Operation Manual

Thorlabs Instrumentation

OEM Laser Diode Controller

ITC1xx

2006

Version: 2.15

Date: 11.07.2006

Copyright[©] 2006, Thorlabs

Contents			Page
1	General	1	
	1.1 Safety		1
	1.2 Featur		3
	1.3 Techn		4
	1.3.1	General data ITC1xx	4
		Display ITC100D	4
		ITC102	5
	1.3.4	ITC110	8
	1.3.5	ITC133	11
	1.3.6	Digital control signals	14
	1.4 Dimer	nsions of ITC100	15
2	Operatin	g the ITC1xx	16
	2.1 Opera	ting elements	16
	2.1.1	Potentiometer	17
	2.1.2	Switches	17
	2.1.3	Jumper	18
	2.1.4	LED's	18
	2.2 Conne	ecting components	19
	2.2.1	I/O-Jack 64pin ST1.	19
	2.2.2	15-pin D-SUB I/O-jack ST2	23
	2.2.3	ST3 Display jack	24
	2.2.4	SMB coaxial inputs	24
	2.3 Conne	ecting the supply	25
	2.4 Conne	ecting the laser diode and photo diode	26
	2.4.1	Laser AG / photo diode CG, no bias	27
	2.4.2	Laser AG / photo diode AG, no bias	28
	2.4.3	Laser AG / photo diode floating, no bias	28
	2.4.4	Laser AG / photo diode CG, 5 V bias	29
	2.4.5	Laser AG / photo diode AG, 5 V bias	29
	2.4.6	Laser CG / photo diode AG	30
	2.4.7	Laser CG / photo diode floating, no bias	31
	2.4.8	Laser CG / photo diode CG, 5V bias	31
	2.4.9	Laser CG / photo diode AG, 5V bias	32
	2.5 Conne	ecting temperature sensor and interlock	33
	2.5.1	Connecting a thermistor	33
	2.5.2	Connecting an AD590	33

THORLARS

	2.5.3	Connecting an LM335	34
	2.5.4	Connecting the TEC element	35
	2.5.5	Polarity check of the TEC element	36
	2.5.6	Interlock and control LED for LASER ON	37
	2.6 Some	practical connection schemes	38
	2.6.1	Operation as laser current controller	38
	2.6.2	Operation as temperature controller	40
	2.7 PID ad	justment	42
	2.8 Setting	g the temperature window.	43
	2.9 Switch	ning the module on and off	44
	2.10 The c	lisplay module ITC100D	45
	2.10.1	Connecting the ITC100D	46
	2.10.2	Jumper setting	46
	2.10.3	Front panel mounting scheme	47
	2.10.4	Front panel ITC100F for ITC100 with ITC100D	48
	2.10.5	Proposal for a custom front panel for ITC100 with ITC100D	49
3	Service a	and Maintenance	50
	3.1 Genera	al remarks	50
	3.2 ITC100	DD (re)-calibration	50
	3.2.1	Adjust I _{PD}	50
	3.2.2	Adjust I _{LD}	50
	3.2.3	Adjust I _{LIM}	51
	3.2.4	Adjust T _{ACT}	51
	3.2.5	Adjust T _{SET}	51
	3.2.6	Adjust I _{TLIM}	51
	3.3 Troubl	eshooting	52
4	Listings		55
	4.1 Warrai	nty	55
	4.2 Certific	cations and compliances	56
	4.3 List of	abbreviations	57
	4.4 List of	figures	58
	4.5 Addres	sses	59

We aim to develop and produce the best solution for your application in the field of optical measurement technique. To help us to come up to your expectations and develop our products permanently we need your ideas and suggestions. Therefore, please let us know about possible criticism or ideas. We and our international partners are looking forward to hearing from you.

Thorlabs

This part of the instruction manual contains every specific information on how to operate the OEM laser diode controller module ITC1xx.

dAttention**d**

This manual contains "WARNINGS" and "ATTENTION" label in this form, to indicate dangers for persons or possible damage of equipment.

Please read these advises carefully!

NOTE

This manual also contains "NOTES" and "HINTS" written in this form.

1 General description

1.1 Safety

Attention

All statements regarding safety of operation and technical data in this instruction manual will only apply when the unit is operated correctly

Connecting the OEM board ITC1xx, internal adjustments and replacement of parts must only be done by qualified service personnel.

It must be sure that the power supply used for the ITC1xx is separated galvanically from the mains.

The power supply as well as the ITC1xx must be grounded properly.

All connections to and from the ITC1xx must be done with duly shielded connection cables (twisted pairs).

Laser diodes can deliver up to several W of (maybe) invisible laser radiation!

When operated incorrectly, this can cause severe damage to your eyes and health!

Be sure to pay strict attention to the safety recommendations of the appropriate laser safety class!

This laser safety class is marked on your external laser source used.

d Attention **d**

Mobile telephones, handy phones or other radio transmitters are not to be used within the range of three meters of this unit since the electromagnetic field intensity may then exceed the maximum allowed disturbance values according to EN 50 082-1.

d Attention **d**

The ITC1xx must not be operated in explosion endangered environments!

1.2 Features

The laser controller ITC1xx is a compact combined laser current and temperature controller for OEM applications on a single Euro-board (100 x 160 mm).

A variety of safety measures allows easy and safe operation of semiconductor laser diodes.

- Softstart
- Interlock
- Hardware laser current limit
- Hardware TEC current limit
- Over temperature protection
- Temperature window for the laser diode
- Power supervision

Other features:

- Constant current or constant power mode
- Bipolar operation of laser diodes
- 2 mA floating photo current input
- Modulation input
- Individual TEC controller PID adjustment possible
- Thermistor or AD590/LM335 temperature sensor selectable
- Temperature tune input
- Analog control output for I_{LD}, I_{LIM}, I_{PD}, T_{SET}, T_{ACT}, I_{TLIM}, I_{TEC}

1.3 Technical data

(All technical data are valid at 23 ± 5°C and 45 ±15% humidity)

1.3.1 General data ITC1xx

DC power supply voltage $\pm 11.4 \text{ V} \dots \pm 15.8 \text{ V}$ DC power supply current (ITC102 / 110 / 133) $^{1)}$ 2.3 A / 3.1 A / 3.1 A $^{2)}$ Dimensions (WxHxD) Euro-board 100 x 42 x 160 mm 3 $^{1)}$ 3) Operating temperature $0 \dots +40 \text{ °C}$ Storage temperature $-40 \text{ °C} \dots +70 \text{ °C}$ Warm-up time $\leq 10 \text{ min}$ Veight

1.3.2 Display ITC100D

Selectable display values: IPD, ILD, ILIM, TSET, TACT, ITLIM $3^{1}/_{2}$ digits Resolution ±0.2 % fs Basic accuracy Accuracy with any ITC1xx typ. ±2 %±0.4 % fs Accuracy calibrated to ITC1xx⁴⁾ ±0.5 %±0.2 % fs Power supply (from ITC1xx) 5V±5 % / 200 mA Dimensions (W x D x H) 70 x 100 x 45 mm Decimal points set by jumper Weight < 0.1 kg

¹ Without display

_

ITC1xx / page 4

 $^{^2}$ The total combined output current for the ITC133 is limited by the total thermal dissipation loss. When the standard heat sink is used, the total output current should be limited to 3A ($I_{LD} + I_{TEC} \le 3A$). Optimized cooling by fan or bigger heat sink allows 3A LD and 3A TEC at the same time provided the power supply provides 6.1A

³ Length with connectors: 176 mm

⁴ See section 3.2 ITC100D (re)-calibration on page 50

1.3.3 ITC102

Curi	ant	CO	ntr	۸I
Guii	EIIL	CO	ıııı	UI.

Range of laser current I _{LD}	$0 \dots \pm 200 \text{ mA}$
Compliance voltage	> 4 V
Setting accuracy	\pm 2% fs typ.
Noise	< 2 μΑ
Drift (30 min. without changing the ambient temperature)	\leq 20 μ A
Temperature coefficient	\leq ± 50 ppm/°C
Current limit	0 > 200 mA
Setting accuracy of current limit	\pm 2% fs typ.

Power control

 $\begin{array}{ccc} \text{Photodiode current} & & 5 \ \mu\text{A...2 mA} \\ \text{Setting accuracy} & & \pm 2\% \ \text{fs typ.} \end{array}$

Analog modulation input (LD MOD)

Voltage range	-5 +5 V
Input impedance	10 kΩ
Modulation coefficient (constant current)	$40 \text{ mA/V} \pm 5\%$
3 dB bandwidth (constant current)	DC200kHz
Modulation coefficient (constant power)	$0.4 \text{ mA/V} \pm 5\%$
TTL-modulation, rise-time (constant current)	< 10 μs

Control outputs

Laser diode current (I_{LD}):

Voltage range	-5 +5 V
Min. load resistance	500 kΩ
Output coefficient (f.s.)	25 V/A± 2% typ.

