Module Overview

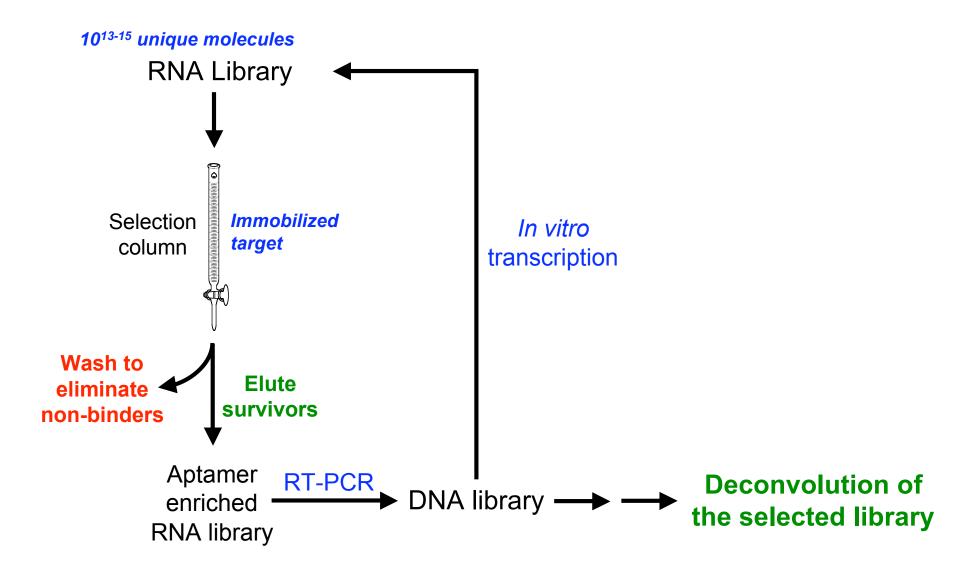
Day	Lecture	Lab
1	Introduction	DNA library synthesis (PCR)
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis (In vitro transcription = IVT)
4	SELEX III: Library deconvolution, problem-solving & technical advances	RNA purification and heme affinity selection
5	Characterizing aptamers	RNA to DNA by RT-PCR
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT Journal Club 1
7	Aptamer applications in biology & technology	Aptamer binding assay
8	Aptamers as therapeutics	Journal Club 2

SELEX III

20.109 Lecture 415 February, 2011

Summary

- Developed a conceptual framework for SELEX
- Library diversity
 - Calculations
 - Maximizing diversity within technical constraints
 - Choosing the appropriate library for your needs!
- Examined some key steps involved in the process:
 - Target selection
 - RNA library construction
 - Partitioning strategies
- SELEX can be successfully executed on:
 - Very distinct targets
 - Using distinct library design (diversity, representation, etc)
 - Using distinct partitioning strategies
 - Fairly robust and generally applicable strategy

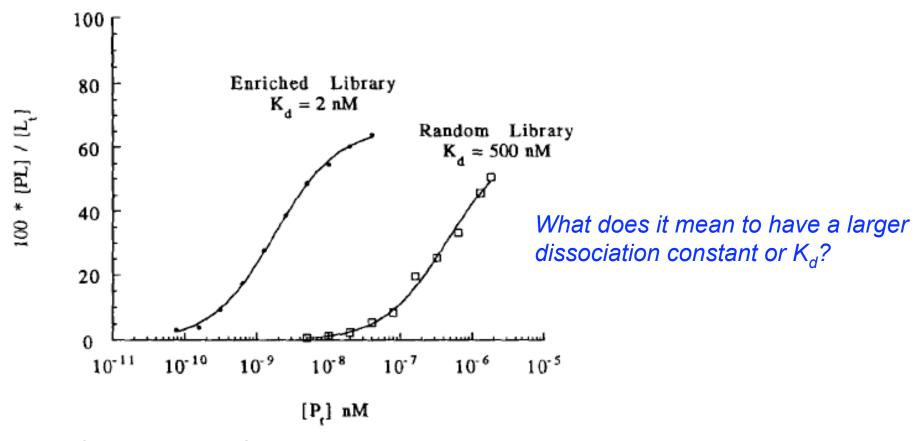

Today's Objectives

Deconvoluting a SELEX library

How do you know you've succeeded (or failed)?

