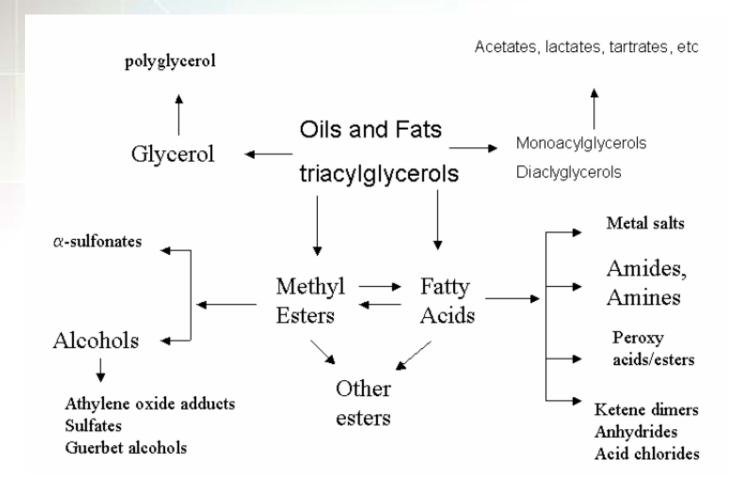

IBE Conference: Frontiers in Biological Engineering

Mar. 8, 2008

Steven Peretti

NCSU Dept of Chemical and Biomolecular Engineering

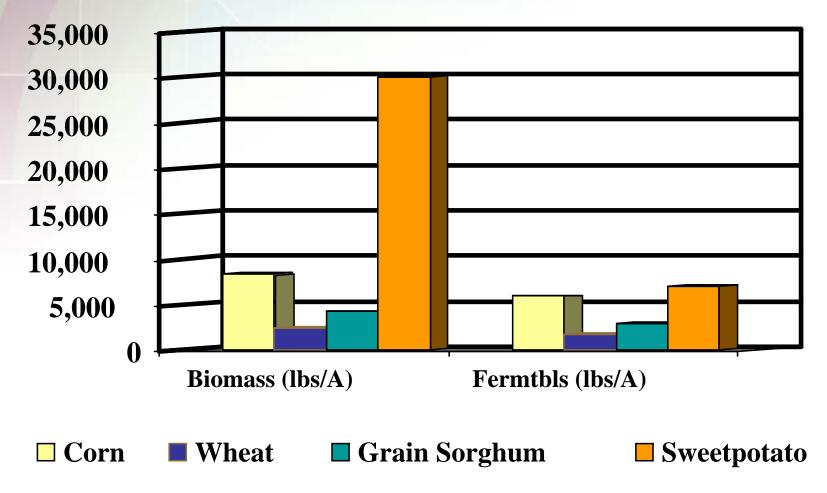

Basic philosophy

Biofuels are not the driver, they are the passenger!

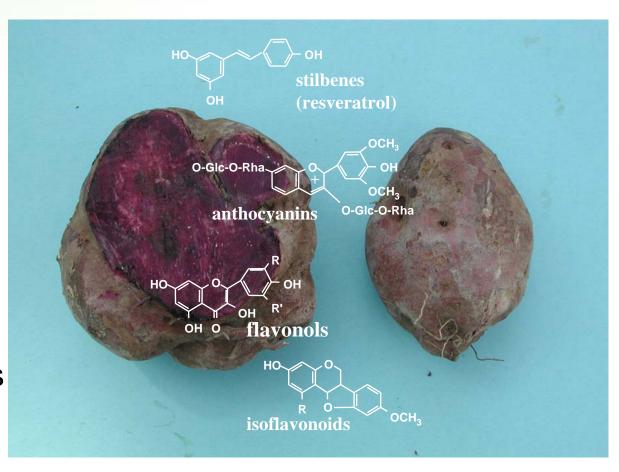
Oleochemical Plant Product Mix

Industrial sweetpotatoes

- Sweetpotato as a bio-factory
- Plant made industrial products
 - Bio-ethanol
 - High-fructose syrup
 - Bio-plastics