Laser current limit (I_{LD LIM}):

Voltage range	0 +5 V
Min. load resistance	500 kΩ
Output coefficient (f.s.)	25 V/A± 2% typ.

Photodiode current (I_{PD}):

Voltage range $0 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient (f.s.) $2.5 \text{ V/mA} \pm 2\% \text{ typ.}$

Temperature control

0... +2 A TEC current I_{TEC} TEC voltage U_{TEC} >6 V 12 W Max. output power P_{MAX} typ. ± 2% Measurement accuracy (f.s.) <1 mA Noise and ripple 0...>2 A **Current limit** Resolution 10 mA with display Accuracy (f.s.) ± 5% typ.

Temperature sensor

Control range thermistor $0.1...80 \text{ k}\Omega$ Resolution $100 \Omega \text{ with display}$ Accuracy (f.s.) $\pm 2\% \text{ typ.}$ Stability 2Ω Reproducibility $\pm 0.1\%$

AD590/LM335

Control range $-20...+80\,^{\circ}\text{C}$ Resolution $0.1\,^{\circ}\text{C}$ with display Accuracy $\pm 2\,^{\circ}\text{C}$ typ. Stability $0.004\,^{\circ}\text{C}$ Reproducibility $\pm 0.1\,^{\circ}\text{C}$

Control input (T TUNE)

Voltage range $-5 \dots +5 \text{ V}$ Input impedance $10 \text{ k}\Omega$ Coefficient with thermistor $16 \text{ k}\Omega/\text{V}$ Coefficient with AD590 20 °C/V

Temperature window

 0.3° C ... ∞ / 0.3 k Ω ... ∞ 1)

Control outputs

Set temperature (T_{SET} / R_{SET}), actual temperature (T_{ACT} / R_{ACT})

Voltage range -1 ... +4V / +5mV ... +4V ¹⁾

Min. load resistance 500 k Ω

Output coefficient 50 mV/°C / 50 mV/k Ω ± 2% fs typ.¹⁾

TEC current (I_{TEC})

Voltage range -5V ... +5 V

Min. load resistance 500 k Ω

Output coefficient 2.5 V/A \pm 2% fs typ.

TEC current limit (I_{TEC LIM})

Voltage range 0 ... +5 V

Min. load resistance 500 $k\Omega$

Output coefficient 2.5 V/A \pm 2% fs typ.

Difference actual temperature – set temperature (Delta T / Delta R)

Voltage range -5 ... +5 V

Min. load resistance 500 $k\Omega$

Output coefficient 0.5 V/°C / -0.5 V/k Ω 1)

¹ Transducer/Thermistor

1.3.4 ITC110

Cur	rent	cor	1tro	ī
Gui	rent	COL	เแบ	

Range of laser current I _{LD}	0 ± 1 A
Compliance voltage	> 4 V
Setting accuracy	\pm 2% fs typ.
Noise	< 6 μΑ
Drift (30 min. without changing the ambient temperature)	\leq 100 μ A
Temperature coefficient	≤ 50 ppm/°C
Current limit	0 > 1 A
Setting accuracy of current limit	\pm 2% fs typ.

Power control

Photodiode current $5\mu A...2mA$ Setting accuracy \pm 2% fs typ.

Analog modulation input (LD MOD)

Voltage range	-5 +5 V
Input impedance	10 kΩ
Modulation coefficient (constant current)	200 mA/V
3 dB bandwidth (constant current)	DC50 kHz
Modulation coefficient (constant power)	0.4 mA/V
TTL-modulation, rise-time (constant current)	yes, <50μs

Control outputs

Laser diode current (I_{LD}):

Voltage range	-5 +5 V
Min. load resistance	500 kΩ
Output coefficient	$5V/A\pm 2\%$ fs typ.

Laser current limit (I_{LD LIM}):

Voltage range	0 +5 V
Min. load resistance	500 kΩ
Output coefficient	5 V/A \pm 2% fs typ.

Photodiode current (I_{PD}):

 $\begin{array}{c} \text{Voltage range} & 0 \dots + 5 \text{ V} \\ \text{Min. load resistance} & 500 \text{ k}\Omega \\ \text{Output coefficient} & 2.5 \text{ V/mA± 2\% fs typ.} \end{array}$

Temperature control

0... +2 A TEC current I_{TEC} TEC voltage U_{TEC} >6 V 16 W Max. output power P_{MAX} \pm 2% fs typ. Measurement accuracy <1 mA Noise and ripple 0...>2 A **Current limit** Resolution 10 mA with display Accuracy typ. \pm 5% fs

Temperature sensor

Control range thermistor $0.1...80 \ k\Omega$ Resolution $100 \ \Omega \ \text{with display}$ Accuracy $\pm 2\% \ \text{typ.}$ Stability $2 \ \Omega$ Reproducibility $\pm 0.1 \ \%$

AD590/LM335

Control range -20...+80 °C Resolution 0.1 °C with display Accuracy ± 2 °C typ. Stability 0.004 °C Reproducibility ± 0.1 °C

Control input (T TUNE)

Voltage range $-5 \dots +5 \text{ V}$ Input impedance $10 \text{ k}\Omega$ Coefficient with thermistor $16 \text{ k}\Omega/\text{V}$ Coefficient with AD590 20 °C/V

Temperature window

 0.3° C ... ∞ / 0.3 k Ω ... ∞ 1)

Control outputs

Set temperature (T_{SET} / R_{SET}), actual temperature (T_{ACT} / R_{ACT})

Voltage range -1 ... +4V / +5mV ... +4V ¹⁾

Min. load resistance 500 $k\Omega$

Output coefficient 50 mV/°C / 50 mV/k Ω ± 2% fs typ.¹⁾

TEC current (I_{TEC})

Voltage range -5V ... +5 V

Min. load resistance 500 k Ω

Output coefficient 2.5 V/A \pm 2% fs typ.

TEC current limit (I_{TEC LIM})

Voltage range 0 ... +5 V

Min. load resistance 500 $k\Omega$

Output coefficient 2.5 V/A \pm 2% fs typ.

Difference actual temperature – set temperature (Delta T / Delta R)

Voltage range -5 ... +5 V

Min. load resistance 500 $k\Omega$

Output coefficient 0.5 V/°C / -0.5 V/k Ω 1)

¹ Transducer/Thermistor

1.3.5 ITC133

Current control

 $0 \dots \pm 3 A^{1)}$ Range of laser current ILD > 4 V Compliance voltage \pm 2% fs typ. Setting accuracy Noise $< 25 \mu A$ Drift (30 min. without changing the ambient temperature) $\leq 300 \ \mu A$ Temperature coefficient ≤ 50 ppm/°C 0... > 3 A**Current limit** \pm 2% fs tvp. Setting accuracy of current limit

Power control

Photodiode current $5\mu A...2mA$ Setting accuracy $\pm 2\%$ fs typ.

Analog modulation input (LD MOD)

Voltage range $-5 \dots +5 \text{ V}$ Input impedance $10 \text{ k}\Omega$ Modulation coefficient (constant current) 600 mA/V $3 \text{ dB bandwidth (constant current)} \qquad \qquad DC...20 \text{ kHz}$ Modulation coefficient (constant power) 0.4 mA/V $TTL\text{-modulation, risetime (constant current)} \qquad \qquad \text{yes, < 100 } \mu\text{s}$

Control outputs

Laser diode current (I_{LD}):

Voltage range $-5 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $1.667 \text{ V/A} \pm 2\% \text{ fs typ.}$

_

 $^{^1}$ The total combined current for the ITC133 is limited by the total thermal dissipation loss. When the standard heat sink is used, the total output current should be limited to 3A ($I_{LD} + I_{TEC} \le 3A$). Optimized cooling by fan or bigger heat sink allows 3A LD and 3A TEC at the same time provided the power supply provides 6.1A

Laser current limit (I_{LD LIM}):

Voltage range $0 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $1.667 \text{ V/A} \pm 2\% \text{ fs typ.}$

Photodiode current (I_{PD}):

Voltage range $0 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $2.5 \text{ V/mA} \pm 2\% \text{ fs typ.}$

Temperature control

TEC current I _{TEC}	0 ±3 A ¹⁾
TEC voltage U _{TEC}	>6 V
Max. output power P _{MAX}	24 W
Measurement accuracy	typ. \pm 2% fs
Noise and ripple	< 3 mA
Current limit	0>3 A
Resolution	10 mA with display
Accuracy	\pm 5% fs typ.