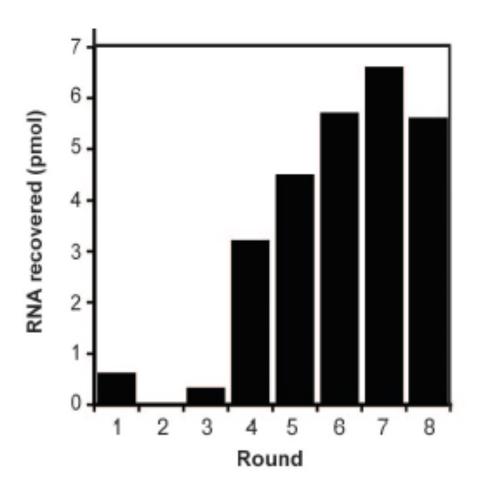
- Conceptualizing selection stringency
- Things to consider if/when SELEX fails

A typical SELEX workflow



Deconvoluting your selected library

- Was your SELEX experiment successful?
 - Have you obtained your desired aptamers
 - How do you determine this?
- If your SELEX was successful:
 - How do you identify the individual members of the selected library?
 - Are all members of your library competent for target binding?
 - Are there discernible, conserved features present in your aptamers?


Determining the success of your SELEX experiment

Compare library dissociation constants pre- and post- SELEX

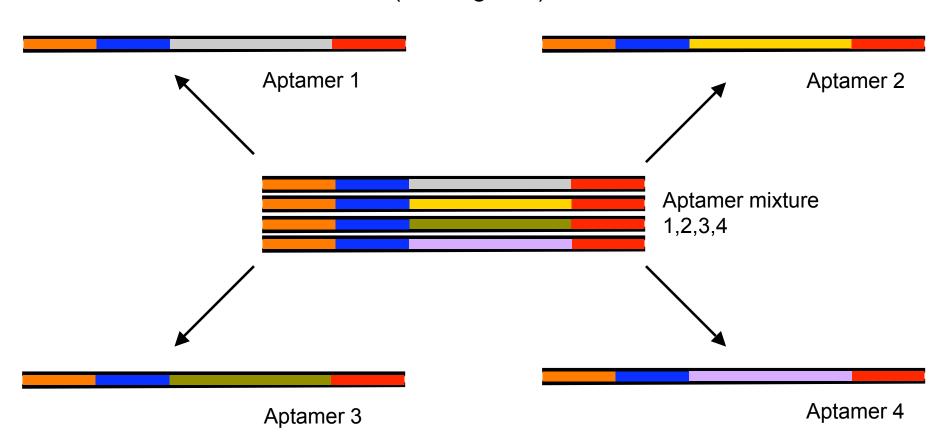
Schneider et al, **FASEB J**,, 7(1), 201-207, 1993

Determining the success of your SELEX experiment

 Track the amount of RNA recovered at the end of each round of selection

Advantages:

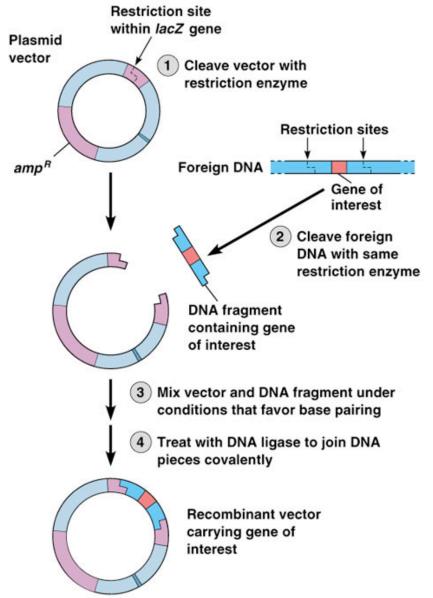
- Determine progress in real time
- Facilitates rapidly knowing the impact of changing a variable during SELEX

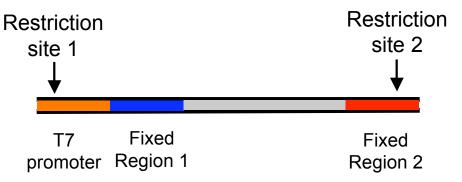

Disadvantage

 Introduce radioactivity in your workflow

Library deconvolution

Achieve:


- Isolation of individual aptamers to simultaneously facilitate:
 - -> Sequencing (identification)
 - -> Characterization (binding, etc)

