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« Biofuels are not the driver, they are the passenger!
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Oleochemical Plant Product Mix
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Industrial sweetpotatoes

« Sweetpotato as a bio-factory
 Plant made industrial products
— Bio-ethanol
— High-fructose syrup
— Bio-plastics

 Nutraceuticals

— Vitamins
 Plant made proteins

— Pharmaceuticals
 Other renewable bio-products

— Purple dye C.
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Sweetpotato Biomass Potential

35,000
30,000
25,000
20,000
15,000
10,000

5,000

Biomass (lbs/A) Fermtbls (Ibs/A)

O0Corn M Wheat B Grain Sorghum O Sweetpotato

Hall and Smittle. 1993. Industrial-type sweet potatoes: A renewable energy resource for Georgia.

UGA Res. Rpt. 429. ™
Cibe

e o] Bl o L R [ P s



Sweetpotato anthocyanins

e Textiles

— Bright color

— Improved potency
 Food

O-Gle-O-Rha '.

i - ..,_;-_" 3
anthocyanins — ©:GI€-0-Rha

— nutraceutical | o
« Co-extraction y o
on R

— Proteins on o flavonols
— Starch by-products
— Ascorbic acid etc.
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Protein T&fg@ts -- Producing high value proteins representing

“prototype” molecules and important commercial targets where plants provide
a unique opportunity.

Interleukins (IL-10, 12, 24)
 Inflammation, immunity
Vaccine adjuvants and antigens

* Infectious disease, cancer
Hormones (TGF-Bs, insulin-like)
e Cancers, dermatitis
Tumor suppressors (TFF1)
e Cancers
Therapeutic enzymes
e Lysosomal storage disorders




High-Value Products From Tobacco
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What about lignin?
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Major producers of bioproducts in the US

Bioproduct category Producer Product
Starch and sugar ADM; Arkenol; Cargill; Cargill Citric acid; Ethanol;
products Dow; Cargill Corn Milling; Sorbitol; Ethyl lactate;
Minnesota Corn Processors; PLA; Sugar; 1,3-
Midwest Grain Products; DuPont; | propanediol; Starch
Grain Processing Company; Tate &
Lyle; A.E. Staley; Williams Bio-
Energy
Cellulose Dow Chemical; Celanese Cellulose derivatives

Wood chemicals

Westvaco; Hercules; Norit America;
Arizona Chemical; Georgia Pacific;
Akzo Nobel Resins

Activated Carbon;
Wood chemicals; Gum
rosin

Oils and lipids

Cambrex; Vertec Biosolvents, Inc.;
AG Environmental

Products LLC; West Central Soy;
Lonza

Caster oil derivatives;
Soy products;
Lubricants; Cleaners;
Glycerin; Fatty acids
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Biofuel Chemical Markets/Prices

plasticizers, hydraulic brake fluids,
non-ionic detergents

Chemical Uses 2003 market Market price 2020 market
(M Iblyr) ($/1b) (M Iblyr)
Lactic Acid Derivatives
Lactic acid Acidulant (food, drink), electroplating <5 (industrial $0.70-0.85 Expect GDP-like
bath additive, mordant, textile/leather uses) growth
Polylactide Film and thermoformed pkg, fiber Pkg: 21,289 $0.30-1.50 8,000
and fiberfill Fiber: 2,769
Ethyl lactate Solvent, chemical intermediate 8,000 — 10,000 $0.30 - 1.80 >1,000
Acrylic Acid Acrylates (e.g., coatings, 2,000 $0.48 Will require
adhesives), superabsorbent technology
polymers, detergent polymers breakthrough
Propylene Unsaturated polyester resins, 1,100 $0.39-0.48 Will compete
Glycol antifreeze, solvent, humectant, against

conventional
petro-based
PG as well as
biobased PG

Cibe
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Biofuel Chemical Markets/Prices

Chemical Uses 2003 market Market price 2020 market
(M Iblyr) ($/Ib) (M Iblyr)
Succinic Acid Derivatives
Tetrahydro Solvent, printing inks, 255 $1.55 >50
furan adhesives and mag tapes
1,4-butanediol solvent, polybutylene 680 $0.65-0.90 >30
terephthalate, coating
resins and
chemical/pharmaceutical
intermediates
n-methyl Chemical selective synthesis 80 $1.35
pyrrolidone solvents (paint removers,
polyimide coatings,)
Bionolle 4,4 Thermoplastic polymer 25,000-60,000 $0.30-1.50 >4,000
polyester applications
Acrylonitrile ABS polymer, SAN rubber 3,130 $0.31-0.37 Technology
developing
@
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Chemical US capacity
formula Chemical structure Price (5/Ths) (MMIbs)
C 0, OH 0.05-0.45 [7] 250 (8]
HO\_/J\/GH
Tartronic acid CaH505 i N/A N/A
s HO OH
- Y
Dihydroxyacetone Cyl0y 2.0009] N/A
HD
Glyceric acid CyHg0y Ha 2 Likely high N/A
(applications in
fine chemicals/
H OH pharma)
Malonic acid Cayl 1404 /‘ﬁ\/ﬁ"\ 14 (10] <1[11]
HO Ok
Hydroxypyruvic acid CylOy H High (used for N/A
Ho production of
Hr amino acids)
Propylene glycol CsHgO, o 0.44-1.00 [12] 1410 [12]
)\_/DH
HaC