Temperature sensor

Control range thermistor $0.1...80 \text{ k}\Omega$ Resolution $100 \Omega \text{ with display}$ Accuracy (f.s.) $\pm 2\% \text{ typ.}$ Stability 2Ω Reproducibility $\pm 0.1 \%$

AD590/LM335

Control range -20...+80 °C Resolution 0.1 °C with display Accuracy (f.s.) typ. ± 2 °C Stability 0.004 °C Reproducibility ± 0.1 °C

__

 $^{^1}$ The total combined current for the ITC133 is limited by the total thermal dissipation loss. When the standard heat sink is used, the total output current should be limited to 3A ($I_{LD} + I_{TEC} \le 3A$). Optimized cooling by fan or bigger heat sink allows 3A LD and 3A TEC at the same time provided the power supply provides 6.1A

Control input (T Tune)

Voltage range $-5 \dots +5 \text{ V}$ Input impedance $10 \text{ k}\Omega$ Coefficient with thermistor $16 \text{ k}\Omega/\text{V}$ Coefficient with AD590 20 °C/V

Temperature window

 0.3° C ... ∞ / 0.3 k Ω ... ∞ 1)

Control outputs

Set temperature (T_{SET} / R_{SET}), actual temperature (T_{ACT} / R_{ACT})

Voltage range $-1 \dots +4 \text{ V } / \text{ +5 mV } \dots +4 \text{ V }^{1)}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $50 \text{ mV/°C } / \text{ 50 mV/k}\Omega \pm 2\% \text{ fs typ.}^{1)}$

TEC current (I_{TEC})

Voltage range $-5 \text{V} \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $1.667 \text{ V/A} \pm 2\% \text{ fs typ.}$

TEC current limit (I_{TEC LIM})

Voltage range $0 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $1.667 \text{ V/A} \pm 2\% \text{ fs typ.}$

<u>Difference actual temperature – set temperature (Delta T / Delta R)</u>

Voltage range $-5 \dots +5 \text{ V}$ Min. load resistance $500 \text{ k}\Omega$ Output coefficient $0.5 \text{ V/°C / } -0.5 \text{ V/k}\Omega^{1)}$

-

¹ Transducer/Thermistor

1.3.6 Digital control signals

INPUTS:

LD ON IN	High => Laser ON
TEC ON IN	High => TEC ON
min. high level input voltage	2.0 V
max. low level input voltage	1.1 V
max. input voltage	25 V

TTL MOD High => Laser ON (int. pull up to +5 V) min. high level input voltage 1.8 V max. low level input voltage 1.2 V max. input voltage 25V

OUTPUTS (Open collector, no internal pull up's):

LD ON OUT

LIMIT LD

Low = Laser limit reached

TEC ON OUT

TEMP ERR

Low = TEC window exceeded

OTP

Low = TEC window exceeded

Low = Heat sink over temperature

max. low level output voltage:

(sink current = 350 mA)1.6 Vmax. sink current500 mAmax. external pull up voltage50 V

INTERLOCK:

Please refer to 2.5.6.

1.4 Dimensions of ITC100

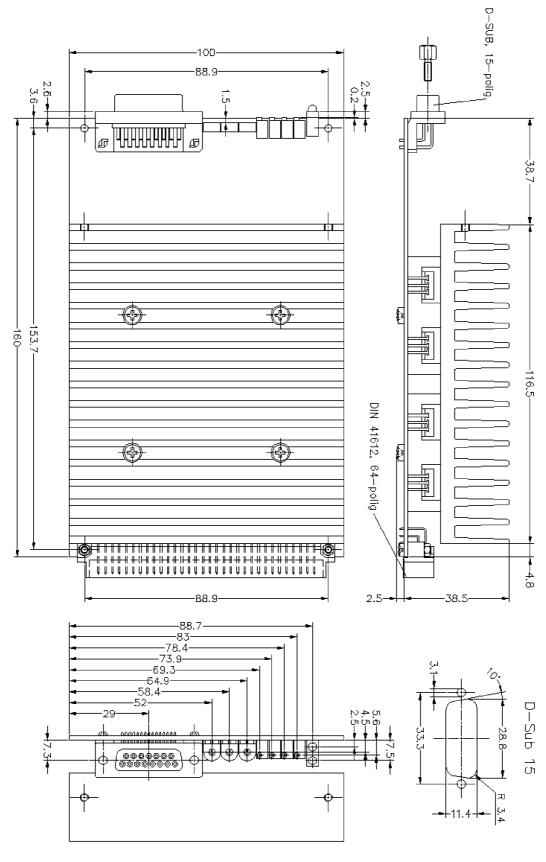


Figure 1 ITC100 dimensions (mm)

2 Operating the ITC1xx

2.1 Operating elements

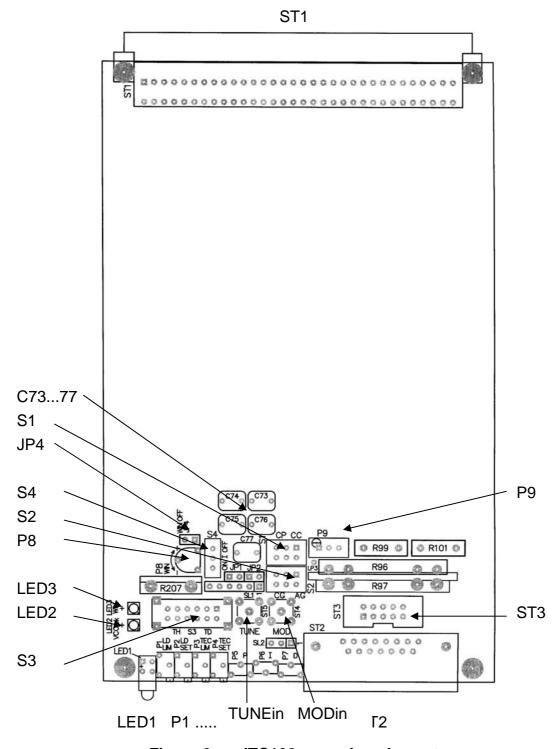


Figure 2 ITC100 operating elements

2.1.1 Potentiometer

I	P1	Sets	the	laser	diode	limit	curren	ıt
ı		0510	11117	ICLO GI	CHOOLE.	11111111	CULTEL	

- P2 Adjusts the laser set current or power (depending on mode of operation, CC or CP)
- P3 Sets the TEC current limit
- P4 To adjust the TEC set temperature or resistance (depending on the sensor chosen, transducer or thermistor)
- P5 TEC P share
- P6 TEC I share
- P7 TEC D share
- P8 Defines the TEC temperature window
- P9 For CMR adjustment. Should not be changed by the user.

2.1.2 Switches

S1 LDC mode

Switch to the left in Figure 2 defines constant power mode (CP) Switch to the right defines constant current mode (CC)

S2 LDC polarity

Switch to the left in Figure 2 defines cathode grounded(CG) Switch to the right defines anode grounded (AG)

S3 TEC sensor transducer / thermistor

Switch to the left in Figure 2 defines thermistor Switch to the right defines transducer (AD590 etc.)

S4 TEC I-share ON/OFF

Switch in direction ST2 in Figure 2 turns TEC I-share ON Switch in direction ST1 turns TEC I-share OFF.

2.1.3 Jumper

JP1 Bias +

Jumper closed: bias+ connected to ST2 Pin 12

Jumper open: bias+ disconnected from ST2 Pin 121)

JP2 Bias -

Jumper closed: bias- connected to ST2 Pin 9

Jumper open: bias- disconnected from ST2 Pin 9¹⁾

JP4 TEC window

Jumper closed: TEC window OFF Jumper open: TEC window ON

2.1.4 LED's

LED1a Laser ON (upper LED)

LED1b TEC ON (lower LED, nearest to pcb)

LED2 Power supply o.k.