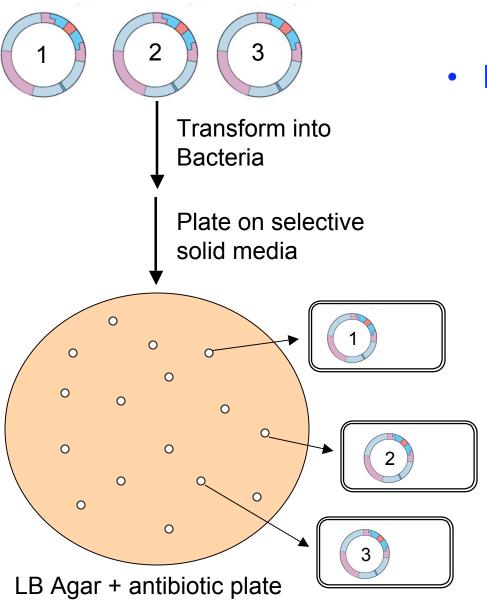


Library deconvolution

- You observe binding of your bulk selected library to the target
 - $\sim 10^{14}$ unique members in starting library
 - How many present at the end?
- Identifying individual aptamers in your library
 - How would you do this?
- Exactly how you'd clone a new gene!

Cloning the aptamer library

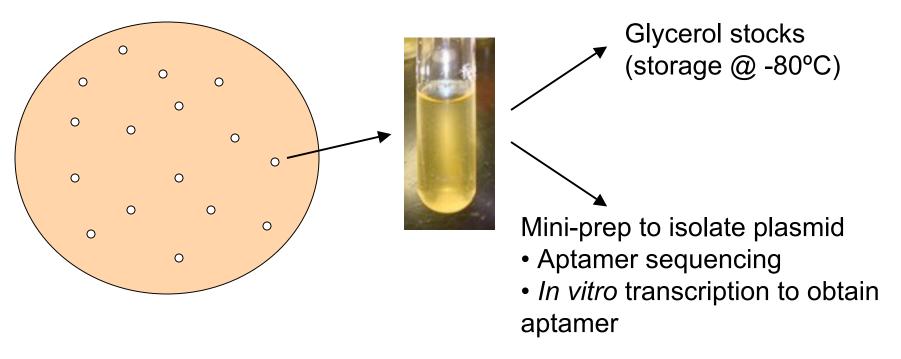
Single hit conditions:


- One insert on average incorporated into one plasmid
- Each plasmid now encodes a single aptamer

Problem

- You have a mixture of plasmids
- How do you isolate clonal plasmids?

Addison Wesley Longman, Inc.


Cloning the aptamer library

Bacterial transformation

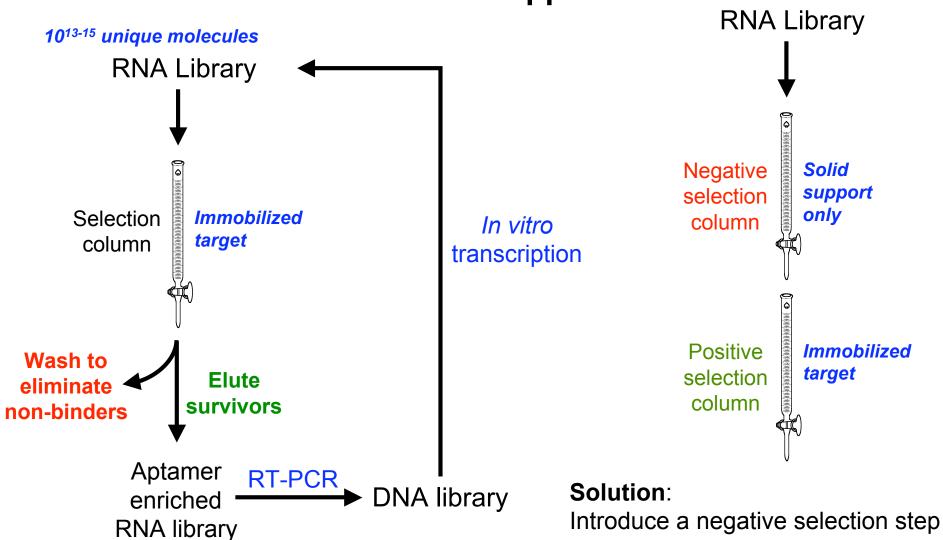
- Single hit conditions:
 - On average: ≤1 plasmid per bacterial cell
- Plating on selective media:
 - Single colony derived from a single bacterial cell
 - Each colony contains many bacterial cells, each carrying the identical plasmid

Aptamer library now encoded in plasmid library

Achieved:

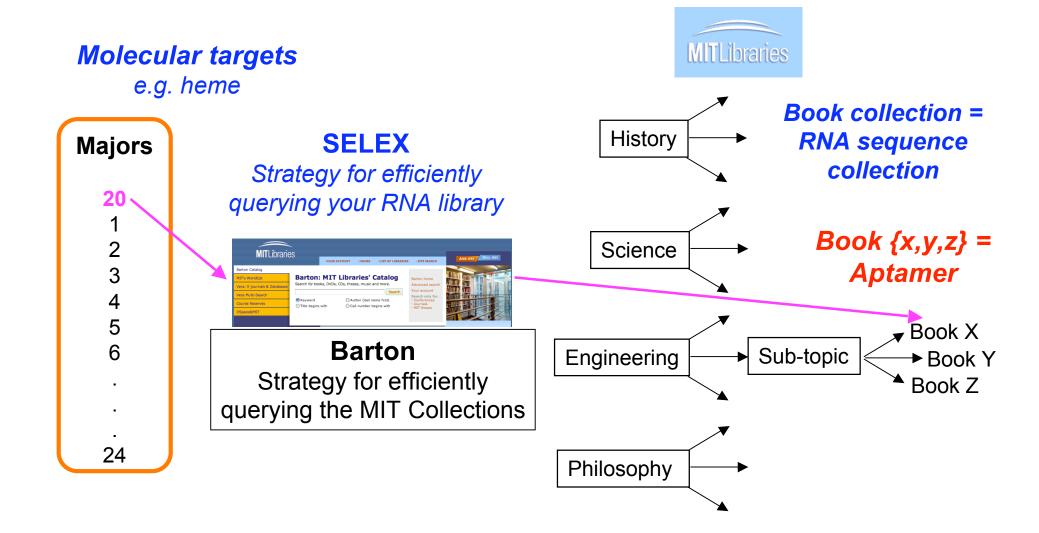
- Mixture of aptamers in selected library resolved into a plasmid library of individual aptamers
- Preserved ability to manipulate library
- Library archive

...but what went wrong with my SELEX? some common scenarios


1. No detectable binding to target

- Why might this occur?
 - Problem with your binding assay
 - How might you assess this?
 - Too few rounds of selection completed
 - How would you determine this?
 - Your selection process went awry
 - Poor choice of selection stringency conditions
 - Sequences selected based on amplification efficiency, NOT target binding
 - PCR, RT, in vitro transcription

...but what went wrong with my SELEX? Some common scenarios


- 2. Selected library and individual aptamers bind tightly to target, but ONLY when immobilized in the format used during SELEX
- Why might this arise?
 - Aptamers partially or completely recognize and bind to the solid support!
- How would you change your selection format to counter this?

Eliminating library members with high inherent affinity for solid support 1013-15 unique molecules

Maximizing SELEX efficiency

- Desirable:
 - Obtain target aptamers on first try!
 - In the fewest possible number of rounds
- What is the best way to ensure achieving this?
 - Efficiently eliminate non-binders
 - Efficiently recover binders
- Driven by selection stringency!

- Trying to locate that {Thermodynamics textbook} used in {20.110}
 - Limited specific information available
 - Perform a low stringency search

Basic Search of Full Catalog

Search Tips

Search

Brief Results Display from Full Catalog

Results for W-all keywords= Thermodynamics; sorted by : Year

Records 1 - 10 of 2694

Select All Deselect Search within results

- Trying to locate that {Thermodynamics textbook} used in {20.110}
 - Limited specific information available
 - Narrow using available information

Basic Search of Full Catalog

• Your search did not find any matching documents.

Full Catalog - Refine

W-all keywords= Thermodynamics

You may modify your search by applying another search term to the set.

Use too narrowly defined a search term **Result**: Lose your desired target!

- Trying to locate that {Thermodynamics textbook} authored by {Dill} used in {20.110}
 - Narrow using available information

---- Scroll down for more choices -----

Search type: Keyword Title begins with... Title Keyword Author (last name first) Author Keyword Call Number begins with... Search for: Thermodynamics AND Dill Example(s): darwin origin (wom!n or female) and scien*

- Trying to locate that {Thermodynamics textbook} authored by {Dill} used in {20.110}
 - Narrow using available information

Brief Results Display from Full Catalog

```
Results for W-all keywords= Thermodynamics AND W-all keywords= Dill; sorted by : Year
```

Records 1 - 2 of 2

[Display full record]

Author Dill, Ken A.

Title Molecular driving forces: statistical thermodynamics in chemistry and biology / Ken A. Dill, Sarina Bromberg; with the assistance of Dirk Stigter on the electrostatics chapters.

Published New York: Garland Science, c2003.

Format Book

Subject Statistical thermodynamics.

Availability Click All items to check current status

Location Barker Library - Stacks | QC311.5.D55 2003

Location Hayden Library - Reserve Stacks | QC311.5.D55 2003

Location Hayden Library - Stacks | QC311.5.D55 2003

More specific information about target available

Result: More efficient search and recovery!