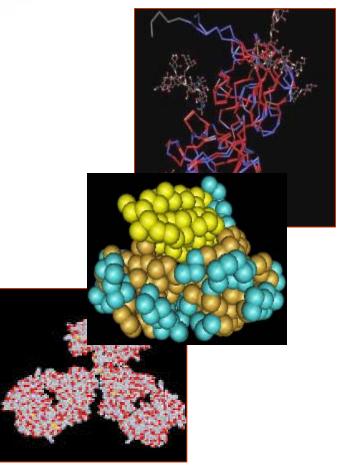


- Vitamins
- Plant made proteins
 - Pharmaceuticals
- Other renewable bio-products
 - Purple dye

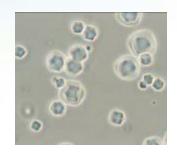

Sweetpotato Biomass Potential

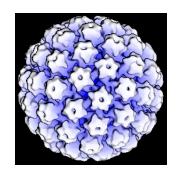
Hall and Smittle. 1993. Industrial-type sweet potatoes: A renewable energy resource for Georgia. UGA Res. Rpt. 429.

Sweetpotato anthocyanins

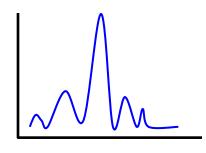

- Textiles
 - Bright color
 - Improved potency
- Food
 - nutraceutical
- Co-extraction
 - Proteins
 - Starch by-products
 - Ascorbic acid etc.

Protein Targets -- Producing high value proteins representing "prototype" molecules and important commercial targets where plants provide a unique opportunity.


- Interleukins (IL-10, 12, 24)
 - Inflammation, immunity
- Vaccine adjuvants and antigens
 - Infectious disease, cancer
- Hormones (TGF-βs, insulin-like)
 - Cancers, dermatitis
- Tumor suppressors (TFF1)
 - Cancers
- Therapeutic enzymes
 - Lysosomal storage disorders

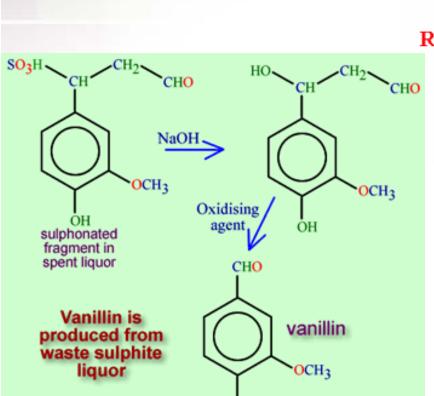

High-Value Products From Tobacco

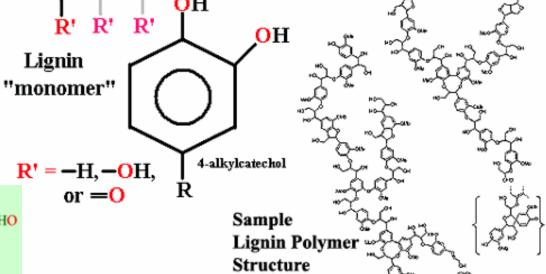
Native proteins


RuBisCO

Transgenic proteins

Papillomavirus Vaccines


Secondary Compounds



Terpenoids
Sugar Esters
Pigments

What about lignin?

