampling variation. Let i =
0, 1,2,...kdenote the samples taken at different timepoints,
in chronological order. In each patient, we use sample 0 to
infer the progenitor sequence of all subsequent samples.
Early in infection, the viral population is genetically
homogeneous within the env gene (Zhang et al. 1993).
Therefore, we approximate the progenitor sequence as the
consensus sequence of sample 0. For samples 1 through &,
let #; denote the time (since seroconversion) that the sample
was taken. Let y; denote the (unobserved) population
divergence at time #;, measured as the number of differences
per site from the progenitor. Let #; be the sample size of each
timepoint. Let x;; denote the divergence of sequence j in
sample 7, in terms of the number of differences per site from
the progenitor. Conditional on each y;, we assume that the
x;j are also normally distributed:

x| yi~N(yi, s7) (2)

where s;° is the variance in divergence among viruses within
the population at the ith sampling time. To obtain the un-
conditional distribution of x;;, we integrate over all y;:

Pl = [ Pl [Pl ~ Mot o+ ) (3)
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Fic. 1.—Average nonsynonymous and synonymous divergence as a function of time since seroconversion for viral populations from nine patients.
Vertical dashed lines mark maximum-likelihood estimates (MLEs) for the time of divergence stabilization (t); plots without a vertical dashed line
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sample variances at each timepoint. Regions shown in gray indicate the time of disease progression; i.e.” the time after the CD4" T cell count drops
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The joint distribution of all x;; from a single longitudinal
data set follows a multinormal distribution. The covariance
between two observations in the same sample is

Covlx;,,x;,] = Var[y] = o*t; 4)
where j; # j,. The covariance between observations at
different timepoints is

sz,'l
Gzt,'z

1<t
i <<1i

Covli s ms] = Covly,yu] = { (5)

There is a well-developed theory for estimation of
parameters from multinormal data (Searle, Casella, and
McCulloch 1992). Let x denote the vector of the x;;’s, with
the observations from different timepoints concatenated
sequentially. The constant-rate model contains k+2
parameters: k population variances (512 525, 52 and
the drift (¢) and diffusion () parameters of equation 1.
Under this model, the log-likelihood is

ECR((P7 GZ;S%,S; e 7Sl% | X)

n 1 1 Te,_ 1
Zin2m) — SV - (x—@)'V'(x—q)  (6)
where q is the vector of expected values of each of the x;;’s
(Elx;] = ot), V is the variance-covariance matrix
containing the terms described in equations (4) and (5),
n is the total number of sequences sampled in all of the
timepoints, and |*| denotes the determinant of a matrix.
The divergence-stabilization model contains k+3
parameters: k population variances, @, 6%, and 1. The only
effect this new parameter has on the likelihood function is
within the vector of expected values. Call this new vector, p:

l‘,'g'f
tl'>T

o1

o Y

pij = Elxy] = {
Again, the vectors of expected values are concatenated
sequentially. The log-likelihood function for the divergence-
stabilization model is
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EDS((Pv 6271—;5'%15%7 s ’SIE ‘ X)

n 1 1 Tyr—1
= —5In@2n) —SI[V| - (x—p) V''(x—p) (8)

Numerical values for the log-likelihoods (equations 6
and 8) were determined using a program written in the C
programming language and executed on a series of Dell
Pentium 4 computers. We used the standard estimator for
the variance of a normal population for the s> value of each
sample (page 52 in Sokal and Rohlf [1995]). For fitting the
constant-rate model to the data, we conducted a guided
search for the maximum-likelihood estimates of @ and >
using the method of scoring (chapter 8 in Searle, Casella,
and McCulloch [1992] and Kelly and Arathi [2003]).