LED3 TEC temperature out of window

-

¹ Compatibility to *Thorlabs* LDH series with connection cable CAB 430

2.2 Connecting components

2.2.1 I/O-Jack 64pin ST1.

Power supply

A30,C30	Supply voltage +	+11.4+15.8V / 2.4A/3.2A/3.2A 1) 2)
A31,C31	Supply voltage ground	
A32,C32	Supply voltage -	-11.415.8V / 2.4A/3.2A/3.2A ¹⁾

Analog signals

A8,C8,A14,A16,

A18,A21,C21 Measurement ground

PIN	Function	Input/Outpu	ut Range / Coefficient
TEC			
A4,C4	TEC - (ground)	O	±2A/2A/3A / ±6V ¹⁾
A5,C5	TEC +	O	
C6	AD590 +	1	-20+80°C
A6	AD590 -	1	253.2353.2μA 1μΑ/°C

-

¹ ITC102/110/133

² Without display

PIN	Function	Input/Outp	ut Range	e / Coefficient
A7 C7 C9 A9 A10 C10	Thermistor ground Thermistor ITEC ITEC LIM Delta T / Delta R TACT / RACT 3)	I I O O O O	0+5V -5+5V -1+4V / +5m 50mV/°C / 5 -1+4V / +5m	50 mV/k $\Omega^{2)}$ nV+4V $^{2)}$
A11	T TUNE	1	50mV/°C / 5 -5+5V	50mV/kΩ ^{2-/} 20°C/V / 16kΩ/V ²⁾
LDC				
A15	LD MOD	1	-5+5 V	40/200/600 mA/V ¹⁾
A19 A20	IPD ³⁾ ILD ³⁾	0	0+5V 0+5V(CG)/ 25 / 5 / 1.667	2.5V/mA 05V(AG)
C20	ILDLIM Diag	0	0 + 5V	25 / 5 / 1.667 V/A ¹⁾
A22 C22	Bias - Bias +	0 0	-5V const. +5V const.	
A23 C23	Monitor diode catho Monitor diode anod		02mA (float	ing diff. input)
		0	+0.2A/1A/3A	, ,
A24,C24	Laser diode anode (polarity CG)		+U.ZA/TA/3A	/ 4 V ′
A25,C25 A26,C26	Laser diode ground Laser diode cathod (polarity AG)		-0.2A/1A/3A	/ 4V ¹⁾

_

¹ ITC102/110/133

² Transducer/Thermistor

 $^{^3}$ If a long connection cable is connected to this output, a 1 k Ω series resistor should be inserted as close as possible to the output pin.

PIN	Function	Input/Outpu	ut Range / Coefficient
Digital sign	als		
TEC			
A13	TEC ON IN	1	Logical level High => TEC on
A12 C12	TEC ON OUT TEMP ERR	O O	Low = TEC on (open collector) Low = TEC window exceeded (open collector, OC)
C13	OTP	0	Low = heat sink over-temperature
C14	Digital ground		(Open Coll.)
LDC			
C15 A17	LD ON IN TTL MOD	1	High => laser on High => laser on
C16 C18	LD ON OUT LIMIT LD	O O	Low = laser on (open collector) Low = laser limit reached (open collector)
C17	Interlock	I/O	Closed to ground (R < 430 Ω)

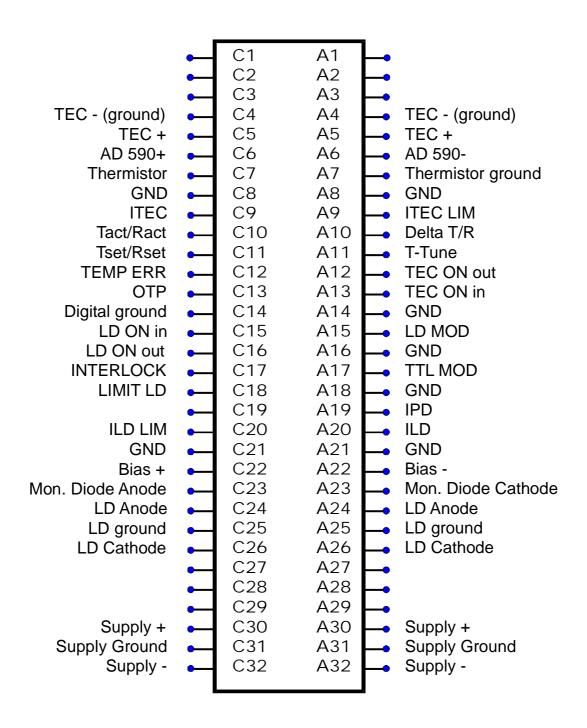


Figure 3 ST1 64pin I/O-jack

2.2.2 15-pin D-SUB I/O-jack ST2

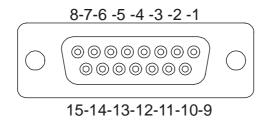


Figure 4 The 15 pin D-SUB I/O jack (f)

PIN	Function	Input/Outpu	ut Range
8 7	TEC - (ground) TEC +	O O	±2A/2A/3A / ±6V ¹⁾
6 13 14	AD590 + AD590 - Thermistor ground	 	253.2353.2μA
15	Thermistor	Ï	100Ω80kΩ
11	Laser diode anode (polarity CG)	0	+0.2A/1A/3A 4V 1)
3 10	Laser diode ground Laser diode cathod (polarity AG)		-0.2A/1A/3A 4V 1)
2 4	Monitor diode catho		02mA (floating diff.input)
9 12	Bias - Bias +	O O	-5V const. ²⁾ +5V const. ³⁾
1 5	Interlock Interlock ground	I/O	Closed to ground (R < 430 Ω)

ITC1xx / page 23

¹ ITC102/110/133

² With JP2 set

³ With JP1 set

2.2.3 ST3 Display jack

PIN	Function	Input / Output
1	-9V (not used)	
2	GND	
3	+5V	
4	IPD_Disp	0
5	ILD_Disp	0
6	ILDLim_disp	0
7	TSET_Disp	0
8	TACT_Disp	0
9	ITECLIM_Disp	0
10	Measure ground	

2.2.4 SMB coaxial inputs

ST4	Laser diode modulation in	nput LD MOD	4)
		-5+5V	40/200/600mA/V 1)
ST5	Temperature tune input T	TUNE	
313	remperature turie imput i	IONE	
		-5+5V	20° C/V / 16 k Ω /V $^{2)}$

¹ ITC102/110/133

² Transducer/Thermistor

2.3 Connecting the supply

The OEM board ITC100 requires a supply voltage of ±12 ... 15 V for internal operation and to operate the laser diode and the TEC element.

The ±12 ... 15 V supply must be regulated and free of ripple. Definitive limit values for the voltages are ±11.4 V resp. ±15.8 V. Voltages below this window will cause the unit to operate improperly, voltages above may cause damage to the ITC100.

The necessary currents the power supply must be able to deliver are:

With ± 15 V supply and high output currents at low output voltages the internal power dissipation of the unit increases significantly. This could cause a degradation of the technical specifications. In these cases the use of a ± 12 V supply is advised.

The increase of the heat sink temperature for a vertically installed OEM board without forced air cooling can be calculated as follows:

$$\Delta T = [(Us - U_{LDCOUT}) \cdot I_{LDCOUT} + (Us - U_{TECOUT}) \cdot I_{TECOUT} + 2.5Watt] \cdot 1.6^{\circ}C / Watt$$

 $(U_S = Supply voltage)$

Example:

 I_{TECOUT} =2A; U_{TECOUT} = 2.5V; I_{LDCOUT} = 0.2 A; U_{LDCOUT} = 2V US = ±12V:-> ΔT = 37.6 K : -> $T_{HEATSINK}$ = 62.6 °C at 25°C ambient temperature.

NOTE

Using the ITC1xx with the Display ITC100D additionally increases the heat sink temperature by about 3°C.

Also horizontally mounting of the unit increases the temperature! For optimum specs forced air cooling may be required.

¹ Without display ITC100D

 $^{^2}$ The total combined output current for the ITC133 is limited by the total thermal dissipation loss. When the standard heat sink is used, the total output current should be limited to 3A ($I_{LD} + I_{TEC} \le 3A$). optimized cooling by fan or bigger heat sink allows 3A LD and 3A TEC at the same time provided the power supply provides 6.1A

The maximum allowed heat sink temperature is +85°C. Above the over temperature protection gets active and switches off the TEC and LDC outputs until the temperature has dropped by about 10°C.

2.4 Connecting the laser diode and photo diode

The laser diode controller ITC102 / ITC110 / ITC133 by *Thorlabs* are designed to drive laser diodes up to a maximum current range of $0.2 / 1 / 3^{1)}$ A either with anode or cathode grounded.

The photodiode can be used either floating, or with anode or cathode grounded and with or without bias voltage.

Connect the laser diode and, if provided, the photodiode with shielded cables to the output connector ST2 or ST1 according to the configurations shown in the following part.

NOTE:

Disconnecting the laser diode during operation may lead to destruction of the laser diode!

_

¹ See Footnote 2 on previous page

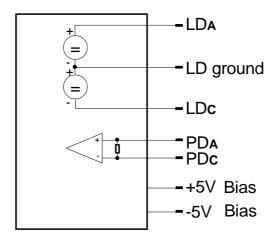


Figure 5 Principal circuit of the ITC1xx

The laser diode is always sourced with respect to ground. Compared to a floating driver stage, this operation mode has the advantages of higher security for the laser diode and better stability of the laser current.

Connect the laser diodes and the photodiodes with shielded, twisted pair cables. The anode and cathode connection of each device should be twisted.

The connections for the different possible combinations are shown in the following figures.