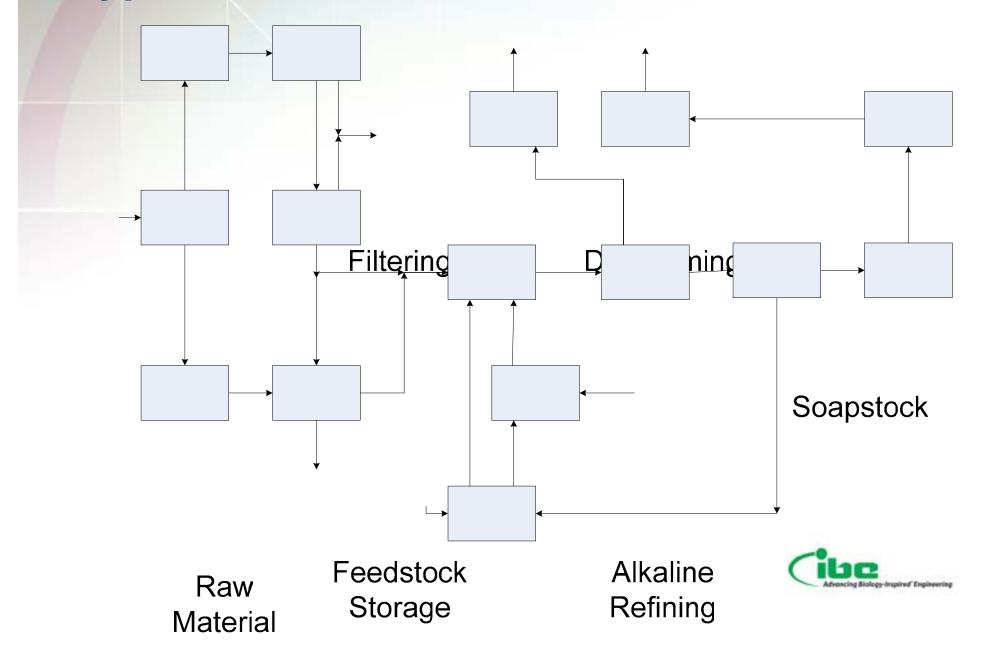
Major producers of bioproducts in the US				
Bioproduct category	Bioproduct category Producer			
Starch and sugar	ADM; Arkenol; Cargill; Cargill	Citric acid; Ethanol;		
products	Dow; Cargill Corn Milling;	Sorbitol; Ethyl lactate;		
/	Minnesota Corn Processors;	PLA; Sugar; 1,3-		
	Midwest Grain Products; DuPont;	propanediol; Starch		
	Grain Processing Company; Tate &			
	Lyle; A.E. Staley; Williams Bio-			
	Energy			
Cellulose	Dow Chemical; Celanese	Cellulose derivatives		
Wood chemicals	Westvaco; Hercules; Norit America;	Activated Carbon;		
	Arizona Chemical; Georgia Pacific;	Wood chemicals; Gum		
	Akzo Nobel Resins	rosin		
Oils and lipids	Cambrex; Vertec Biosolvents, Inc.;	Caster oil derivatives;		
	AG Environmental	Soy products;		
	Products LLC; West Central Soy;			
	Lonza	Glycerin; Fatty acids		

Biofuel Chemical Markets/Prices

Chemical	Uses	2003 market (M lb/yr)	Market price (\$/lb)	2020 market (M lb/yr)
	Lactic Acid	Derivatives		
Lactic acid	Acidulant (food, drink), electroplating bath additive, mordant, textile/leather	<5 (industrial uses)	\$0.70-0.85	Expect GDP-like growth
Polylactide	Film and thermoformed pkg, fiber and fiberfill	Pkg: 21,289 Fiber: 2,769	\$0.30-1.50	8,000
Ethyl lactate	Solvent, chemical intermediate	8,000 – 10,000	\$0.30 - 1.80	>1,000
Acrylic Acid	Acrylates (e.g., coatings, adhesives), superabsorbent polymers, detergent polymers	2,000	\$0.48	Will require technology breakthrough
Propylene Glycol	Unsaturated polyester resins, antifreeze, solvent, humectant, plasticizers, hydraulic brake fluids, non-ionic detergents	1,100	\$0.39-0.48	Will compete against conventional petro-based PG as well as biobased PG