To fit the divergence-stabilization model for a single
data set, we conducted a series of optimizations over the
range of possible values for t. We started with the largest
possible value for t, which is t, then maximized the log-
likelihood function with a fixed value of t; that is, the
profile log-likelihood. From this optimization, we recorded
the maximum-likelihood estimates for @ and o and the
maximum log-likelihood value. We then reduced the value
of T by 1 month and maximized the profile log-likelihood
again by finding optimal values for ¢ and c°. This process
was repeated with each successive iteration considering
a lower value of t. An example of this procedure, the
actual analysis of nonsynonymous evolution in patient 1,
is given in figure 2. Thus, for both synonymous and
nonsynonymous evolution within each patient, the model-
fitting procedure yields a set of log-likelihood values
defined for each possible value of .

For both the constant-rate and divergence-stabilization
models, our search procedure rapidly converged on the same
maximum-likelihood estimates from different start values.
However, it may be possible to develop more efficient
search algorithms (perhaps necessary for larger data sets)
by noting that both models are essentially “Gaussian state-
space models” (Durbin and Koopman 2001). Such models
have been used extensively for the analysis of time series
data in economics and engineering. The Kalman filter might
be adapted to provide a general framework for both
prediction-based and likelihood-based parameter estimation
of models such as those described here (chapter 3 in Harvey
[1989]). The fact that we did not incorporate the boundary
condition in equations 6 and 8 implies that our log-
likelihood values are only approximate. However, this
should not impact the hypothesis testing described in the
next section. The same assumption applies to both the
constant-rate and divergence-stabilization models, and the
relative fits of these models depend on sequence data from
late in infection, by which time the boundary is irrelevant.

Hypothesis Testing

It is possible to construct a test within each patient
by comparing the maximum likelihoods associated with
each model. An evolutionary slowdown is indicated if the
maximum likelihood for the divergence-stabilization model
is sufficiently greater than the maximum likelihood for the
constant-rate model. Because the constant-rate model is
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Fi16. 2.—The maximum profile log-likelihood over a range of values
for 1, the time of divergence stabilization. This plot depicts non-
synonymous divergence in patient 1.

nested within the divergence-stabilization model (the
divergence-stabilization model reduces to the constant-rate
model for T =1¢;), a likelihood-ratio test (LRT) is appropri-
ate. The LRT statistic is 2{{ps(Pps,055, 20535753, - 57 | X)
— Ler(Pcr,G2g35T,53, - 57 | X)}, where (pg, Gp, and Zpg
are the maximum-likelihood estimates (MLEs) under the
divergence-stabilization models, and ¢ and o2 are the
MLEs under the constant-rate model. We calculated this
statistic for both nonsynonymous and synonymous evolu-
tion within each patient.

Both evolutionary variability and small sample sizes
limit the power of tests based on individual patients. Thus, to
distinguish immune relaxation from cellular exhaustion,
we also performed two analyses that combine data across
patients. These combined analyses are possible because
evolution in different patients is independent. As a conse-
quence, we can sum the (maximum) log-likelihoods across
patients for the different evolutionary models. This allows
us to compare the constant-rate and divergence-stabilization
models with combined LRTs using all the nonsynony-
mous or synonymous data simultaneously. If divergence
stabilization occurs in all patients, these combined LRTs
will have more power to detect it. In the combined analyses,
the log-likelihood value for the constant-rate model is
simply the sum of the maximum log-likelihood values for
this model within each patient.

We consider two different versions of divergence
stabilization as alternatives to the constant-rate model. The
first version posits that divergence stabilization is directly
related to disease progression. In each patient, divergence
stabilization occurs at time T}, + o, where T}, is the time of
disease progression, and o is constant across all patients.
We define T, as the first time at which the patient’s CD4 "
T cell count dropped below 300 cells/ml. Hereafter, we
will refer to this model as the single-a divergence-
stabilization model. The maximum log-likelihood for the
model is obtained by finding the value for o that maxi-
mizes the sum of patient-specific log-likelihoods with
t1=T, + o within each patient. The second variant of the
divergence-stabilization model, which we refer to as the
free-t model, allows the time of divergence stabilization
(1) to vary among patients without constraint.