MIT Libraries

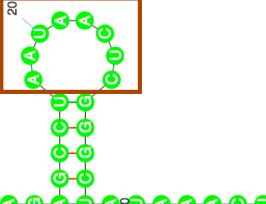
Trying to locate that {Thermodynamics textbook} used in {20.110}

RNA Library

- Trying to find the {RNA aptamers} that bind {target X}
- The more information initially specified, the more efficient the search for aptamers (see next slide)
- Very little information specified in initial query
 - Difficult to rationally restrict the search space
 - Searching is inherently inefficient
 - How can we modulate information input to influence the outcome of our SELEX experiment?

Target

SELEX à la Tuerk & Gold


T4 DNA polymerase

Structure for residues 1-388 from the PDB (www.rcsb.org)

- Target known to interact with RNA from prior work
 - Sequence below found in the mRNA encoding the T4 DNA polymerase
 - Regulatory mechanism:
 - T4 DNA polymerase binds its own mRNA decreases its own synthesis
- 8 nucleotides [AAUAACUC] are critical for the interaction
 - What underlies the preference for this loop sequence?

Based on objective, what library design would you choose?

Modulating SELEX stringency--practically

- 1. Vary how extensively the selection column is washed to remove non-interacting RNAs
 - Higher stringency --> more washes
 - Lower stringency --> fewer washes
- Information content specified:
 - Thermodynamics (Dissociation constant)
 - The lifetime of the {aptamer-target} complex must exceed the time it takes to complete your washing
 - Sufficient complex must survive the dilution and extraction process associated with washing

Query: Find the {RNA aptamers} that bind {target X} with a {dissociation constant $\leq xx$ }.

Modulating SELEX stringency--practically

- 2. Alter the [library]:[target] ratio
 - Higher stringency --> higher ratio
 - Lower stringency --> lower ratio
- Information content specified:
 - Thermodynamics (Dissociation constant)
 - Limit the number of possible target binding sites
 - Favor recovering higher affinity library members (increased signal)
 - Fewer sites for non-specific and low affinity interactions (decreased noise)
 - E.g. Less solid support used when the amount of target used is decreased

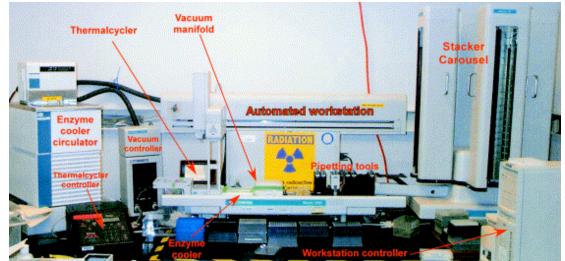
Query: Find the {RNA aptamers} that bind {target X} with a {dissociation constant $\leq xx$ }.

Modulating SELEX stringency--practically

- 3. Using buffer additives to suppress undesired interactions
 - pH
 - Consider target pl
 - pH too low --> target carried net positive charge --> encourage nonspecific electrostatic interactions with negatively charged RNA
 - Raising pH increases stringency by reducing net positive charge on target since this reduces bulk library interactions with the target
 - tRNA
 - Bind non-specific sites on solid support
 - Salt concentration
 - Modulate electrostatic contributions during binding
- Major benefit is in reducing the "noise" during your selection

My parameter optimization space is HUGE...help!?

Vary:


- Wash number
- [Library]:[target] ratio
- Buffer conditions
 - pH
 - [salt]
 - tRNA
 - BSA (protein)
- Where do I start my SELEX?
- Which variable(s) do I change if it fails?

Automating SELEX

- Library synthesis (DNA synthesizer)
- Enzymatic reactions
 - PCR (thermal cycler)
 - RT (thermal cycler)

In vitro transcription (thermal cycler)

- Binding reactions
 - 96-well plates (shakers)
- Inter-process sample transfer
 - Liquid handling robots

Cox & Ellington, *Bioorganic & Medicinal Chemistry*, 9(10), 2525-2531, 2001

Summary

- Selected aptamer libraries can be made into plasmid libraries
 - Using standard molecular biology methods
 - Each plasmid represents a specific aptamer in selected pool
 - Facilitate aptamer archival and further characterization
- Many factors can impact the success or failure of SELEX
 - Must carefully consider target properties in selecting your SELEX conditions
 - Establish your strategy for using stringency to control the efficiency of your selection
 - Selecting a stringency protocol is empirical
 - Insufficient initial knowledge to rationally decide best strategy beforehand
 - Altering stringency involves considering thermodyamic principles