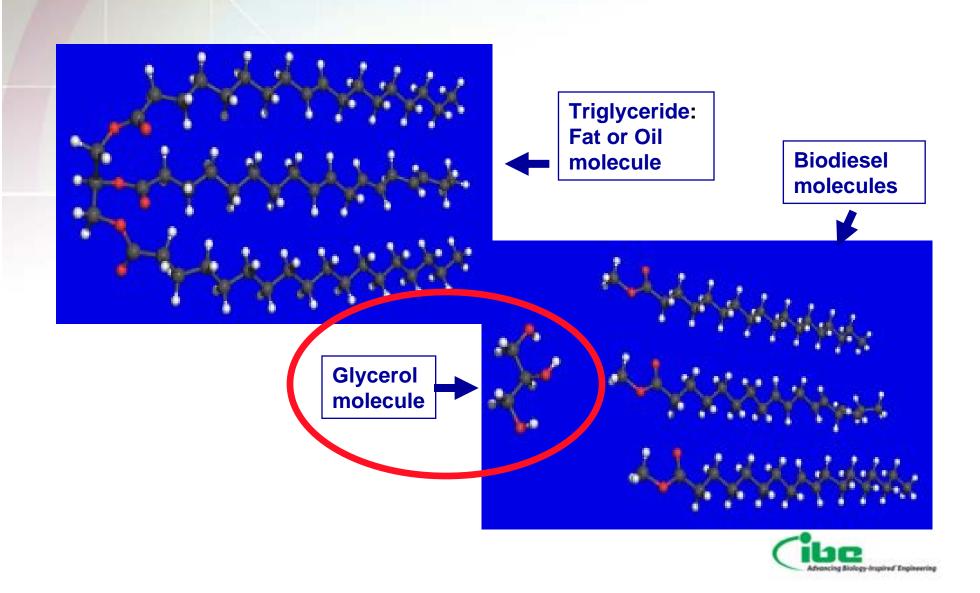
Biofuel Chemical Markets/Prices

Chemical	Uses	2003 market (M lb/yr)	Market price (\$/lb)	2020 market (M lb/yr)
	Succinic Aci	d Derivatives		.1
Tetrahydro furan			>50	
1,4-butanediol	ediol solvent, polybutylene 680 \$ terephthalate, coating resins and chemical/pharmaceutical intermediates		\$0.65-0.90	>30
n-methyl pyrrolidone	Chemical selective synthesis solvents (paint removers, polyimide coatings,)	80	\$1.35	
Bionolle 4,4 polyester	Thermoplastic polymer applications	25,000-60,000	\$0.30-1.50	>4,000
Acrylonitrile ABS polymer, SAN rubber		3,130	\$0.31-0.37	Technology developing

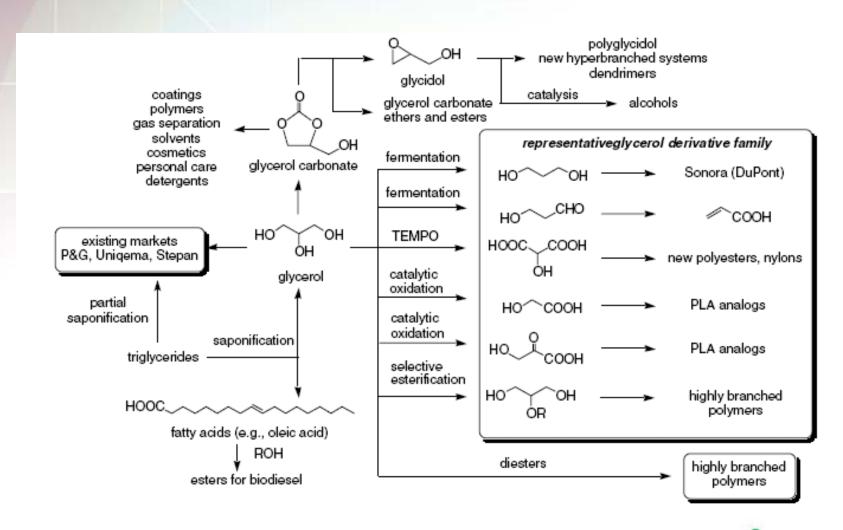


Name	Chemical formula	Chemical structure	Price (\$/lbs)	US capacity (MMlbs)
Glycerol	C ₃ H ₈ O ₃	но он	0.05–0.45 [7]	250 [8]
Tartronic acid	C ₃ H ₃ O ₅	но	N/A	N/A
Dihydroxyacetone	C ₃ H ₆ O ₃	но	2.00 [9]	N/A
Glyceric acid	$\mathrm{C_3H_6O_4}$	но	Likely high (applications in fine chemicals/ H pharma)	N/A
Malonic acid	C ₃ H ₄ O ₄	но	14 [10] PH	<1[1
Hydroxypyruvic acid	C ₃ H ₄ O ₄	но	High (used for production of amino acids)	N/A
ropylene glycol	$C_3H_8O_2$	H ₃ C OI	0.44–1.00 [12]	1410