If the constant-rate model were true, we might expect
the likelihood-ratio test statistic to follow a chi-square
distribution, with the number of degrees of freedom equal
to the difference in the number of parameters between the
models that are being compared. In the present context, the
comparison between the single-a divergence-stabilization
model and the constant-rate model would involve a single
degree of freedom because the more complicated model
adds only one parameter (o). The degrees of freedom for
the free-t model would be equal to the number of patients,
because t is estimated separately in each patient. Un-
fortunately, the asymptotic theory that justifies use of the
chi-square distribution for evaluating LRT statistics is not
applicable in this case. The parameters ¢~ and T are close
to the edges of their respective ranges, and the sample
sizes in each timepoint are relatively small (~10 to 20
sequences). Therefore, we use parametric bootstrapping to
approximate the null distributions of our LRT statistics
(Davison and Hinkley 1997).

It is straightforward to simulate divergence under
either the constant-rate or the divergence-stabilization
model for any particular set of parameter values. First, we
simulated the population divergence recursively over small
time steps (A7r=0.1 months): starting at y=0 at time 0, the
population divergence at the next time step, y(r + Af), is
drawn from a normal distribution with mean y(f) + @*At
and variance o>*Atr. To incorporate the boundary,
negative values were reset to 0. Next, for the sampling
times (¢;) in each particular patient, the divergence values
for individual sequences were simulated following equa-
tion 2 using the simulated population divergences, where
the sampling variance was estimated from the data. For the
analyses that consider data from each patient separately,
we used our maximum-likelihood estimates for ¢ and >
from the fitted constant-rate model to produce a set of 500
simulated data sets for each patient in the Shankarappa
et al. (1999) study. We then fitted both models to each
simulated data set, recorded the maximum log-likelihoods
for each model, and calculated the LRT (see Kelly [2003]
for an application of the parametric bootstrap to multi-
normal data). The null distributions for our single-o and
free-t LRTs were obtained by combining simulation re-
sults from the individual patients. We repeatedly reconsti-
tuted whole data sets (involving eight patients) by randomly
selecting simulated data sets from each patient. The com-
bined LRTs were calculated for these reconstituted data sets
and the values recorded. This procedure was repeated
10,000 times to estimate the distributions.

Forward Simulations

In developing our constant-rate and divergence-
stabilization models, we have made two main assump-
tions: (1) the mean divergence of the entire population is
accurately described by a diffusion process, and (2) the
boundary condition at y = 0 does not strongly affect our
method of inference. To assess the validity of these
assumptions under different evolutionary scenarios, we
performed forward population-genetic simulations of
sequence evolution. These simulations incorporated natu-
ral selection, recombination, and mutation.
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Each iteration proceeded as follows: we started with
a genetically homogeneous population of 2N sequences,
each of length L. This formed the ancestral population.
Reproduction proceeded according to a Wright-Fisher
model for diploids—that is, with nonoverlapping gener-
ations, random mating, and a constant population size.
Mutation occurred at rate L per sequence (not per base
pair) per generation, and the mutation rate was uniform
over the whole sequence. When a mutation occurred at
a previously mutated site, it reverted back to the ancestral
state. Recombination occurred at rate r per sequence per
generation, and recombination was modeled as a crossover
process occurring only at homologous sites within diploid
individuals. We did not allow insertions or deletions. For
the simulations with natural selection, a certain proportion
of new mutations, p,, were subject to selection, and the
remainder were neutral. The selection coefficient s de-
scribes the relative advantage of the new mutation over the
ancestral allele at that site. The selective effects of multiple
mutations within a sequence were combined multiplica-
tively. At 10-month intervals (the approximate interval
between sampling in the Shankarappa et al. [1999] study),
the mean divergence of the entire population was tabulated
relative to the ancestral population, not correcting for
back mutation. This was repeated up to 100 months. For
each parameter combination, the diploid population size
and sequence length were held constant (N = 1000, L =
650), and we assumed that one generation occurred every
2 days (Rodrigo et al. 1999, Fu 2001, Drummond et al.
2002). The mutation rate, p, was selected such that the
sequences diverged by approximately 1% per year, which
is typical of the Shankarappa et al. (1999) data. The
simulations were iterated 500 times for each parameter
combination.