2.4.1 Laser AG / photo diode CG, no bias

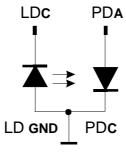


Figure 6 Laser diode AG, photo diode CG, no bias

2.4.2 Laser AG / photo diode AG, no bias

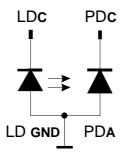
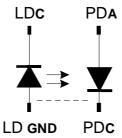



Figure 7 Laser diode AG, photo diode AG, no bias

2.4.3 Laser AG / photo diode floating, no bias

a connection (dashed line) may be done either at the laser or at the connector

Figure 8 Laser diode AG, photo diode floating, no bias

2.4.4 Laser AG / photo diode CG, 5 V bias

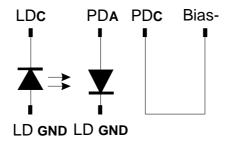


Figure 9 Laser diode AG, photo diode CG, 5V bias

2.4.5 Laser AG / photo diode AG, 5 V bias

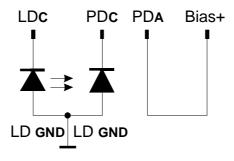


Figure 10 Laser diode AG, photo diode AG, 5V bias

Reverse connection of the photo diode can cause permanent damage to the device when using a bias voltage. Check control voltage output I_{PD} (A19) prior to setting the bias voltage. The output must be positive!

Laser CG / photo diode CG

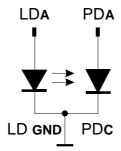


Figure 11 Laser diode CG / photo diode CG, no bias

2.4.6 Laser CG / photo diode AG

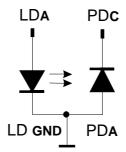


Figure 12 Laser diode CG / photo diode AG, no bias

2.4.7 Laser CG / photo diode floating, no bias

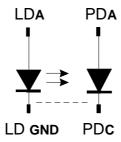


Figure 13 Laser diode CG / photo diode floating, no bias

a connection (dashed line) may be done either at the laser or at the connector

2.4.8 Laser CG / photo diode CG, 5V bias

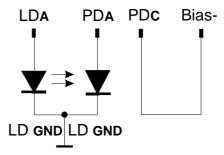


Figure 14 Laser diode CG / photo diode CG, with 5V bias

2.4.9 Laser CG / photo diode AG, 5V bias

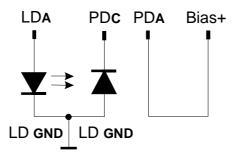


Figure 15 Laser diode CG / photo diode AG, 5V bias

d Attention **d**

Reverse connection of the photo diode can cause permanent damage to the device when using a bias voltage. Check control voltage output I_{PD} (A19) prior to setting the bias voltage. The output must be positive!

2.5 Connecting temperature sensor and interlock

2.5.1 Connecting a thermistor

The thermistor is connected between pin 14 and pin 15. (Values in parenthesis correspond to the 64-pole jack ST1)

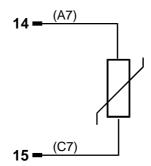


Figure 16 Connecting a thermistor

2.5.2 Connecting an AD590

The IC-temperature sensor AD590 is connected between pin 13 (-) and pin 6 (+). (Values in parenthesis correspond to the 64-pole jack ST1)

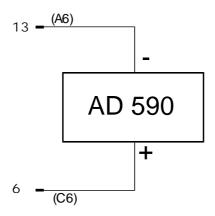


Figure 17 Connecting an AD590

2.5.3 Connecting an LM335

The IC-temperature sensor LM335 is connected between pin 6 (+), pin 13 (via 10 k Ω resistor) and pin 14 (-).

(Values in parenthesis correspond to the 64-pole jack ST1)

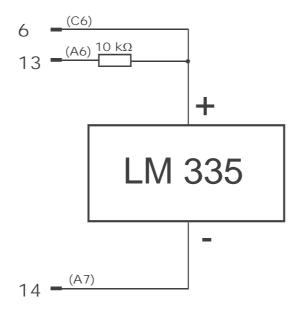


Figure 18 Connecting a LM335

2.5.4 Connecting the TEC element

Connect the TEC element to pin 7 (+) and pin 8 (-). (Values in parenthesis correspond to the 64-pole jack ST1)

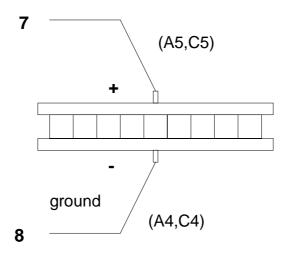


Figure 19 Connecting a TEC element

d Attention **d**

A reverse poled TEC element may lead to thermal runaway and destruction of the connected components.

2.5.5 Polarity check of the TEC element

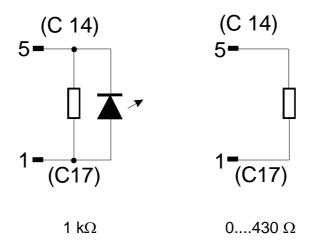
Presettings

- Connect TEC element and temperature sensor. The sensor must have good thermal contact to the active surface of the TEC element.
- Switch on the laser diode control system ITC1xx.
- Select the correct type of sensor (S3).
- Set the appropriate value for I_{MAX}¹⁾.

Polarity check of the TEC element

- Observe T_{ACT} (or R_{ACT}) and switch on the module.
- → If T_{ACT} (or R_{ACT}) runs away from T_{SET} (or R_{SET}), the TEC element is reverse poled. Change polarity and repeat the procedure.
- → If T_{ACT} (or R_{ACT}) is oscillating around the value T_{SET} (or R_{SET}) the TEC element is connected correctly, but the P-, I- and D-share values of the control loop are still incorrect.
- → If T_{ACT} (or R_{ACT}) is settling properly to the value T_{SET} (or R_{SET}) the TEC element has been connected correctly, the values for the P-, I- and D-share of the control loop might still be improved.
- → (Refer to chapter 2.7, "PID adjustment" starting on page 42)

ITC1xx / page 36


¹ The total combined current for the ITC133 is limited by the total thermal dissipation loss. When the standard heat sink is used, the total output current should be limited to 3A ($I_{LD} + I_{TEC} \le 3A$). Optimized cooling by fan or bigger heat sink allows 3A LD and 3A TEC at the same time provided the power supply provides 6.1A

2.5.6 Interlock and control LED for LASER ON

Pin 1 of the output connector (ST2) is a test contact to determine whether a laser diode is connected or not or if the connection to the laser diode has been interrupted during operation.

Connect Pin 1 externally to Pin 5. This bridge disconnected, the ITC1xx is switched into LASER OFF mode automatically.

An external LED with a 1 $k\Omega$ resistor in parallel may be connected between pin 1 (anode) and pin 5 (cathode) of the output connector to indicate the LD ON status. The LED current is about 3.5 mA.

(Values in parenthesis correspond to the 64-pole jack ST1)

Figure 20 Interlock connection of ITC1xx

2.6 Some practical connection schemes

Here are some examples how to do first experiments with the ITC100

2.6.1 Operation as laser current controller

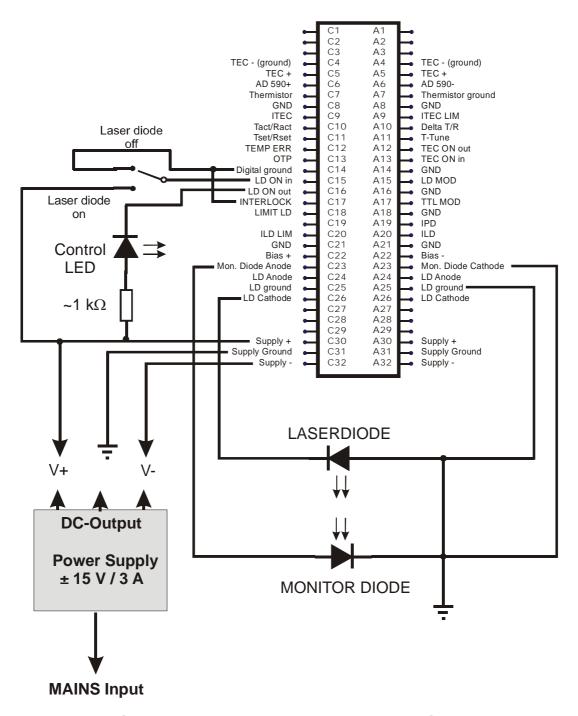


Figure 21 Laser current controller, version a

Here a laser diode with polarity AG (anode grounded) and a photo diode with polarity CG (cathode grounded) with no bias voltage are connected to the 64-pin DIN jack.