Name	Chemical formula	Chemical structure	Price (\$/lbs)	US capacity (MMlbs)
Propionic acid	$C_3H_6O_2$	H₃C OH	0.46–0.62 [13]	440 [13]
Glycidol	$C_3H_6O_2$	OH	>\$11,000 [14]	N/A
Acrylic acid	$C_3H_5O_2$	H ₂ C OH	0.45-1.01 [15]	2880 [15]
Propanol	C ₃ H ₈ O	H ₃ C OH	0.52 [9]	260 [16]
Isopropanol	C ₃ H ₈ O	H ₃ C CH ₃	0.28-0.49 [17]	1965 [17]
Acetone	C₃H ₆ O	н ₃ с сн ₃	0.1325-0.4225 [18]	3441 [18]
Propylene oxide	C₃H ₆ O	CH ₃	0.64-0.795 [19]	5190 [19]
Propionaldehyde	C ₃ H ₆ O	H ₃ C O	0.40 [9]	400 [16]
Allyl alcohol	C ₃ H ₅ O	H ₂ C OH	1.00 [9]	60 [20]
Acrolein	C_3H_4O	H ₂ C	0.64 [21]	>250 [22]

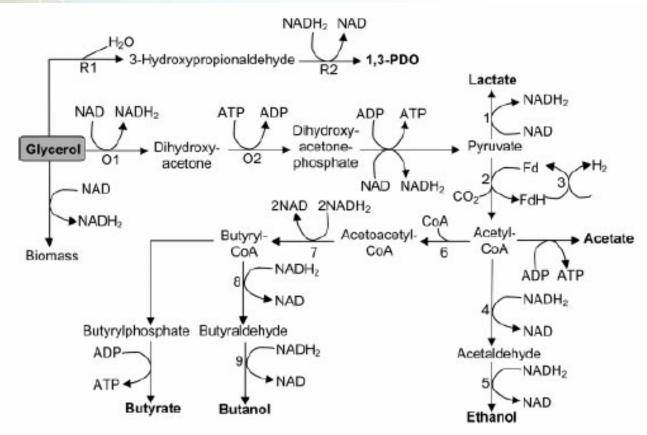


"Typical" Biodiesel Process



Bi

Biodiesel Manufacturing



What to do with Glycerol?

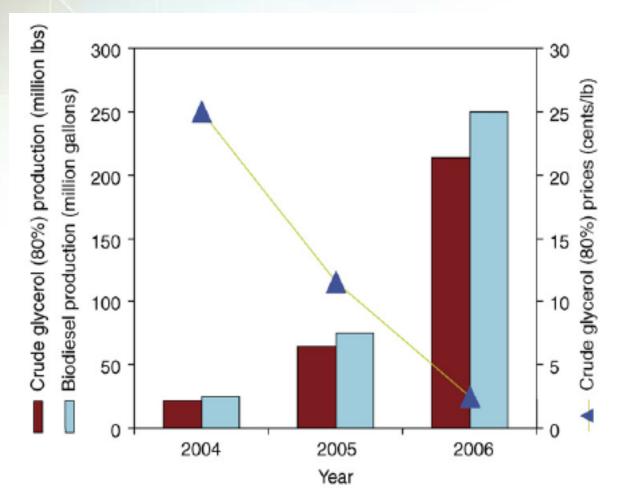

Glycerol fermentation

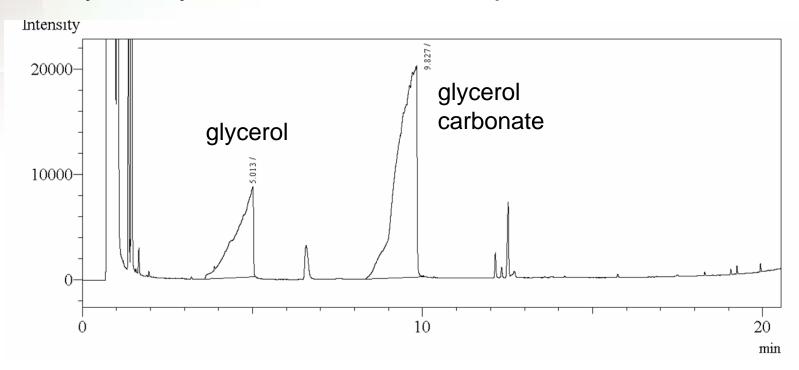
Figure 1. Metabolic pathways for glycerol metabolism in clostridia (R1, glycerol dehydratase; R2, PDO dehydrogenase; O1, glycerol dehydrogenase; O2, dihydroxyacetone kinase; 1, lactate dehydrogenase; 2, pyruvate-ferredoxin oxidoreductase; 3, hydrogenase; 4, acetaldehyde dehydrogenase; 5, ethanol dehydrogenase; 6, thiolase; 7, butyryl-CoA dehydrogenase; 8, butyraldehyde dehydrogenase; 9, butanol dehydrogenase).