Figure 3 shows the results of the forward simulations
for several different combinations of recombination and
selection parameters. The (unbounded) diffusion models
presented above predict that, among replicate populations
(1) both the mean and variance of population divergence
should increase linearly with time, (2) at any timepoint, the
population divergence should be normally distributed, and
(3) because of the memoryless property of the diffusion,
the covariance in population divergence among two
different timepoints should equal the variance of the
earlier timepoint. Figures 3¢ and d indicate that prediction
(1) holds for different recombination rates and selection
regimes: both the mean and variance increase linearly.
Figure 3a shows the distribution of population divergence
at different timepoints for the case of neutral evolution
with a high recombination rate, along with a fitted normal
distribution. The normality prediction seems to hold very
well. The same pattern is observed for the other parameter
combinations, including those with selection. Finally,
figure 3b plots the covariance between timepoints as a
function of the variance of the earlier timepoint. The agree-
ment with prediction (3) is quite good. Taken together, our
forward simulations indicate that, for a range of evolutionary
models, mean population divergence is very well approx-
imated by a diffusion, and our assumption regarding the
boundary does not have a strong affect on our probability
model.
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Results

Figure 1 suggests that (1) in some patients, non-
synonymous divergence seems to stabilize, whereas synony-
mous divergence does not, (2) nonsynonymous divergence
stabilization seems to coincide with disease progression,
and (3) the rate of nonsynonymous divergence tends to be
higher than the rate of synonymous divergence. These
observations are confirmed by our statistical analysis. Pa-
rameter estimates, LRT statistics, and P values from our

combined analyses (free-t and single-o) are shown in table
1. Our most striking result is that, in the free-t and single-o
analyses, we find strong evidence for divergence stabili-
zation at nonsynonymous, but not synonymous, sites. For
instance, in our free-t analysis, we reject the constant-rate
model (P = 0.0014) for nonsynonymous sites, but we find
little evidence for divergence stabilization at the synony-
mous sites (P = 0.11). Results from individual analyses
are shown in table 2. When the data were not combined
across patients, we lacked sufficient power to reject the



Table 1

Analyses of Synonymous and Nonsynonymous Divergence
Using Combined Likelihood Ratio Tests That Compare
Divergence-Stabilization Models to the Null, Constant-Rate
Model Using Data from All Patients

Site Model Log-Likelihood LRT P
syn CR —650.02
single-o DS (& = 27)* —649.92 020  0.55
free-t DS —641.21 17.63 0.11
non CR 22.19
single-a DS (& = 7)* 34.03 23.67  0.0002
free-t DS 41.45 3852 0.0014

Note.—CR = constant rate, DS = divergence stabilization, LRT = likelihood-
ratio test, non = nonsynonymous, syn = synonymous.

* 6 is the maximum-likelihood estimate of the time of divergence stabiliza-
tion relative to the time of disease progression across patients.

constant-rate model in most data sets. However, in six of
eight patients, the LRT statistic of the nonsynonymous
data set is higher than that of the synonymous data set.

We use our single-o. model to explore the relationship
between divergence stabilization and disease progression.
We find strong evidence that disease progression and
divergence stabilization at nonsynonymous sites are tightly
associated but no evidence of a similar relationship at
synonymous sites. We reject the constant-rate model (P =
0.0002) in favor of the single-o. model for nonsynonymous
sites, but we find no evidence (P = 0.55) for divergence
stabilization at the synonymous sites. Furthermore, when
we estimate the nonsynonymous divergence stop time (1)
in each patient individually, we notice a striking, and
apparently curvilinear, relationship between our estimates
and the time of disease progression (fig. 4); however, there
is no discernable relationship between the synonymous
stop time and disease progression (fig. 4).