The same configuration is possible using the 64-pin jack as well as the 15-pin D-SUB connector at the front panel:

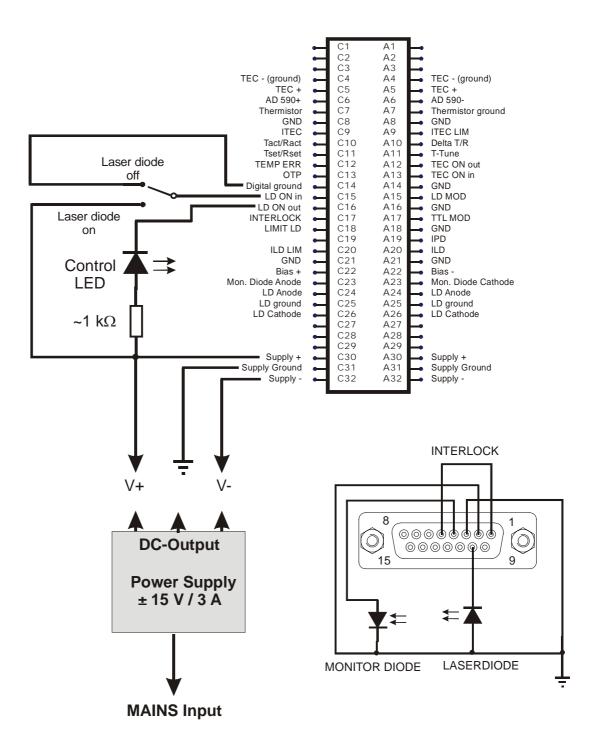


Figure 22 Laser current controller, version b

2.6.2 Operation as temperature controller

Using only the 64-pin jack:

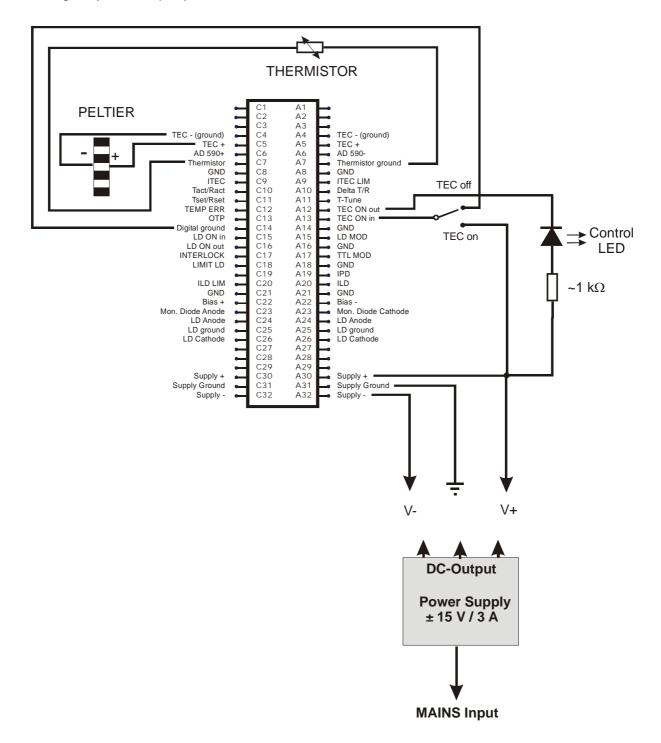


Figure 23 Temperature Controller, version a

Using both connectors

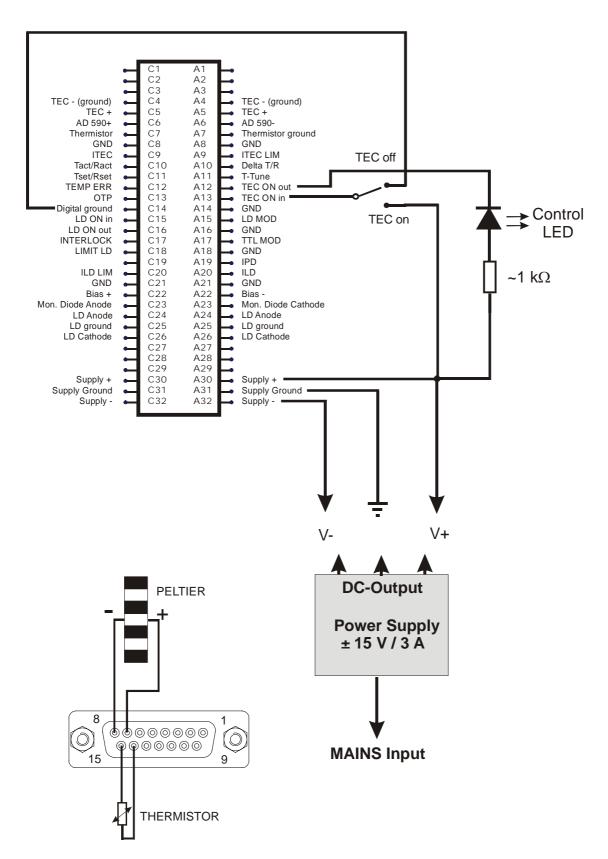


Figure 24 Temperature Controller, version b

2.7 PID adjustment

Temperature control loops are comparatively slow with control oscillations in the Hertz range.

The PID adjustment will optimize the dynamic behavior. With the ITC1xx the three parameters P, I and D can be set independently from 5% to 100%.

Example of a PID adjustment

(Pre-conditions: All limit values have been set correctly, all polarities are correct, all set and relevant calibration values are entered, ambient temperature is about 20°C)

- Switch off the I-share (switch S4 to OFF).
- Set the P-, I- and D-share to minimum (turn potis counter clockwise).
- Switch on the output and observe the temperature.

P-share

- Change repeatedly between set temperatures of about 18 °C and 22 °C while observing the settling behavior of the actual temperature.
 - Increase the P-share gradually. Higher values will increase the settling speed, too high values make the system oscillate.
 - The P-share has been set correctly when the actual temperature remains stable near the set temperature after only 2-3 overshoots.

D-share

 Change repeatedly between set temperatures of 18 °C and 22 °C while observing again the settling behavior of the actual temperature.

Increase the D-share gradually. Higher values will decrease the amplitude of the overshoots.

The D-share is set correctly when the actual temperature remains stable near the set temperature after a minimum of overshoots.

I-share

- Turn on the I-share again (switch S4 to ON).
- Again change repeatedly between set temperatures of 18 °C and 22 °C.
 Increase the I-share gradually. Higher values will accelerate the settling to the set temperature.

The I-share is set correctly when the actual temperature reaches the set temperature in shortest time without overshoots.

NOTE

If the adjustment ranges of I- and D-share are insufficient you can use additional foil capacitors on place C73 for the D-share and on places C75,C76 and C77 for the I-share, typically 0.47 μ F ... 3.3 μ F (see Figure 2).

2.8 Setting the temperature window.

Keep your temperature sensor on a constant temperature (with the TEC switched off). Adjust the <u>set</u> temperature in such a way that the difference between actual and set temperature corresponds to the desired temperature window.

Now remove jumper 4 and set potentiometer P8 fully clockwise (window = ∞).

Rotate P8 slowly counter clockwise until LED3 lights up.

2.9 Switching the module on and off

The laser current and the temperature controller are switched on by logic signals. The signals are applied to I/O-jack ST1:

→ Figure 3)

pin C15: Laser current on/off

pin A13: Temperature controller on/off.

The minimum high level to switch on is +2 V, the maximum input level +25 V. Thus either TTL or CMOS signals can be applied, or for constant operation these inputs can be connected to the positive supply voltage.

The maximum voltage level to switch the units off, must not exceed +1.1 V! Input resistance is about. 10 $k\Omega$.

Please remember that the interlock-line must be closed to switch on the laser current.

2.10 The display module ITC100D

P1P6

Figure 25 The ITC100D display module

The display is a 3 ½ digit LED-display with user selectable decimal points.

The module ITC100D allows to display digitally the switch selectable values: (from counter-clockwise to clockwise)

- Photo diode current I_{PD}
- Laser diode current I_{LD}
- Laser diode limit current I_{LIM}
- Set temperature¹⁾ (or resistance²⁾) value T_{SET}
- Actual temperature¹⁾ (or resistance²⁾) value T_{ACT}
- TEC limit current I_{TLIM}

-

¹ with transducer

² with thermistor

2.10.1 Connecting the ITC100D

The ITC100D can either be mounted directly to the ITC1xx board or separately e.g. to a front panel.

To connect the display to the ITC1xx board use the two screws and distance holders delivered with the display module.

The display is mounted to the ITC heat sink in an 90 ° angle.

The flat band connection cable jack is inserted into ST3 on the ITC board.

No further adjustment is necessary.