Glycerol Prices

US biodiesel production and its impact on crude glycerol prices.

(Yazdani and Gonzalez 2007)

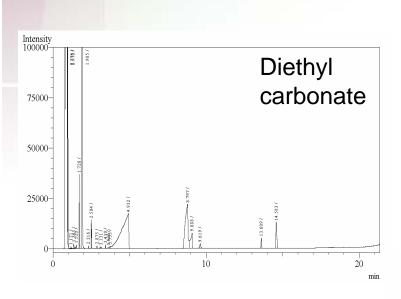
Enzymatic synthesis of glycerol carbonate

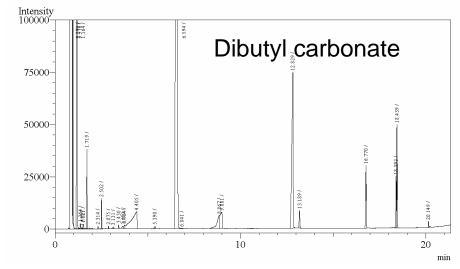

Why do we think this reaction is possible?

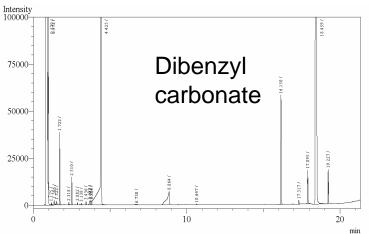
(Chandrasekaran, 2003)

Alcohol	1-propanol OH	2-propanol OH
Carbonate Products	Mono-substituted Di-substituted	Mono-substituted

Experimental Results

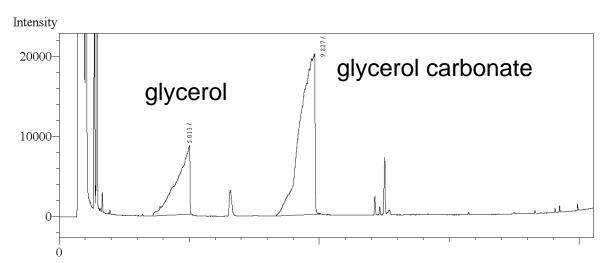

- Glycerol was reacted with dimethyl carbonate in tert-butanol
- Catalyzed by Candida antarctica lipase B

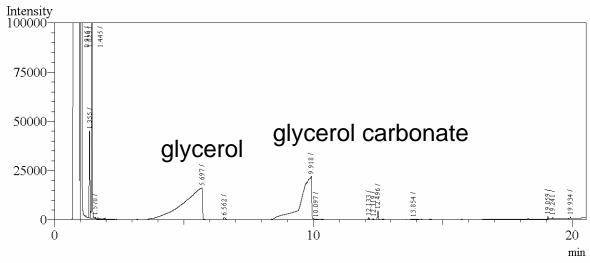




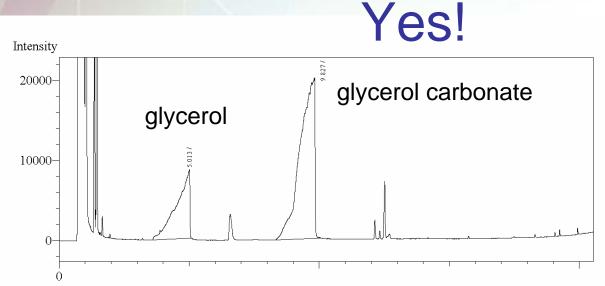
Dialkyl Carbonate Choice

Dialkyl carbonate choice effects conversion and specificity.





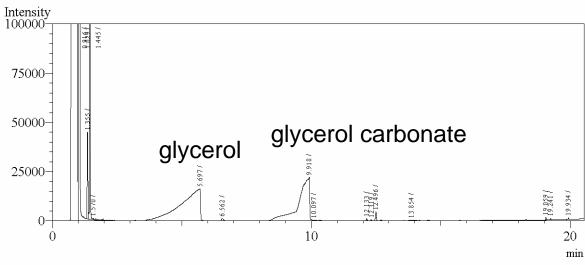
Does solvent matter?