Because our drift parameter, @, represents the rate of
evolution per site, we can use our estimates of ¢ for
nonsynonymous and synonymous sites to estimate the
dn/ds ratio—that is, the ratio of nonsynonymous changes
per nonsynonymous site to synonymous changes per
synonymous site. Assuming that synonymous changes are
neutral, the dn/ds ratio is a statistic that summarizes the
relative contributions of deleterious, neutral, and adaptive
mutations to the substitution process. The value dn/ds > 1
is considered a clear indicator of widespread adaptive
evolution (e.g., Nielsen and Yang 1998), whereas dn/ds < 1
implies at least some sites are selectively constrained.
Estimates of the dy/ds ratios for viral populations in each
patient are shown in table 3. For most data sets, dn/ds > 1,
indicating widespread positive selection. In six out of
the eight patients, estimates of dy/ds obtained under the
divergence-stabilization model were higher than estimates
obtained assuming a constant evolutionary rate. Also, we
observe less variation across patients when dy/ds is
estimated under the divergence-stabilization model. Nota-
bly, our estimates of the dy/dg ratio are highly correlated
with the time of disease progression across patients
(r =0.5997, P = 0.0003), i.e., the signal of positive selec-
tion is stronger in patients with longer progression times.
This result is fully consistent with previous analyses that
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Table 2

Maximum-Likelihood Estimates of the Mean Divergence
Rate (@), the Variance in Divergence (c?), and the Di-
vergence Stop Time () in Each Patient Under the Constant-
Rate Model and the Divergence-Stabilization Model, and
Likelihood-Ratio Tests Comparing the Two Models

-~ ~2

® 4
Patient Site Model (X 10%) (X 10° * Log-Likelihood LRT P

pl syn CR  5.01 5.27 —87.67
DS  5.01 527 —87.67 0 057

non CR 573 2.18 16.87
DS 721 1.48 80 18.80 3.86 0.11

p2 syn CR 1.64 2.36 —126.37
DS 477 086 61 —122.99 6.75 0.07

non CR  5.68 1.31 —22.36
DS  6.86 0.16 103 —16.57 11.59 0.009

p3 syn CR 239 0.42 —44.79
DS 338 0 63 —40.45 8.69 0.03

non CR  7.82 1.54 22.76
DS 8.26 1.38 91 23.04 0.56 0.30

pS syn CR  6.17 3.81 —121.02
DS  6.17 381 —121.02 0 054

non CR 545 0.90 46.30
DS 598 038 73 47.11 1.61 0.21

p6 syn CR  7.75 1.89 —59.55
DS 7.84 1.89 72 —59.55 0.01 0.52

non CR 574 1.52 35.64
DS 8.80 051 42 39.27 7.25 0.07

p7 syn CR 470 0 —63.69
DS 470 0 tic —63.69 0 047

non CR  7.79 3.29 —27.41
DS 935 .08 70 —24091 4.99 0.09

p8 syn CR 3.82 0 —87.53
DS 382 0 ty —87.53 0 051

non CR  6.00 0 —6.78
DS 6.13 0 82 —2.64 8.28 0.002

P9 syn CR 2.66 0 —59.42
DS 277 0 117 —58.33 2.16 0.11

non CR  6.04 3.00 —42.84
DS  6.37 285 122 —42.65 0.36 0.44

Note.—CR = constant rate, DS =divergence stabilization, LTR = likelihood-
ratio test, non = nonsynonymous, syn = synonymous.

* 7 = t indicates that the maximum-likelihood estimate of T was the time of
the last sample.

found a similiar pattern using phylogenetic (Ross and
Rodrigo 2002) and population genetic (Williamson 2003)
methods for detecting adaptive evolution, each of which
involves a very different set of biological assumptions than
the present analysis.