2.10.2 Jumper setting

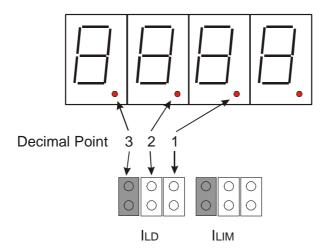
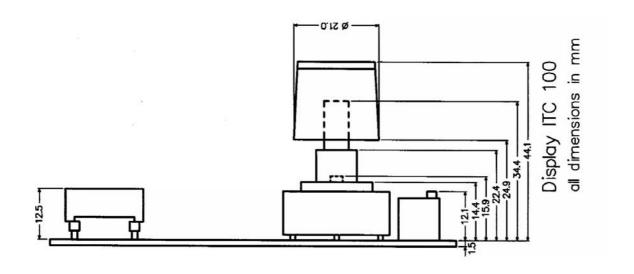
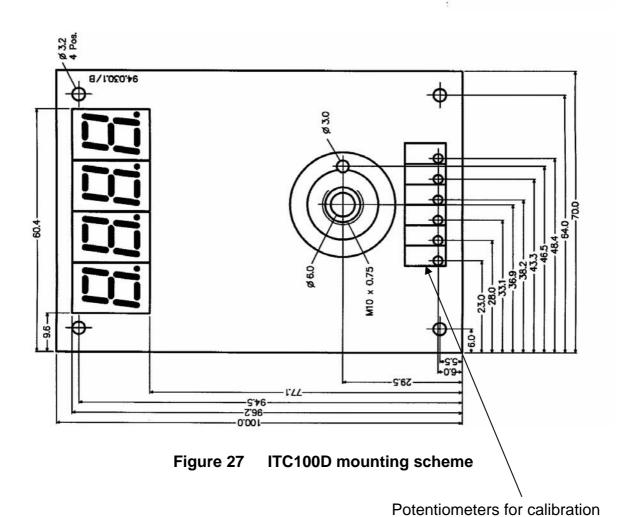


Figure 26 ITC100D Jumper settings

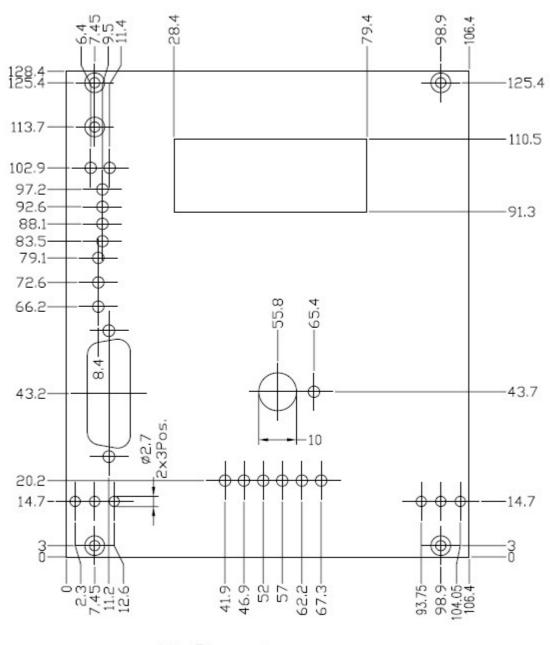

Two jumper banks allow the setting of decimal points corresponding to the two measurement values I_{LD} and I_{LIM} .


Туре	I _{PD}	I _{LD}	I _{LD}	I _{LIM}	I _{LIM}	T _{SET}	T _{ACT}	I _{TELIM}
	Unit	pos.	Unit	pos.	Unit	Unit	Unit	Unit
ITC102	mA	1	mA	1	mA	$^{\circ}$ C/k $\Omega^{1)}$	$^{\circ}$ C/k $\Omega^{1)}$	Α
ITC110	mA	3	Α	3	Α	$^{\circ}$ C/k $\Omega^{1)}$	$^{\circ}$ C/k $\Omega^{1)}$	Α
ITC133	mA	2	Α	2	Α	${}^{\circ}$ C/k $\Omega^{1)}$	${}^{\circ}C/k\Omega^{1)}$	Α

¹ Transducer / Thermistor

-

2.10.3 Front panel mounting scheme



NOTE

Not made to scale!!!

2.10.4 Front panel ITC100F for ITC100 with ITC100D

All Dimensions are mm

Figure 28 Front panel ITC100F dimensions (mm)

NOTE

Not made to scale!!!

2.10.5 Proposal for a custom front panel for ITC100 with ITC100D

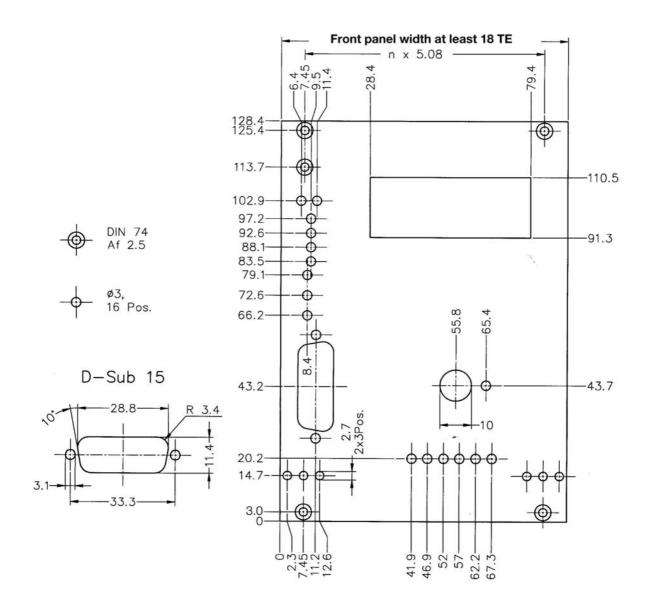


Figure 29 Custom front panel dimensions (mm)

NOTE

This is a proposal for a custom front panel. This is not delivered by Thorlabs! For an available Thorlabs front panel please refer to 2.10.4.

Not made to scale!

3 Service and Maintenance

3.1 General remarks

The ITC1xx laser controller module does not need any regular maintenance by the user. Only a possibly used ITC100D LED display should be recalibrated for highest accuracy.

3.2 ITC100D (re)-calibration

For higher display accuracy you should re-calibrate the ITC100D from time to time. Calibration is carried out as "one point" calibration.

Refer to Figure 25 for potentiometer locations.

3.2.1 Adjust I_{PD}

Insert a known current from an external source into the photo current input. The current should be about 90% of full scale current.

Use P1 to adjust the display reading to the defined input current.

3.2.2 Adjust I_{LD}

Set your laser controller to constant current mode. Adjust the laser current limit to maximum current and the laser current setting to about 90% of maximum current. Connect an Ampère meter to the laser output pins

Use P2 to adjust the ITC100D reading to the measured output current.

3.2.3 Adjust I_{LIM}

Set your laser controller to constant current mode. Adjust the laser current limit to about 90% of maximum current and the laser current setting to maximum current. Connect an Ampère meter to the laser output pins

Use P3 to adjust the ITC100D reading to the measured output current.

3.2.4 Adjust T_{ACT}

Bring your temperature sensor to a well defined temperature and adjust the ITC100D reading to that temperature using P5.

3.2.5 Adjust T_{SET}

Adjust your set temperature to about 90% of the full scale value. Turn on temperature control and wait until temperature has stabilized. Read the actual temperature T_{ACT} , switch to T_{SET} and bring the reading in accordance with T_{ACT} using the potentiometer P4 (remember that T_{ACT} has to be calibrated first!).

3.2.6 Adjust I_{TLIM}

Connect an Ampère meter to the TEC current output. Adjust the TEC current limit to about 90% of full scale. Adjust the temperature setting to a much higher temperature and turn on temperature control.

Adjust the I_{TLIM} reading to the ammeter value using P6.

3.3 Troubleshooting

- Unit does not work at all (no display):
 - Controller connected properly to the external current source?
 - Connect the ITC1xx to a stable current source, take care of the right voltage setting (± 11.4... ± 15.8 V).

You don't get the desired laser output power

- > Is the interlock closed?
 - Control the resistance between the interlock pins of the connector jack not to be more than 430 Ω .
 - → (refer to section 2.5.6, "Interlock and control LED for LASER ON" on page 37)
- Do you have turned on the laser output?
 - Apply a "high" logical level to pin C15 of ST1 to turn on the laser output.
 The LED "ON" (LED 1a) on the pcb must be on
- Is the hardware limit I_{LIM} set to 0 (P1)?
 - Adjust the hardware limit I_{LIM} by means of the potentiometer P1 on the pcb to the desired value.
- Is the laser diode installed properly?
 - Control the connection cables.
- Is the switch S2 set according to the laser diode polarity?
 - If not, change the S2.
- Is the photo diode connected properly?
 - Check the connecting cable.

- Are you using a bias voltage with the photo diode in photocurrent mode?
 - Turn off bias voltage by interrupting the cable bridge or change the polarity of the diode for photo element mode.
 - → (refer to section 2.4, "Connecting the laser diode and photo diode" on page 26)
- Is the desired output power programmed correctly?
 - Turn to constant power mode (S1) and adjust the desired output power P_{LD} with the potentiometer P2.
- Is the ITC1xx running in temperature protection mode?
 - Check if the temperature window is set correctly.
 - Check if the laser temperature is out of window (laser is then switched off automatically).