Glycerol, dimethyl carbonate, CalB and *tert*- butanol as a solvent

Glycerol, dimethyl carbonate and CalB

Does solvent matter?

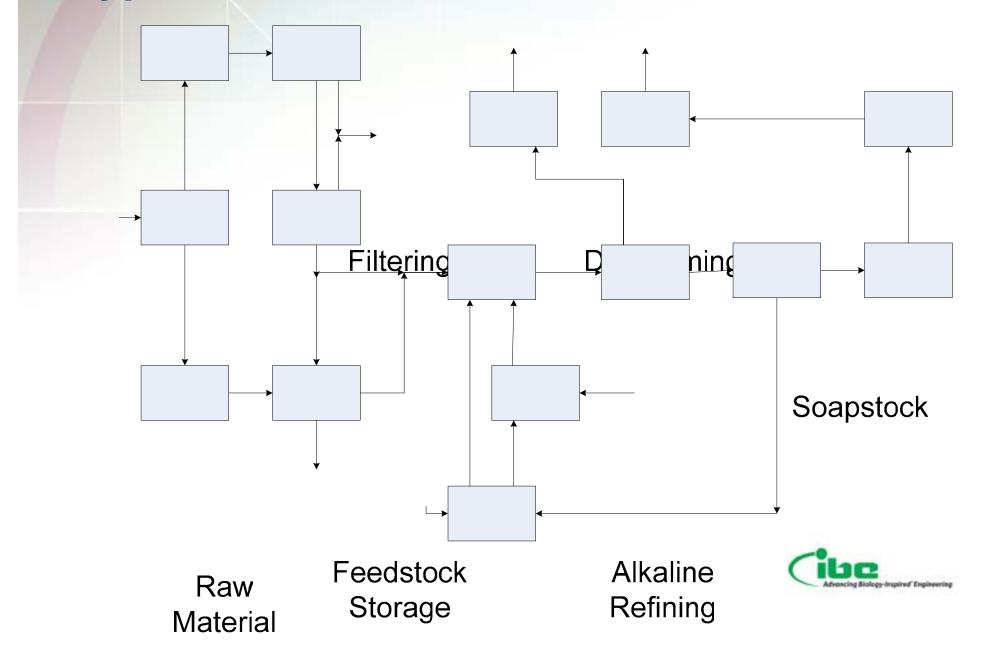

Glycerol, dimethyl carbonate, CalB and

tert- butanol as a solvent

→72 % conversion

Glycerol, dimethyl carbonate and CalB

→42% conversion



Preliminary results - Glycerol carbonate from glycerol

Lipase	Carbonate	Conversion	Time	Selectivity
C. ant B	dibutyl	70%	2 h	30%
C. ant B	dimethyl	70%	20 h	99%+

"Typical" Biodiesel Process

Bi

Lipase can also catalyze biodiesel production

$$H_2$$
COCOR H_2 COH H_2 COH H_2 COCOR H_3 OH H_2 COCOR H_2 COH H_2 COH H_2 COH H_2 COH

Summary of Lipase-catalyzed biodiesel production

- Batch system with 1.5 DMC/oil mole ratio and 2.5% immobilized Candida antarctica (based on oil weight) at 50°C
 - 70% fatty acid methyl esters (FAMEs)
 - 12% glycerol carbonate fatty acid monoesters (FAGCs),
 - 0.23% glycerol carbonate
 - 0.08% glycerol dicarbonate
 - less than 2% of mono- and di- glycerides
 - 65% residual activity over fifth recycle was observed at 50°C with 24h run cycle

Implementation

- Immobilized whole cells with surface display of lipase
- Packed column or expanded bed reactor
- Avoided costs of enzyme purification and immobilization
- Protein stability remains an issue

Summary

- Biomass used for biofuel production has multiple uses
 - Fermentation does not have to result in ethanol
 - Lignin is not necessarily a nuisance to be avoided
 - Apply concept of total carbon utilization in approaching starting material
- Many alternate products have specific value > fuel
- Balance high value/low volume with low value/high volume products