Discussion

Our analyses suggest that divergence stabilization—
that is, the reduction in evolutionary rate coincident with
disease progression—is caused primarily by relaxation of
positive selection rather than by an increase in the average
generation time. We reject the constant-rate model for
nonsynonymous sites but not for synonymous sites. Both
the single-o analysis and the separate analyses of individual
patients suggest a strong relationship between the time of
disease progression and the time of divergence stabilization
for nonsynonymous sites but not for synonymous sites.
These results are predicted by the immune-relaxation
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FiG. 4—The relationship between the time of disease progression
(T,,) and our maximum-likelihood estimates for the time of divergence
stabilization (t) at both nonsynonymous and synonymous sites. There is
a strong and apparently curvilinear relationship between disease
progression and divergence stabilization at nonsynonymous sites,
whereas there is no obvious relationship between progression and
divergence stabilization at synonymous sites. Vertical lines connected to
stars indicate that the MLE for the stop time is greater than the time
plotted at the star—that is, divergence stabilization had not occurred by
the time of the last sample.

hypothesis, and they are inconsistent with the cellular-
exhaustion hypothesis.

The support for the immune-relaxation hypothesis
in the present set of analyses corroborates several common
ideas about HIV evolution. First, our results are fully
consistent with the notion that the immune system is the
primary agent of positive selection in the C2-V5 region of
env (Bonhoeffer, Holmes, and Nowak 1995; Wolinsky
et al.1996; Ross and Rodrigo 2002). Second, our results
suggest that HIV disrupts those agents of the immune
system that play a critical role in controlling infection.
Immunological studies support the existence of such
a feedback loop. Douek et al. (2002) found that the virus
preferentially infects HIV-specific CD4™ T cells. Because
HIV-specific CD4" T cells are thought to play an

Table 3

Ratios of dn/ds Estimated As the Ratio of Estimated
Divergence Rate Parameters ((pn/®s) for the Constant-Rate
and Divergence-Stabilization Models

Patient dy/ds (CR) dn/ds (DS)
1 1.15 1.44
2 3.46 1.44
3 3.28 244
5 0.88 0.97
6 0.74 112
7 1.66 1.99
8 1.57 1.61
9 2.27 2.30

NoTe.—CR = constant rate, DS =divergence stabilization.

important role in controlling viremia (e.g., Rosenberg
et al. 1997), Douek et al. (2002) proposed that this viral
specificity contributes to the uncontrolled viral replication
that coincides with progression to AIDS. Our analyses
further suggest that the interaction between the virus and
HIV-specific immune effectors, such as HIV-specific
CD4% T cells, alters the course of viral evolution.

In a previous analysis, Bonhoeffer, Holmes, and
Nowak (1995) observed a decrease in the dy/ds ratio of the
env gene V3 loop over time within a single infected
patient. They attributed this to a reduction in selection
intensity over the course of infection. However, Nielsen
(1999) pointed out that such a change could also be caused
by the nonequilibrium dynamics of an evolving virus
population. Because the population is initially genetically
homogeneous, it takes some time for new mutations to
spread to detectable frequencies, where they could be
counted as substitutions. This transition time will be longer
for neutrally evolving synonymous mutations than for
positively-selected nonsynonymous mutations, so the dn/ds
ratio would decrease over time to some equilibrium,
without a change in selection intensity. In contrast, we do
not expect nonequilibrium dynamics to have a large effect
on our analyses. We follow divergence at each type of site
separately. The founder effect of initial infection will cause
the divergence rate at each type of site to increase
monotonically until it reaches some equilibrium. It will not
cause the divergence rate to drop back to 0, as is the case
in our divergence-stabilization model. Therefore, our test
for a decrease in the divergence rate is conservative with
respect to the founder effect.