You don't get the desired operation temperature

- Is the TEC connected properly to the connector?
 - Check all cables.
 - Check the correct polarity (see section 2.5.5 on page 36)
- Do you have turned on the temperature controller (high level on pin A13 of ST1)?
 - Apply a logical "high" level to pin A13.
 - The LED <u>"TEC ON"</u> (LED 1b) on the pcb must be on.
- ➤ Is the correct temperature sensor connected properly and is the temperature set accordingly?
 - Check the corresponding connections and polarities of the temperature sensor (refer to chapters 2.5.1, 2.5.2 and 2.5.3, starting on page 33).
 - Adjust P4 to the desired temperature.
- > Is the TEC current limit set to 0?
 - Adjust P3 to the desired TEC current limit.

- Do you have chosen the right temperature sensor?
 - Select the corresponding temperature sensor with S3.
- ◆ Set temperature differs from actual temperature (of the laser)
 - ➤ Is the temperature not stable?
 - Adjust the corresponding PID-parameters carefully (refer to 2.7, "PID adjustment" on page 42)

If you don't find the error source by means of the trouble shooting list please <u>first</u> <u>connect the <u>Thorlabs Hotline (europe@thorlabs.com)</u> before sending the whole system for checkup and repair to <u>Thorlabs</u>.</u>

(refer to section 4.5, "Addresses" on page 59)

4 Listings

4.1 Warranty

Thorlabs warrants material and production of the ITC1xx modules for a period of 24 months starting with the date of shipment. During this warranty period *Thorlabs* will see to defaults by repair or by exchange if these are entitled to warranty.

For warranty repairs or service the unit must be sent back to *Thorlabs* (*Germany*) or to a place determined by *Thorlabs*. The customer will carry the shipping costs to *Thorlabs*, in case of warranty repairs *Thorlabs* will carry the shipping costs back to the customer.

If no warranty repair is applicable the customer also has to carry the costs for back shipment.

In case of shipment from outside EU duties, taxes etc. which should arise have to be carried by the customer.

Thorlabs warrants the hard- and software determined by Thorlabs for this unit to operate fault-free provided that they are handled according to our requirements. However, Thorlabs does not warrant a faulty free and uninterrupted operation of the unit, of the soft- or firmware for special applications nor this instruction manual to be error free. Thorlabs is not liable for consequential damages.

Restriction of warranty

The warranty mentioned before does not cover errors and defects being the result of improper treatment, software or interface not supplied by us, modification, misuse or operation outside the defined ambient conditions stated by us or unauthorized maintenance.

Further claims will not be consented to and will not be acknowledged. *Thorlabs* does explicitly not warrant the usability or the economical use for certain cases of application.

Thorlabs reserves the right to change this operation manual or the technical data of the described unit at any time.

4.2 Certifications and compliances

Certifications and compliances

Category	Category Standards or description									
EC Declaration of Conformity - EMC	Meets intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:									
	EN 61326	EMC requirements for Class A electrical equipment for measurement, control and laboratory use, including Class A Radiated and Conducted Emissions ^{1,2,3} and Immunity. ^{1,2,4}								
	IEC 61000-4-2	Electrostatic Discharge Immunity (Performance criterion B)								
	IEC 61000-4-3	Radiated RF Electromagnetic Field Immunity (Performance criterion B) ⁵								
	IEC 61000-4-4	Electrical Fast Transient / Burst Immunity (Performance criterion B)								
	IEC 61000-4-5	Power Line Surge Immunity (Performance criterion B)								
	IEC 61000-4-6	Conducted RF Immunity (Performance criterion B)								
	IEC 61000-4-11	Voltage Dips and Interruptions Immunity (Performance criterion B)								
	EN 61000-3-2	AC Power Line Harmonic Emissions								
Australia / New Zealand	Complies with the Radiocommunications Act and demonstrated per EMC Emission standard ^{1,2,3} :									
Declaration of Conformity - EMC	AS/NZS 2064		Industrial, Scientific, and Medical Equipment: 1992							
FCC EMC Compliance	Emissions comply with the Class A Limits of FCC Code of Federal Regulations 47, Part 15, Subpart B ^{1,2,3} .									

¹ Compliance demonstrated using high-quality shielded interface cables, including with CAB400 cable installed at the CONTROL OUT port and with CAB450 cable installed at the LD/TEC port.

² Compliance demonstrated with ITC100 series and DISP100 board modules installed in a Thorlabs PRO8000 mainframe unit (with PRO8000 display disabled).

³ Emissions, which exceed the levels required by these standards, may occur when this equipment is connected to a test object.

⁴ Minimum Immunity Test requirement.

⁵ MOD IN port capped at IEC 61000-4-3 test.

4.3 List of abbreviations

AC <u>Alternating Current</u>

ADC <u>Analog to Digital Converter</u>

AG <u>Anode Ground</u>
CC <u>Constant Current</u>
CG <u>Cathode Ground</u>
CP <u>Constant Power</u>

DAC <u>Digital to Analog Converter</u>

D-Share <u>Differential share</u>
DC <u>Direct Current</u>
DIL <u>Dual In-line</u>

DIN <u>Deutsche Industrie Norm</u>

IC Integrated Circuit

ILD <u>I</u> (current) <u>Laser_Diode</u> IPD <u>I</u> (current) <u>Photo_Diode</u>

I-Share Integral share

ITC <u>I</u> (current) – <u>T</u>emperature <u>C</u>ontroller

JP <u>JumPer</u> LD <u>Laser Diode</u>

LDC <u>Laser Diode Controller</u> LED <u>Light Emitting Diode</u>

N.C. <u>Not Connected</u>
PD Photo Diode

PID Proportional, Integral, Differential (regulator)

P-Share <u>Proportional share</u>

SMB Sub Miniature Connector typa "B"

TEC ThermoElectric Cooler (Peltier Element)

4.4 List of figures

Figure 1	11C100 dimensions (mm)	15
Figure 2	ITC100 operating elements	16
Figure 3	ST1 64pin I/O-jack	22
Figure 4	The 15 pin D-SUB I/O jack (f)	23
Figure 5	Principal circuit of the ITC1xx	27
Figure 6	Laser diode AG, photo diode CG, no bias	27
Figure 7	Laser diode AG, photo diode AG, no bias	28
Figure 8	Laser diode AG, photo diode floating, no bias	28
Figure 9	Laser diode AG, photo diode CG, 5V bias	29
Figure 10	Laser diode AG, photo diode AG, 5V bias	29
Figure 11	Laser diode CG / photo diode CG, no bias	30
Figure 12	Laser diode CG / photo diode AG, no bias	30
Figure 13	Laser diode CG / photo diode floating, no bias	31
Figure 14	Laser diode CG / photo diode CG, with 5V bias	31
Figure 15	Laser diode CG / photo diode AG, 5V bias	32
Figure 16	Connecting a thermistor	33
Figure 17	Connecting an AD590	33
Figure 18	Connecting a LM335	34
Figure 19	Connecting a TEC element	35
Figure 20	Interlock connection of ITC1xx	37
Figure 21	Laser current controller, version a	38
Figure 22	Laser current controller, version b	39
Figure 23	Temperature Controller, version a	40
Figure 24	Temperature Controller, version b	41
Figure 25	The ITC100D display module	45
Figure 26	ITC100D Jumper settings	46
Figure 27	ITC100D mounting scheme	47
Figure 28	Front panel ITC100F dimensions (mm)	48
Figure 29	Custom front panel dimensions (mm)	49

4.5 Addresses

Our Company is represented by several distributors and sales offices throughout the world.

Europe

Thorlabs GmbH Gauss-Strasse 11 D-85757 Karlsfeld Germany

Sales and Support

Phone: +49 (0) 81 31 / 5956-0

Fax: +49 (0) 81 31 / 5956-99

Email: europe@thorlabs.com

Web: www.thorlabs.com

USA

Thorlabs, Inc. 435 Route 206 North Newton, NJ 07860 USA

Sales and Support

Phone: 1-973-579-7227 Fax: 1-973-300-3600

Email: sales@thorlabs.com

Email: techsupport@thorlabs.com

Web: www.thorlabs.com

Japan

Thorlabs, Inc.
6th Floor, Fujimizaka Building
5-17-1, Ohtsuka
Bunkyo-ku, Tokyo 112-0012
Japan

Sales and Support

Phone: +81-3-5977-8401
Fax: +81-3-5977-8402
Email: sales@thorlabs.jp
Web: www.thorlabs.jp

Please call our hotlines, send an Email to ask for your nearest distributor or just visit our homepage

http://www.thorlabs.com