Chemical US capacity
Name formula Chemical struciure Price (5/Ibs) (MMIbs)
Propionic acid CyH0 /\I(-C'" (46062 [13] 440 [13]
: H4yC
9

Glycidol CallgOs T>—/DH >$11,000 [14] N/A
Acrylic acid Cal ey 0.45-1.01 [15] 2880 (15

HCan ok

. . ~. ~ OH 5 Y .
Propanol CallgO Haﬂ'fﬂ\/ 0.5219] 260 [16]
Isopropanol CyHgO /TH\ 0.28-0.49 [17] 1965 (171
HyC CHy
Acetone Cal150 )‘L 0.1325-0.4225 18] 3441 [18]
HyC CHg

Propylene oxide Cyll g0 cH 00640795 [19] 5190 [19]

| >——CHg

o
Propionaldehyde Callg0) e M 0.40 (9] 400 [16]
Allyl alcohol Ca0 /\/DH 1.00 (9] 60 [20]

] O A5 HEC/

Acrolein CyH 40 0.64[21] =250 [22]
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“Typical” Biodiesel Process
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Biodiesel Manufacturing
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Fat or Qil
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What to do with Glycerol?
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Glycerol fermentation

MNADH: MNAD
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Figure 1. Metabolic pathways for glycerol metabolism in clostridia (R1, glycerol dehydratase; R2, PDO

dehydrogenase; O1, glycerol dehydrogenase; O2, dihydroxyacetone kinase; 1, lactate dehyvdrogenase; 2,
pyruvate-ferredoxin oxidoreductase; 3, hydrogenase; 4, acetaldehyde dehydrogenase; 5, ethanol dehydrogenase;
6, thiolase: 7, butyryl-CoA dehydrogenase; 8, butyraldehyde dehydrogenase; 9, butanol dehydrogenase).
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Glycerol Prices
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US biodiesel production and its impact on crude glycerol prices.
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Enzymatic synthesis of glycerol
carbonate
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Why do we think this reaction is possible?

0O O

@)
=P =N
R R > R1 /R »> 1 e 1
N ~ 7 )
o 1 lipase o 2 © lipase I 3 ©
(Chandrasekaran, 2003)
1-propanol 2-propanol
Alcohol OH OH
Carbonate Products Mono-substituted Mono-substituted
Di-substituted
P
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Experimental Results

» Glycerol was reacted with dimethyl carbonate in tert-butanol
« (Catalyzed by Candida antarctica lipase B
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Dialkyl Carbonate Choice

Dialkyl carbonate choice effects conversion and specificity.
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Does solvent matter?
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Does solvent matter?

Yes!
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Preliminary results - Glycerol carbonate
from glycerol

Lipase Carbonate | Conversion | Time Selectivity
C.antB dibutyl 70% 2 h 30%
C.antB dimethyl 70% 20 h 99%+
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“Typical” Biodiesel Process
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Lipase can also catalyze biodiesel

production
H,COCOR H,COH
H(%OCOR + CH,OH —> 3 R-COOCH, + H(|ZOH
H,COCOR H,COH
FAMEs glycerol
H2C|:OCOR ﬁ H2(|ZO\ _ H2C|ZO\C_O H2C|ZO\C_O
HCOCOR +* CH,0-C-OCH; ——» 2 R-COOCH, + Hclzo/ + Hclzo/ + Hcl;o/ B
H,COCOR H,COCOR H,COH H,COCOOCH,
FAMEs FAGCs glycerol carbonate glycerol dicarbonate
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Summary of Lipase-catalyzed biodiesel
production

e Batch system with 1.5 DMC/oil mole ratio and 2.5%
Immobilized Candida antarctica (based on oll
weight) at 50°C
— 70% fatty acid methyl esters (FAMES)

— 12% glycerol carbonate fatty acid monoesters (FAGCs),
— 0.23% glycerol carbonate

— 0.08% glycerol dicarbonate

— less than 2% of mono- and di- glycerides

— 65% residual activity over fifth recycle was observed at
50°C with 24h run cycle



Implementation

* Immobilized whole cells with surface display of
Ipase
e Packed column or expanded bed reactor

« Avoided costs of enzyme purification and
iImmobilization

* Protein stability remains an issue




Summary

 Biomass used for biofuel production has multiple uses
— Fermentation does not have to result in ethanol
— Lignin is not necessarily a nuisance to be avoided

— Apply concept of total carbon utilization in approaching
starting material

 Many alternate products have specific value > fuel

e Balance high value/low volume with low value/high volume
products
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