Relation to Other Methods

Our diffusion-based analysis is complementary to
three other approaches that have been taken in analyzing
longitudinal data sets: phylogenetic methods, coalescence
theory, and regression models. Phylogenetic methods
allow powerful inferences regarding natural selection and
other population processes. Indeed, a phylogenetic tree
has become the de facto method for summarizing the
information in a longitudinal data set (e.g., Wolinsky et al.
1996; Ganeshan et al. 1997; Markham et al. 1998;
Shankarappa et al. 1999; Yamaguchi-Kabata and Gojobori
2000), and phylogenetic methods based on codon-
substitution models (Nielsen and Yang 1998) have been



used to identify widespread positive selection in longitudi-
nal data sets (e.g., Zanotto et al. 1999, Ross and Rodrigo
2002). A potential difficulty in applying phylogenetic
methods to longitudinal data sets is that recent studies
suggest that the recombination rate of HIV populations in
vivo is high (Jung et al. 2002, Wain-Hobson et al. 2003).
Phylogenetic methods generally assume no recombination.
Although the effects of violating the no-recombination
assumption are not fully understood, simulations have
shown that even small amounts of recombination have
a large effect on tree statistics and can exaggerate of the
degree of substitution-rate heterogeneity (Schierup and
Hein 2000). Also, unrecognized recombination can cause
codon-based phylogenetic methods to falsely identify
positive selection (Shriner et al. 2003; Anisimova, Yang,
and Nielsen 2003). In general, results from phylogenetic
analyses of longitudinal data sets can be difficult to
interpret in the presence of recombination.

A second approach taken in analyzing longitudinal
data sets is coalescence theory (Kingman 1982; Hudson
1983), which has been adapted specifically for longitudinal
data sets (“the serial coalescent” of Rodrigo and
Felsenstein [1999]). Because the serial coalescent is based
on a population process, it can be used to estimate
important population parameters, such as the within-
patient effective population size (Leigh-Brown 1997, Seo
et al. 2002, Drummond et al. 2002) and the generation
time (Rodrigo et al. 1999, Fu 2001, Drummond et al.
2002). The coalescent approach makes two assumptions
that may be violated in the env gene. First, current imple-
mentations of the serial coalescent assume no recombination.
Second, the serial coalescent assumes neutral evolution,
whereas natural selection is thought to play an important
role in env. Modifications to the coalescent that allow for
selection (e.g., Neuhauser and Krone 1997, Barton and
Etheridge 2004) are not applicable to the type of selection
common in HIV: strong positive and diversifying selection
at many linked sites.

Regression modeling is a third approach that has been
taken in analyzing longitudinal data from HIV-infected
patients. Mayer-Hamblett and Self (2001) describe a set of
regression models for characterizing genetic diversity
within and among samples of sequences. Applying these
models to the Shankarappa et al. (1999) data set, they
conclude that viral diversity (variation among sequences
within a single sample) increases over most of the course
of infection but declines at the end. However, in contrast to
the analysis presented here, they failed to confirm a stabi-
lization of divergence towards the end of infection. The
differing conclusions of our study and that of Mayer-Hamblett
and Self (2001) probably stem, in part, from differences in
our respective modeling approaches. However, the most
important difference is likely that we distinguish synon-
ymous and nonsynonymous changes. Only the latter seems

to provide compelling evidence of divergence stabilization.

By following the mean population divergence from
the progenitor sequence rather than the genealogy of all
sequences, our analysis is fairly permissive in terms of
population processes such as recombination and natural
selection. Our null model requires only that the underlying
rate of substitution is approximately constant through time.
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For example, consider the case of two linked loci subject
to neutral evolution, sampled in a single individual. In this
situation, past recombination events will not affect the
number of substitutions at either locus (or the total number
of substitutions), simply because each locus is expected to
experience the same number of generations whether or not
recombination has occurred. Also, consider the case of
frequent selective sweeps—that is, rapid fixation events of
advantageous mutations. If the rate of advantageous muta-
tion is constant, then the rate of substitution will also be
constant. Population-genetic simulations support these ar-
guments: the diffusion model seems to provide an adequate
description of mean population divergence through time
even when both recombination and natural selection are
operating.

The sufficiency of the diffusion models stems largely
from the fact that we are considering only one aspect of the
complex data structure from longitudinal studies. The
models make no prediction about the pattern of variation
among sequences within a single sample, either in the
extent to which they differ from the progenitor or from
each other. Such measures of viral diversity exhibit large
fluctuations over the course of infection, even within
a single patient (Shankarappa et al. 1999; Mayer-Hamblett
and Self 2001). Thus, one advantage of our approach is
that it is relatively insensitive to these large-scale fluctu-
ations. One disadvantage, however, is that such fluctua-
tions in viral diversity may play an important role in
disease progression (Nowak et al. 1991), and our models
cannot address this problem. A major challenge in the
analysis of longitudinal data sets lies in developing meth-
ods that characterize changes in divergence, diversity, and
the relationship between the two.
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Supplementary Material

To correct for saturation, we use the temporal
information in longitudinal data to infer when multiple
substitutions have occurred at the same site. We propose
the following algorithm:

1. Identify sites at which more than one derived (non-
ancestral) nucleotide is observed in the entire longitudinal
data set.

2. At each of those sites, if one of the derived nucleotides
is first observed before the other(s):

a. Count all sequences containing the first derived
nucleotide as one substitution away from the progenitor
at that site.

b. Let t,,;; be the time that the second derived nucleotide
is first observed, and let s, be the set of all sequences
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from t;,;, that have the second derived nucleotide. Then
find the minimum number of pairwise differences
between s, and all the sequences in all the previous
timepoints. Call the minimum-distance sequence from
the previous timepoints m.

c. If m contains the first derived nucleotide at the site in
question, count each subsequent sequence that contains
the second derived nucleotide as two substitutions from
the progenitor at the site.

d. Otherwise, count each sequence with the second
derived nucleotide as one substitution from the pro-
genitor at the site.

e. If a third derived nucleotide is present in the
longitudinal data set, repeat b to d for this character
state.

3. Alternatively, if both (or all three) derived nucleotides
are first observed at the same sampling time, all sequences
containing each derived nucleotide are counted as just one
substitution away from the progenitor at that site.

To summarize, when the second derived nucleotide is
first observed, we infer that it has arisen from whatever
character state is found in the closest (in terms of pairwise
differences) previous sequence. This routine does not
account for back mutation.

In addition to correcting for multiple substitutions, we
can also use the temporal information in longitudinal data
sets to more accurately delineate between nonsynonymous
and synonymous substitutions. A common problem in
DNA sequence analysis lies in counting the numbers of
nonsynonymous and synonymous substitutions when there
have been multiple changes in a single codon. Consider
the following example for the changes in a particular
codon: AGT (Ser) — GGA (Gly). Assuming that only two
changes have occurred, the potential intermediaries are:

/GGT\
AGT\ 7 GGA
AGA

If AGA is the true intermediate, then there have been
two nonsynonymous changes, but if GGT is the true
intermediate, then there have been one synonymous and
one nonsynonymous change. There are several possible
ways to weight the likelihood of the different paths, and,
consequently, different sequence analysis programs can
produce different counts for the numbers of nonsynon-
ymous and synonymous sites. However, with longitudinal
data sets, when multiple changes have occurred in the
same codon, we can simply look back at previous
timepoints and infer which path was taken. We propose
the following algorithm for counting nonsynonymous and
synonymous changes when there have been two changes
in the same codon and when the different intermediaries
produce different counts:

1. For each codon, identify sequences that differ from the
progenitor at two positions within the codon AND the
different intermediate codons produce different counts.

2. In the sequences in previous timepoints, look for the
potential intermediaries at those codons.

3. If only one of the two potential intermediaries are
present in all of the previous timepoints, infer that it is the
intermediate character state, and count nonsynonymous
changes accordingly.

4. If none or both of the potential intermediaries are
present, weight the two different paths as equally likely.
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